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Solutions

Find the maximum and minimum values April 2023

2166. Proposed by H. A. ShahAli, Tehran, Iran.

Let x1, . . . , xn be nonnegative real numbers with x1 + · · · + xn = 1 and n ≥ 2. Deter-
mine the minimum and maximum values of the following function

x1 + x2

1+ x1x2
+ x2 + x3

1+ x2x3
+ · · · + xn + x1

1+ xnx1
.

When do the extreme values occur?

Composite solution by Stan Dolan, Charmouth, UK, and the proposer.
Put

fn(x1, . . . , xn) = x1 + x2

1+ x1x2
+ x2 + x3

1+ x2x3
+ · · · + xn + x1

1+ xnx1

with xi ≥ 0 and x1 + · · · + xn = 1. Since

fn(x1, . . . , xn) ≤ (x1 + x2)+ (x2 + x3)+ · · · + (xn + x1) = 2,

the maximum value is 2, which occurs if and only if x1x2 = x2x3 = · · · = xnx1 = 0.
To minimize fn, we consider three cases. If n = 2, then

f2(x, y) = 2(x + y)
1+ xy =

2

1+ xy .

This is minimized, then xy is maximized, i.e., only when x = y = 1/2 and the mini-
mum value is thus 8/5.

Without loss of generality, when n = 3, we may consider f3(x, y, z) with 0 ≤ x ≤
y ≤ z ≤ 1. Note that this forces 0 ≤ x ≤ 1/3. We claim that in this case

f3(x, y, z) ≥ f3

(
x,
y + z

2
,
y + z

2

)
= f3

(
x,

1− x
2

,
1− x

2

)
. (1)

After some computations, this is equivalent to

(1− x)(y − z)2(2− 4x − x2 − xyz(5− 4x + 2x2)) ≥ 0. (2)

Since 0 ≤ x ≤ 1/3 and 0 ≤ xyz ≤ ((x + y + z)/3)3 = 1/27, we have

49 > 104

(
1

3

)
+ 29

(
1

3

)2

≥ 104x + 29x2

⇒ 54− 108x − 27x2 > 5− 4x + 2x2

⇒ 2− 4x − x2 >
1

27
(5− 4x + 2x2) ≥ xyz(5− 4x + 2x2)

⇒ 2− 4x − x2 − xyz(5− 4x + 2x2) > 0.

Therefore (2) and equivalently (1) are true, and the equality holds if and only if y = z.
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We have

f3

(
x,
y + z

2
,
y + z

2

)
= f3

(
x,

1− x
2

,
1− x

2

)

= 9

5
+ x(1− 3x)2

5(2− x)(5− 2x + x2)
,

so the minimum value of f3 is 9/5, which occurs only when x = 0 or x = 1/3. This
corresponds to (x, y, z) = (1/3, 1/3, 1/3) or a permutation of (0, 1/2, 1/2).

We now consider the case when n ≥ 4. Each term of fn(x1, . . . , xn) involves neither
x1 nor x3 or involves just one of them (since n ≥ 4) and is a concave function of those
arguments. Therefore fn(x1, . . . , xn) is a concave function of x1 if x1 + x3 and all
other arguments are kept constant. Hence its minimum as x1 varies is attained at the
boundary values where either x1 or x3 is zero.

Without loss of generality, suppose that the minimum occurs when x1 = 0. Then

fn(x1, . . . , xn) = fn−1(x2, . . . , xn)+ x2 + xn − x2 + xn
1+ x2xn

≥ fn−1(x2, . . . , xn)

with x2 + · · ·xn = 1 and equality occurring if and only if x2xn = 0. Repeating this
procedure leads to the case n = 3 with one of the arguments being zero. From the
results for the case n = 3, the three arguments must be a permutation of (1/2, 1/2, 0)
and the minimum value is 9/5. Hence the minimum value of fn is also 9/5 and this
occurs only when (x1, . . . xn) is a cyclic permutation of (1/2, 1/2, 0, . . . , 0).

Also solved by Paul Bracken, Prithwijit De (India), and Harris Kwong. There was one incom-
plete or incorrect solution.

The limit of an exponential product April 2023

2167. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France.

Prove that

lim
n→∞ e

n/2
n∏
i=2

ei
2
(

1− 1

i2

)i4
= π exp

(
−5

4
+ 3ζ(3)

π2

)
,

where ζ(3) =∑∞n=1 1/n3.

Solution by Hongwei Chen, Christopher Newport University, Newport News, VA.
Let

Pn := en/2
n∏
i=2

ei
2
(

1− 1

i2

)i4
.

Taking logarithms yields

lnPn = n

2
+

n∑
i=2

i2 +
n∑
i=2

i4 ln

(
1− 1

i2

)
.

Applying the power series

ln(1− x) = −
∞∑
k=1

xk

k
for x ∈ [−1, 1),
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we have

lnPn = n

2
+

n∑
i=2

i2 −
n∑
i=2

∞∑
k=1

i4

k i2k

= n

2
+

n∑
i=2

i2 −
n∑
i=2

(
i2 + 1

2
+
∞∑
k=3

1

k i2(k−2)

)

= 1

2
−

n∑
i=2

∞∑
k=3

1

k i2(k−2)
(use k − 2→ k)

= 1

2
−

n∑
i=2

∞∑
k=1

1

(k + 2) i2k
.

Hence

lim
n→∞ lnPn = 1

2
−
∞∑
i=2

∞∑
k=1

1

(k + 2) i2k
.

Exchanging the order of the summation gives

S :=
∞∑
k=1

1

k + 2

∞∑
i=2

1

i2k
=
∞∑
k=1

1

k + 2
(ζ(2k)− 1),

where ζ(2k) =∑∞n=1 1/n2k . Thus

S =
∞∑
k=1

2
∫ 1

0
(ζ(2k)− 1)x2k+3 dx

=
∫ 1

0

(
1− πx cot(πx)− 2x2

1− x2

)
x3 dx

=
∫ 1

0

(
3− πx cot(πx)− 2

1− x2

)
x3 dx,

where we have used 2x2/(1− x2) = −2+ 2/(1− x2) and

∞∑
k=1

ζ(2k)x2k = 1

2
(1− πx cot(πx))

(https://proofwiki.org/wiki/Riemann Zeta Function at Even Integers). Since x3/(1−
x2) = −x + 2x/(1− x2), we have

S = 7

4
−
∫ 1

0

(
πx4 cot(πx)+ 2x

1− x2

)
dx

= 7

4
− lim

b→1−

∫ b

0

(
πx4 cot(πx)+ 2x

1− x2

)
dx

= 7

4
− lim

b→1−
(
b4 ln(sin(πb))− ln(1− b2)

)+ 4
∫ 1

0
x3 ln(sin(πx)) dx

https://proofwiki.org/wiki/Riemann_Zeta_Function_at_Even_Integers
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= 7

4
− ln(π/2)+ 4

∫ 1

0
x3 ln(sin(πx)) dx.

Using

ln(sin x) = − ln 2−
∞∑
n=1

cos(2nx)

n

(https://proofwiki.org/wiki/Fourier Series/Logarithm of Sine of x over 0 to Pi), and∫ 1

0
x3 cos(2nπx) dx = 3

4n2π2

we find that

S = 7

4
− ln(π/2)− 4 ln 2

∫ 1

0
x3 dx − 4

∞∑
n=1

1

n

∫ 1

0
x3 cos(2nπx) dx

= 7

4
− lnπ − 4

(
3

4π2

∞∑
n=1

1

n3

)

= 7

4
− lnπ − 3ζ(3)

π2
.

Hence

lim
n→∞ lnPn = 1

2
− S = −5

4
+ lnπ + 3ζ(3)

π2
.

Taking exponent yields the desired result.

Also solved by Paul Bracken, Robert Calcaterra, Kee-Wai Lau (China), Raymond Mortini
(Luxembourg) & Rudolf Rupp (Germany), Albert Stadler (Switzerland), Seán Stewart (Saudi
Arabia), and the proposer. There was one incomplete or incorrect solution.

Polynomial identities for a recursive sequence April 2023

2168. Proposed by C. J. Hillar, San Francisco, CA.

Let α, r ∈ R and let an be the sequence

a0 = 0, a1 = α and an = ran−1 + an−2 for n > 1.

Prove that for each odd integer k, there are polynomials pk, qk ∈ R[x] such that for all
nonnegative integers n,

akn = pk(an) for n even and akn = qk(an) for n odd.

For example, for the Fibonacci sequence (where α = r = 1),

F3n = 5F 3
n + 3Fn for n even and F3n = 5F 3

n − 3Fn for n odd.

https://proofwiki.org/wiki/Fourier_Series/Logarithm_of_Sine_of_x_over_0_to_Pi
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Solution by Kyle Gatesman, Fairfax, VA.
If α = 0, then an = 0 for all whole numbers n, so for all k, the polynomials pk(z) =
qk(z) = z satisfy the desired criteria. Now suppose α 
= 0. The recurrence has the
characteristic polynomial λ2 − rλ− 1 = 0, yielding solutions

λ1 = r +√r2 + 4

2
and λ2 = r −√r2 + 4

2
.

The explicit form of the solution to the recurrence is then an = c1λ
n
1 + c2λ

n
2. Taking

n = 0 gives c2 = −c1, and taking n = 1 gives

c1 = α√
r2 + 4

∈ R− {0}.

Since λ1λ2 = −1,

an = c1

(
λn1 −

(
− 1

λ1

)n)
.

We claim that for all odd integers k ≥ −1, there exist polynomials Pk andQk with real
coefficients such that

Pk

(
x + 1

x

)
= xk +

(
1

x

)k
and Qk

(
x − 1

x

)
= xk −

(
1

x

)k

for all x. We prove this claim by induction. The case k = −1 is satisfied
when P−1(z) = z and Q−1(z) = −z, and the case k = 1 is satisfied when
P1(z) = Q1(z) = z. Now suppose that for some odd k > 1, the polynomials Pk−2,
Pk−4, Qk−2, and Qk−4 exist. For s ∈ {−1,+1}, we have(

xk−2 + s
(

1

x

)k−2
)(
x + s

x

)2 =
(
xk + s

(
1

x

)k)
+ 2s

(
xk−2 + s

(
1

x

)k−2
)
+
(
xk−4 + s

(
1

x

)k−4
)
.

Therefore if we define polynomials Pk and Qk by

Pk(z) = Pk−2(z)z
2 − 2Pk−2(z)− Pk−4(z)

and

Qk(z) = Qk−2(z)z
2 + 2Qk−2(z)−Qk−4(z),

then

Pk

(
x + 1

x

)
= xk +

(
1

x

)k
and Qk

(
x − 1

x

)
= xk −

(
1

x

)k
,

as desired.
For every odd k ≥ 1, let

pk(z) = c1Pk(z/c1) and qk(z) = c1Qk(z/c1).
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This makes sense since c1 
= 0. Note that pk and qk have real coefficients since Pk and
Qk do and c1 ∈ R. For odd n,

pk(an) = c1Pk

(
λn1 +

1

λn1

)
= c1

((
λn1
)k + ( 1

λn1

)k)

= c1

(
λkn1 −

(
− 1

λ1

)kn)
= akn,

and for even n,

qk(an) = c1Qk

(
λn1 −

1

λn1

)
= c1

((
λn1
)k − ( 1

λn1

)k)

= c1

(
λkn1 −

(
− 1

λ1

)kn)
= akn.

Also solved by Robert Calcaterra, Hongwei Chen, Eagle Problem Solvers (Georgia Southern
University), Dmitry Fleischman, Russell Gordon, Eugene A. Herman, Walther Janous (Austria),
Shin Hin Jimmy Pa (China), Harris Kwong, Northwestern University Math Problem Solving
Group, Angel Plaza (Spain), Randy K. Schwartz, Albert Stadler (Switzerland), and the proposer.

A functional equation that mirrors polynomial factorization April 2023

2169. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bı̂rlad, Romania.

Let a, b, and c be distinct positive real numbers, which are not equal to 1, and let d be
one of them. Let f : R→ R be a function satisfying the following conditions:

(i) f (f (f (x))) − (a + b + c)f (f (x)) + (ab + ac + bc)f (x) − abcx = 0 for all
x ∈ R.

(ii) f is continuous.
(iii) There exists an x0 ∈ (0,∞) such that f (x0) = dx0, and f (f (x0)) = d2x0.

Prove that f (x) = dx for all x ∈ [0,∞).

Solution by Robert Calcaterra, University of Wisconsin-Platteville, Platteville, WI.
The notation f n will be used to denote f composed with itself n times. For example,
f 3(x) = f (f (f (x))). Also, we may assume d = c due to the inherit symmetry in the
problem. Note that if f (x) = f (y), then condition (i) implies abcx = abcy and thus
x = y. Hence f is one-to-one. Since f is continuous, f must be strictly monotone on
R. Moreover,

f (f (x0))− f (x0)

f (x0)− x0
= c2x0 − cx0

cx0 − x0
= c > 0.

Thus f is strictly increasing. Assume f has an upper bound. Then limx→∞ f (x) = s,
the supremum of f , and by (i),

lim
x→∞ abcx = f

2(s)− (a + b + c)f (s)+ (ab + ac + bc)s,
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which is finite. This is a contradiction, so f does not have an upper bound. Similarly,
f does not have a lower bound, so f is a bijection from R onto R. In particular, f −1

exists.
We claim that for all k ∈ Z and x ∈ R,

f k+3(x)− (a + b + c)f k+2(x)+ (ab + ac + bc)f k+1(x)− abcf k(x) = 0.

The hypotheses imply the claim is true for k = 0. Moreover, replacing the argument
x by f (x) shows we can increment k by 1 and replacing x by f −1(x) shows we can
decrement k by 1. Therefore a bidirectional induction argument validates the claim.

We next claim that f k(x0) = ckx0 for all integers k. The claim is trivially true if
k = 0 and (iii) implies the claim is true for k = 1 and k = 2. Next assume

f k(x0) = ckx0, f k+1(x0) = ck+1x0, and f k+2(x0) = ck+2x0,

for some k ∈ Z. Then

f k+3(x0) = (a + b + c)f k+2(x0)− (ab + ac + bc)f k+1(x0)+ abcf k(x0)

= (a + b + c)ck+2x0 − (ab + ac + bc)ck+1x0 + (abc)ckx0

= ck+3x0

and

abcf k−1(x0) = f k+2(x0)− (a + b + c)f k+1(x0)+ (ab + ac + bc)f k(x0)

= ck+2x0 − (a + b + c)ck+1x0 + (ab + ac + bc)ckx0

= abckx0.

Hence f k−1(x0) = ck−1x0 and the claim is verified.
Finally, suppose t is an arbitrary positive real number. Denote the closed interval

with endpoints at u and v (regardless of which is larger) by |u, v|. Choose L ∈ Z so
that t ∈ ∣∣cLx0, c

L+1x0

∣∣ and let t0 = t/cL. For k ∈ Z, let

zk = f k(t0)− cf k−1(t0).

Since

f k+2(t0)− (a + b + c)f k+1(t0)+ (ab + ac + bc)f k(t0)− abcf k−1(t0) = 0

implies that(
f k+2(t0)− cf k+1(t0)

)− (a + b) (f k+1(t0)− cf k(t0)
)+ ab (f k(t0)− cf k−1(t0)

) = 0,

we have zk+2 = (a + b)zk+1 − abzk . This recurrence relation has characteristic equa-
tion r2 − (a + b)r + ab = 0 with roots r = a and r = b. Therefore there exist real
constants A and B such that

zk = Aak + Bbk and hence
zk

ck
= A

(
a

c

)k
+ B

(
b

c

)k

for all k ∈ Z. Note that t0 ∈ |x0, cx0|. Since cf k−1 and f k are increasing functions,

cf k−1(t0) ∈
∣∣cf k−1(x0), cf

k−1(cx0)
∣∣ = ∣∣ckx0, c

k+1x0

∣∣
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and

f k(t0) ∈
∣∣f k(x0), f

k(cx0)
∣∣ = ∣∣ckx0, c

k+1x0

∣∣ .
Therefore,

|zk| =
∣∣f k(t0)− cf k−1(t0)

∣∣ ≤ ∣∣ck+1x0 − ckx0

∣∣ , so
∣∣∣zk
ck

∣∣∣ ≤ |cx0 − x0| .

This implies that A(a/c)k + B(b/c)k is bounded as k ranges from −∞ to∞. Since a,
b, and c are distinct positive constants, it follows that A = B = 0, zk = 0, and hence
f k(t0) = cf k−1(t0) for every integer k. Since f 0(t0) = t0, a routine induction argument
yields f k(t0) = ckt0 for all k ∈ Z. Hence

f (t) = f (cLt0) = f (f L(t0)) = f L+1(t0) = cL+1t0 = ct
for all t ∈ (0,∞). In addition,

f (0) = lim
t→0+

f (t) = 0

and the proof is complete.

Also solved by Anthony Kindness & Dylan Strohl and the proposer.

A partition of the k-element subsets of Zp April 2023

2170. Proposed by George Stoica, Saint John, NB, Canada.

For a fixed prime number p, let Ak be the set of all subsets of {0, . . . , p − 1} having k
elements, 1 ≤ k ≤ p − 1. Let

Ak,m =
{
{i1, . . . , ik} ∈ Ak

∣∣∣∣
k∑
j=1

ij ≡ m (mod p)

}

with 0 ≤ m ≤ p − 1.
Prove that

|Ak,m| = 1

p

(
p

k

)
.

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY.
It is obvious that Ak,s ∩ Ak,t = ∅ whenever s 
≡ t (mod p). Thus

{
Ak,0, . . . , Ak,p−1

}
form a partition of Ak. Since |Ak| =

(
p

k

)
, it suffices to show that

∣∣Ak,s∣∣ = ∣∣Ak,t ∣∣ when-
ever s 
≡ t (mod p). Consider {i1, . . . , ik} ∈ Ak,s . Since t − s 
≡ 0 (mod p), there
exists a positive integer k′ such that kk′ ≡ t − s (mod p). For j = 1, . . . , k, define
�j ≡ ij + k′ (mod p). Clearly |{�1 . . . , �k}| = k. We have

k∑
j=1

�j =
⎛
⎝ k∑
j=1

ij

⎞
⎠+ kk′ ≡ s + (t − s) = t (mod p).

We deduce that {�1, . . . , �k} ∈ Ak,t . This proves that
∣∣Ak,s∣∣ ≤ ∣∣Ak,t ∣∣. In a similar man-

ner, we also have
∣∣Ak,t ∣∣ ≤ ∣∣Ak,s∣∣. Therefore

∣∣Ak,s∣∣ = ∣∣Ak,t ∣∣, which completes the proof.

Also solved by Robert Calcaterra, Dimitry Fleischman, Kyle Gatesman, Shing Hin Jimmy Pa
(China), Albert Stadler (Switzerland), and the proposer.
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Answers

Solutions to the Quickies from page 224.

A1139. Since(
p − 1

i

)
= (p − 1)(p − 2) · · · (p − i)

i!
≡ (−1)(−2) · · · (−i)

i!
≡ (−1)i (mod p),

we have

p−1∑
i=1

1(
p−1
i

) ≡ p−1∑
i=1

(−1)i ≡ 0 (mod p).

A1140. Consider the generating function

h(x) :=
∞∑
ν=0

(
ν∑
k=0

(−1)k
(
m+ k
k

) (
m+ n+ 1

ν − k
))

xν.

This is the product of the two series

f (x) :=
∞∑
j=0

(
m+ j
j

)
(−1)jxj = 1

(1+ x)m+1

and

g(x) :=
∞∑
j=0

(
m+ n+ 1

j

)
xj = (1+ x)m+n+1.

Hence

h(x) = f (x)g(x) = (1+ x)n.
Thus the nth Taylor coefficient of h is

(
n

n

) = 1.



Solutions

Bitstrings which contain neither 11 nor 000 as substrings February 2023

2161. Proposed by Didier Pinchon, Toulouse, France, and George Stoica, Saint John,
NB, Canada.

Let xn denote the number of bitstrings of length n which contain neither 11 nor 000 as
substrings. Find a recursive formula for xn.

Solution by the Northwestern University Math Problem Solving Group, Northwestern
University, Evanston, IL.
The answer is xn = xn−2 + xn−3, with initial conditions x1 = 2, x2 = 3, x3 = 4.

Assume n > 3 and divide the set of bitstrings with the desired property into two
subsets: those starting with 0 and those starting with 1. Let yn be the number in the
first set and zn the number in the second.

Bitstrings starting with 0 can be followed by a string starting with 1, or by another 0
and then a string starting with 1. Hence

yn = zn−1 + zn−2 .
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Bitstrings starting with 1 can only be followed by a string starting with 0, hence

zn = yn−1.

This, together with the first equation, implies yn = yn−2 + yn−3 and zn = zn−2 + zn−3.
Since xn = yn + zn, we get the recursive formula:

xn = xn−2 + xn−3.

The initial conditions can be obtained by enumerating the bitstrings with the desired
property. For n = 1 : 0, 1, for n = 2 : 00, 01, 10, and for n = 3 : 001, 010, 100, 101.
Hence x1 = 2, x2 = 3, and x3 = 4.

Also solved by Ricardo Bittencourt (Brazil), Robert Calcaterra, Kyle Calderhead, Eagle
Problem Solvers (Georgia Southern University), John Ferdinands, Eugene A. Herman, Aykhan
Ismayilov (Azerbaijan), Walther Janous (Austria), Kee Wai Lau (Hong Kong), Kent E. Morrison,
José Heber Nieto (Venezuela), Michelle Nogin, Shing Hin Jimmy Pa (China), Angel Plaza (Spain),
Rob Pratt, Edward Schmeichel, Randy Schwartz, Albert Stadler (Switzerland), Paul Stockmeyer,
and the proposers. There were two incomplete or incorrect solution.

An infinite series involving skew-harmonic numbers February 2023

2162. Proposed by Narendra Bhandari, Bajura, Nepal.

Prove that
∞∑
n=1

H 2n

n(2n+ 1)4n

(
2n

n

)
= 4G+ π

2

12
− 2π ln 2,

where

Hn =
n∑
k=1

(−1)k−1

k

is the nth skew-harmonic number and

G =
∞∑
k=1

(−1)k−1

(2k − 1)2

is Catalan’s constant.

Solution by the proposer.
It is well known that

∞∑
n=1

x2n+1

4n(2n+ 1)

(
2n

n

)
= arcsin x − x.

Dividing by x2 and multiplying by ln(1+ x) on both sides, gives us

∞∑
n=1

x2n−1 ln(1+ x)
4n(2n+ 1)

(
2n

n

)
= arcsin x ln(1+ x)

x2
− ln(1+ x)

x
. (1)

Now ∫ 1

0

1− x2n

1+ x dx =
2n∑
k=1

(−1)k−1

k
= H 2n.
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Integrating by parts yields∫ 1

0

1− x2n

1+ x dx = 2n
∫ 1

0
x2n−1 ln(1+ x) dx.

Therefore, ∫ 1

0
x2n−1 ln(1+ x) dx = H 2n

2n
.

Integrating (1) from 0 to 1 and using the above, we obtain

∞∑
n=1

H2n

2n(2n+ 1)4n

(
2n

n

)
=
∫ 1

0

arcsin x ln(1+ x)
x2

dx −
∫ 1

0

ln(1+ x)
x

dx.

The second integral can be evaluated as

J =
∫ 1

0

ln(1+ x)
x

dx =
∞∑
k=1

(−1)k−1

k

∫ 1

0
xk−1dx =

∞∑
k=1

(−1)k−1

k2
= π2

12
.

For the first integral I , substituting x = sin y and applying integration by parts (with
u = y ln (1+ sin y) and dv = cos y/ sin2 y), we get

I =
∫ π

2

0

y ln(1+ sin y) cos y

sin2 y
dy = −π

2
ln(2)+

∫ π
2

0

ln(1+ sin y)

sin y
dy

−
∫ π

2

0

y cos y

1+ sin y
dy +

∫ π
2

0

y

tan y
dy.

We have

A =
∫ π

2

0

ln(1+ sin y)

sin y
dy

y=2 arctan t=
∫ 1

0

ln
(

1+ 2t
1+t2

)
2t

1+t2

2tdt

1+ t2

=
∫ 1

0

2 ln(1+ t)− ln(1+ t2)
t

dt = 2
∞∑
k=1

(−1)k−1

k2
− 1

2

∞∑
k=1

(−1)k−1

k2

= 3

2

∞∑
k=1

(−1)k−1

k2
= π2

8

and

B =
∫ π

2

0

y cos y

1+ sin y
dy

IBP= π

2
ln(2)−

∫ π
2

0
ln(1+ sin y)dy

= π

2
ln(2)−

∫ π
2

0
ln(1+ cos y)dy = π

2
ln(2)−

∫ π
2

0

y sin y

1+ cos y
dy

= π

2
ln(2)−

∫ π
2

0

y tan y

sec y + 1
dy = π

2
ln(2)−

∫ π
2

0

(
y

sin y
− y

tan y

)
dy

= π

2
ln(2)− 2G+

∫ π
2

0

y

tan y
dy,
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where we have used the well-known fact that G = 1

2

∫ π
2

0

y

sin y
dy. Therefore,

I = −π
2

ln(2)+ A− B +
∫ π

2

0

x

tan x
dx = −π

2
ln(2)+ π

2

8
+ 2G− π

2
ln(2)

= 2G− π ln(2)+ π
2

8
,

and hence
∞∑
n=1

H2n

n(2n+ 1)4n

(
2n

n

)
= 2 (I − J ) = 4G+ π

2

12
− 2π ln(2).

Also solved by Paul Bracken, Hongwei Chen, Walther Janous, and Albert Stadler (Switzerland).
There was one incomplete or incorrect solution.

Sequences on which σ (respectively φ) is decreasing February 2023

2163. Proposed by Philippe Fondanaiche, Paris, France.

Recall that for a positive integer n, σ(n) denotes the sum of the positive divisors of
n, and φ(n) denotes the number of positive integers less than or equal to n that are
relatively prime to n. Show that the following hold.

(a) There are arbitrarily long sequences n1 < n2 < · · · < nk such that σ(n1) >

σ(n2) > · · · > σ(nk).
(b) There are arbitrarily long sequences n1 < n2 < · · · < nk such that φ(n1) >

φ(n2) > · · · > φ(nk).

Solution by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela, (part (a))
and the proposer (part (b))
(a) We shall prove, by induction on k, that for any k > 1 there is a sequence

n1 < n2 < · · · < nk such that σ(n1) > σ(n2) > · · · > σ(nk).

For k = 2, put n1 = 4, n2 = 5. Then n1 < n2 and σ(n1) = 7 > 6 = σ(n2). Now
assume that the result is true for k. Take a prime r > nk. It is well known that, given
ε > 0, there exists an integer N such that, for any n > N , there is a prime p such that
n < p < (1+ ε)n. Take ε = 1/r and a prime q > r such that q > N/r as well. Then
rq > N and there exists a prime p such that rq < p < rq(1+ 1/r), Put mi = rqni
for i = 1, . . . , k and mk+1 = nkp. Clearly

m1 < m2 < · · · < mk < mk+1 and σ(m1) > σ(m2) > · · · > σ(mk).

Moreover

σ(mk+1) = σ(nk)(p+ 1) < σ(nk)(rq + q + 1) < σ(nk)(r + 1)(q + 1) = σ(rqnk) = σ(mk)

and we are done.

(b) Let us reason again by induction. For k = 2, put n1 = 5 and n2 = 6. Then n1 < n2

and φ(n1) = 4 > 2 = φ(n2). Assume that we have a sequence

n1 < n2 < · · · < nk such that φ(n1) > φ(n2) > · · · > φ(nk).
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We consider an integer y whose prime factors are strictly greater than all the prime fac-
tors of the ni, i = 1, 2, . . . , k. Since φ is multiplicative, φ(yni) = φ(y)φ(ni), hence

yn1 < yn2 < · · · < ynk and φ(yn1) > φ(yn2) > · · · > φ(ynk).

We claim that there is an integer y having the properties above, which satisfies the
relation 4φ(yn1) < yn1. To see this, note that if q1, . . . , qr are the prime factors of y,
then

φ(y)

y
=

r∏
i=1

(
1− 1

qi

)

and this product tends to zero as r goes to infinity. In particular, we can find a y such
that φ(y)/y < n1/(4φ(n1)) and the claim follows.

Since, for such a y, 4φ(yn1) < yn1, there is an integer m such that φ(yn1) < 2m <
2m+1 < yn1. Taking z = 2m+1, we have z < yn1 and φ(z) = 2m > φ(yn1).

Also solved by Robert Calcaterra (part (b)). There was one incomplete or incorrect solution.

A locus comprising (almost) two lines February 2023

2164. Proposed by Dixon J. Jones, Coralville, IA.

In the plane of a triangle ABC, let P1 and P2 be fixed points such that P1P2 is not
perpendicular to AB,BC, or CA. Find the set of points P3 for which

L1L2

L2L3
· M1M2

M2M3
· N1N2

N2N3
= +1 ,

where Li,Mi+1, Ni+2 are the feet of the perpendiculars from Pi to BC,CA,AB,
respectively (indices taken modulo 3), and the quantities are directed distances.

Solution by the proposer.
The solution set comprises a line �∗1 from which two points have been removed, along
with a complete line �2.

First, let �∗1 be the line through P1 and P2, but with those two points excluded. If
P3 lies on �∗1, then P1L1, P2L2, and P3L3 are parallel, distinct, and of nonzero length.
Therefore,

L1L2

L2L3
= P1P2

P2P3
,

and similarly

M1M2

M2M3
= P3P1

P1P2
, and

N1N2

N2N3
= P2P3

P3P1
.

Multiplying these equalities and canceling like terms yields the claim.
Next, let P1M2 meet P2L2 at Q. Let �2 be the perpendicular to AB through Q. We

assert that if P3 lies on �2, the claim follows. We have

L1L2 = QP1 sin∠P2QP1 .
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Similarly

L2L3 = QP3 sin∠P3QP2 ,

M1M2 = QP3 sin∠P3QP1 , M2M3 = QP2 sin∠P2QP1 ,

N1N2 = QP2 sin∠P3QP1 , N2N3 = QP1 sin∠P3QP2 .

Again, forming quotients and canceling produces the claim.
We now show that if the claim holds, then P3 necessarily lies on �∗1 or �2. Let P3N2

meet �∗1 at P ′3, and let the feet of the perpendiculars from P ′3 to BC and CA be L′3 and
M ′1, respectively. Let P3L3 meet �2 at P ′′3 , and let M ′′1 be the foot of the perpendicular
from P ′′3 to CA. Set

x = L1L2

L2L3
· M1M2

M2M3
· N1N2

N2N3
. (1)

Since P ′3 lies on �∗1, the claim applies; that is,

L1L2

L2L
′
3

· M
′
1M2

M2M3
· N1N2

N2N3
= +1 ,

which can be rearranged as

L2L
′
3

M ′1M2
= L1L2

M2M3
· N1N2

N2N3
. (2)

Substituting (2) in (1) yields

x
M ′1M2

L2L
′
3

= M1M2

L2L3
. (3)



88 MATHEMATICS MAGAZINE

Since M1M2 = M1M
′
1 +M ′1M2, (3) can be rewritten as

x
L2L3

L2L
′
3

= M1M
′
1

M ′1M2
+ 1 . (4)

We have

L2L3

L2L
′
3

= QP ′′3
QP ′′3 + P3P

′
3

= 1

1+ P3P
′
3

QP ′′3

; (5)

furthermore, it is clear that

P3P
′
3

QP ′′3
= M1M

′
1

M2M
′′
1

. (6)

Combining (4)–(6), we obtain

x =
(
M1M

′
1

M ′1M2
+ 1

)(
M1M

′
1

M2M
′′
1

+ 1

)

= M1M
′
1

(
M1M

′
1 +M ′1M2 +M2M

′′
1

M ′1M2 ·M2M
′′
1

)
+ 1. (7)

From (7) it follows that x = 1 if, and only if,

M1M
′
1 = 0 or M1M

′
1

(
M1M

′
1 +M ′1M2 +M2M

′′
1

M ′1M2 ·M2M
′′
1

)
= 0.

If M1M
′
1 = 0, then P3 must lie on �∗1. On the other hand,

0 = M1M
′
1 +M ′1M2 +M2M

′′
1 = M1M

′′
1

implies that P3 must lie on �2. Thus, the only points P3 for which the claim holds must
lie on �∗1 or �2.

Also solved by Volkhard Schindler (Germany).

Maximize α(G)χ(G) February 2023

2165. Proposed by Zion Hefty (student), Grinell College, Grinnell, IA, and Peter John-
son, Auburn University, Auburn, AL.

Let G be a graph. We will denote the vertex set of G by V (G). The independence
number of G, denoted α(G), is the cardinality of the largest subset of V (G) such that
no two vertices of that subset are connected by an edge. The chromatic number of G,
denoted χ(G), is the smallest number of colors needed to color each vertex of V (G)
so that no two vertices with the same color are connected by an edge.

If we let

g(n) = min ({α(G)χ(G)||V (G)| = n}) ,
it is well known that g(n) = n. This can be realized, for example, if G is the complete
graph on n vertices.

Let

f (n) = max ({α(G)χ(G)||V (G)| = n}) .
Determine f (n).
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Note: This problem and its solution arose during the 2022 Research Experience
for Undergraduates in Algebra and Discrete Mathematics at Auburn University. This
research was supported by NSF(DMS) grant no. 1950563.

Solution by Edward Schmeichel, San José State University, San José, CA.
We claim that

f (n) =
⌊(

n+ 1

2

)2
⌋
.

Note first that for any graph G with n vertices,

α(G)+ χ(G) ≤ n+ 1.

To prove this, let I be any maximum independent subset of V (G) (so |I | = α(G)). If
we color the vertices of I with a first color, the remaining vertices in V (G)− I can be
colored using at most

|V (G)| − |I | = n− α(G)
additional colors. Thus χ(G) ≤ 1+ (n− α(G)).

By the AM-GM inequality, we have

α(G)χ(G) ≤
(
α(G)+ χ(G)

2

)2

≤
(
n+ 1

2

)2

for any graph G with n vertices. Thus

f (n) ≤
⌊(

n+ 1

2

)2
⌋
.

For the reverse inequality, consider the n-vertex graph

Gn = K
n/2� ∪Kn/2�,
where Km is the complete graph on m vertices and Km is the graph on m vertices
having no edges. We have

α(Gn) =
⌊n

2

⌋
+ 1, χ(Gn) =

⌈n
2

⌉
,

and therefore

f (n) ≥ α(Gn)χ(Gn) =
(⌊n

2

⌋
+ 1

) (⌈n
2

⌉)
=
⌊(

n+ 1

2

)2
⌋
.

The claim now follows.

Also solved by José Nieto and the proposers.
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Bitstrings starting with 1 can only be followed by a string starting with 0, hence

zn = yn−1.

This, together with the first equation, implies yn = yn−2 + yn−3 and zn = zn−2 + zn−3.
Since xn = yn + zn, we get the recursive formula:

xn = xn−2 + xn−3.

The initial conditions can be obtained by enumerating the bitstrings with the desired
property. For n = 1 : 0, 1, for n = 2 : 00, 01, 10, and for n = 3 : 001, 010, 100, 101.
Hence x1 = 2, x2 = 3, and x3 = 4.

Also solved by Ricardo Bittencourt (Brazil), Robert Calcaterra, Kyle Calderhead, Eagle
Problem Solvers (Georgia Southern University), John Ferdinands, Eugene A. Herman, Aykhan
Ismayilov (Azerbaijan), Walther Janous (Austria), Kee Wai Lau (Hong Kong), Kent E. Morrison,
José Heber Nieto (Venezuela), Michelle Nogin, Shing Hin Jimmy Pa (China), Angel Plaza (Spain),
Rob Pratt, Edward Schmeichel, Randy Schwartz, Albert Stadler (Switzerland), Paul Stockmeyer,
and the proposers. There were two incomplete or incorrect solution.

An infinite series involving skew-harmonic numbers February 2023

2162. Proposed by Narendra Bhandari, Bajura, Nepal.

Prove that
∞∑
n=1

H 2n

n(2n+ 1)4n

(
2n

n

)
= 4G+ π

2

12
− 2π ln 2,

where

Hn =
n∑
k=1

(−1)k−1

k

is the nth skew-harmonic number and

G =
∞∑
k=1

(−1)k−1

(2k − 1)2

is Catalan’s constant.

Solution by the proposer.
It is well known that

∞∑
n=1

x2n+1

4n(2n+ 1)

(
2n

n

)
= arcsin x − x.

Dividing by x2 and multiplying by ln(1+ x) on both sides, gives us

∞∑
n=1

x2n−1 ln(1+ x)
4n(2n+ 1)

(
2n

n

)
= arcsin x ln(1+ x)

x2
− ln(1+ x)

x
. (1)

Now ∫ 1

0

1− x2n

1+ x dx =
2n∑
k=1

(−1)k−1

k
= H 2n.
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Integrating by parts yields∫ 1

0

1− x2n

1+ x dx = 2n
∫ 1

0
x2n−1 ln(1+ x) dx.

Therefore, ∫ 1

0
x2n−1 ln(1+ x) dx = H 2n

2n
.

Integrating (1) from 0 to 1 and using the above, we obtain

∞∑
n=1

H2n

2n(2n+ 1)4n

(
2n

n

)
=
∫ 1

0

arcsin x ln(1+ x)
x2

dx −
∫ 1

0

ln(1+ x)
x

dx.

The second integral can be evaluated as

J =
∫ 1

0

ln(1+ x)
x

dx =
∞∑
k=1

(−1)k−1

k

∫ 1

0
xk−1dx =

∞∑
k=1

(−1)k−1

k2
= π2

12
.

For the first integral I , substituting x = sin y and applying integration by parts (with
u = y ln (1+ sin y) and dv = cos y/ sin2 y), we get

I =
∫ π

2

0

y ln(1+ sin y) cos y

sin2 y
dy = −π

2
ln(2)+

∫ π
2

0

ln(1+ sin y)

sin y
dy

−
∫ π

2

0

y cos y

1+ sin y
dy +

∫ π
2

0

y

tan y
dy.

We have

A =
∫ π

2

0

ln(1+ sin y)

sin y
dy

y=2 arctan t=
∫ 1

0

ln
(

1+ 2t
1+t2

)
2t

1+t2

2tdt

1+ t2

=
∫ 1

0

2 ln(1+ t)− ln(1+ t2)
t

dt = 2
∞∑
k=1

(−1)k−1

k2
− 1

2

∞∑
k=1

(−1)k−1

k2

= 3

2

∞∑
k=1

(−1)k−1

k2
= π2

8

and

B =
∫ π

2

0

y cos y

1+ sin y
dy

IBP= π

2
ln(2)−

∫ π
2

0
ln(1+ sin y)dy

= π

2
ln(2)−

∫ π
2

0
ln(1+ cos y)dy = π

2
ln(2)−

∫ π
2

0

y sin y

1+ cos y
dy

= π

2
ln(2)−

∫ π
2

0

y tan y

sec y + 1
dy = π

2
ln(2)−

∫ π
2

0

(
y

sin y
− y

tan y

)
dy

= π

2
ln(2)− 2G+

∫ π
2

0

y

tan y
dy,
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where we have used the well-known fact that G = 1

2

∫ π
2

0

y

sin y
dy. Therefore,

I = −π
2

ln(2)+ A− B +
∫ π

2

0

x

tan x
dx = −π

2
ln(2)+ π

2

8
+ 2G− π

2
ln(2)

= 2G− π ln(2)+ π
2

8
,

and hence
∞∑
n=1

H2n

n(2n+ 1)4n

(
2n

n

)
= 2 (I − J ) = 4G+ π

2

12
− 2π ln(2).

Also solved by Paul Bracken, Hongwei Chen, Walther Janous, and Albert Stadler (Switzerland).
There was one incomplete or incorrect solution.

Sequences on which σ (respectively φ) is decreasing February 2023

2163. Proposed by Philippe Fondanaiche, Paris, France.

Recall that for a positive integer n, σ(n) denotes the sum of the positive divisors of
n, and φ(n) denotes the number of positive integers less than or equal to n that are
relatively prime to n. Show that the following hold.

(a) There are arbitrarily long sequences n1 < n2 < · · · < nk such that σ(n1) >

σ(n2) > · · · > σ(nk).
(b) There are arbitrarily long sequences n1 < n2 < · · · < nk such that φ(n1) >

φ(n2) > · · · > φ(nk).

Solution by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela, (part (a))
and the proposer (part (b))
(a) We shall prove, by induction on k, that for any k > 1 there is a sequence

n1 < n2 < · · · < nk such that σ(n1) > σ(n2) > · · · > σ(nk).

For k = 2, put n1 = 4, n2 = 5. Then n1 < n2 and σ(n1) = 7 > 6 = σ(n2). Now
assume that the result is true for k. Take a prime r > nk. It is well known that, given
ε > 0, there exists an integer N such that, for any n > N , there is a prime p such that
n < p < (1+ ε)n. Take ε = 1/r and a prime q > r such that q > N/r as well. Then
rq > N and there exists a prime p such that rq < p < rq(1+ 1/r), Put mi = rqni
for i = 1, . . . , k and mk+1 = nkp. Clearly

m1 < m2 < · · · < mk < mk+1 and σ(m1) > σ(m2) > · · · > σ(mk).

Moreover

σ(mk+1) = σ(nk)(p+ 1) < σ(nk)(rq + q + 1) < σ(nk)(r + 1)(q + 1) = σ(rqnk) = σ(mk)

and we are done.

(b) Let us reason again by induction. For k = 2, put n1 = 5 and n2 = 6. Then n1 < n2

and φ(n1) = 4 > 2 = φ(n2). Assume that we have a sequence

n1 < n2 < · · · < nk such that φ(n1) > φ(n2) > · · · > φ(nk).
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We consider an integer y whose prime factors are strictly greater than all the prime fac-
tors of the ni, i = 1, 2, . . . , k. Since φ is multiplicative, φ(yni) = φ(y)φ(ni), hence

yn1 < yn2 < · · · < ynk and φ(yn1) > φ(yn2) > · · · > φ(ynk).

We claim that there is an integer y having the properties above, which satisfies the
relation 4φ(yn1) < yn1. To see this, note that if q1, . . . , qr are the prime factors of y,
then

φ(y)

y
=

r∏
i=1

(
1− 1

qi

)

and this product tends to zero as r goes to infinity. In particular, we can find a y such
that φ(y)/y < n1/(4φ(n1)) and the claim follows.

Since, for such a y, 4φ(yn1) < yn1, there is an integer m such that φ(yn1) < 2m <
2m+1 < yn1. Taking z = 2m+1, we have z < yn1 and φ(z) = 2m > φ(yn1).

Also solved by Robert Calcaterra (part (b)). There was one incomplete or incorrect solution.

A locus comprising (almost) two lines February 2023

2164. Proposed by Dixon J. Jones, Coralville, IA.

In the plane of a triangle ABC, let P1 and P2 be fixed points such that P1P2 is not
perpendicular to AB,BC, or CA. Find the set of points P3 for which

L1L2

L2L3
· M1M2

M2M3
· N1N2

N2N3
= +1 ,

where Li,Mi+1, Ni+2 are the feet of the perpendiculars from Pi to BC,CA,AB,
respectively (indices taken modulo 3), and the quantities are directed distances.

Solution by the proposer.
The solution set comprises a line �∗1 from which two points have been removed, along
with a complete line �2.

First, let �∗1 be the line through P1 and P2, but with those two points excluded. If
P3 lies on �∗1, then P1L1, P2L2, and P3L3 are parallel, distinct, and of nonzero length.
Therefore,

L1L2

L2L3
= P1P2

P2P3
,

and similarly

M1M2

M2M3
= P3P1

P1P2
, and

N1N2

N2N3
= P2P3

P3P1
.

Multiplying these equalities and canceling like terms yields the claim.
Next, let P1M2 meet P2L2 at Q. Let �2 be the perpendicular to AB through Q. We

assert that if P3 lies on �2, the claim follows. We have

L1L2 = QP1 sin∠P2QP1 .
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Similarly

L2L3 = QP3 sin∠P3QP2 ,

M1M2 = QP3 sin∠P3QP1 , M2M3 = QP2 sin∠P2QP1 ,

N1N2 = QP2 sin∠P3QP1 , N2N3 = QP1 sin∠P3QP2 .

Again, forming quotients and canceling produces the claim.
We now show that if the claim holds, then P3 necessarily lies on �∗1 or �2. Let P3N2

meet �∗1 at P ′3, and let the feet of the perpendiculars from P ′3 to BC and CA be L′3 and
M ′1, respectively. Let P3L3 meet �2 at P ′′3 , and let M ′′1 be the foot of the perpendicular
from P ′′3 to CA. Set

x = L1L2

L2L3
· M1M2

M2M3
· N1N2

N2N3
. (1)

Since P ′3 lies on �∗1, the claim applies; that is,

L1L2

L2L
′
3

· M
′
1M2

M2M3
· N1N2

N2N3
= +1 ,

which can be rearranged as

L2L
′
3

M ′1M2
= L1L2

M2M3
· N1N2

N2N3
. (2)

Substituting (2) in (1) yields

x
M ′1M2

L2L
′
3

= M1M2

L2L3
. (3)
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Since M1M2 = M1M
′
1 +M ′1M2, (3) can be rewritten as

x
L2L3

L2L
′
3

= M1M
′
1

M ′1M2
+ 1 . (4)

We have

L2L3

L2L
′
3

= QP ′′3
QP ′′3 + P3P

′
3

= 1

1+ P3P
′
3

QP ′′3

; (5)

furthermore, it is clear that

P3P
′
3

QP ′′3
= M1M

′
1

M2M
′′
1

. (6)

Combining (4)–(6), we obtain

x =
(
M1M

′
1

M ′1M2
+ 1

)(
M1M

′
1

M2M
′′
1

+ 1

)

= M1M
′
1

(
M1M

′
1 +M ′1M2 +M2M

′′
1

M ′1M2 ·M2M
′′
1

)
+ 1. (7)

From (7) it follows that x = 1 if, and only if,

M1M
′
1 = 0 or M1M

′
1

(
M1M

′
1 +M ′1M2 +M2M

′′
1

M ′1M2 ·M2M
′′
1

)
= 0.

If M1M
′
1 = 0, then P3 must lie on �∗1. On the other hand,

0 = M1M
′
1 +M ′1M2 +M2M

′′
1 = M1M

′′
1

implies that P3 must lie on �2. Thus, the only points P3 for which the claim holds must
lie on �∗1 or �2.

Also solved by Volkhard Schindler (Germany).

Maximize α(G)χ(G) February 2023

2165. Proposed by Zion Hefty (student), Grinell College, Grinnell, IA, and Peter John-
son, Auburn University, Auburn, AL.

Let G be a graph. We will denote the vertex set of G by V (G). The independence
number of G, denoted α(G), is the cardinality of the largest subset of V (G) such that
no two vertices of that subset are connected by an edge. The chromatic number of G,
denoted χ(G), is the smallest number of colors needed to color each vertex of V (G)
so that no two vertices with the same color are connected by an edge.

If we let

g(n) = min ({α(G)χ(G)||V (G)| = n}) ,
it is well known that g(n) = n. This can be realized, for example, if G is the complete
graph on n vertices.

Let

f (n) = max ({α(G)χ(G)||V (G)| = n}) .
Determine f (n).
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Note: This problem and its solution arose during the 2022 Research Experience
for Undergraduates in Algebra and Discrete Mathematics at Auburn University. This
research was supported by NSF(DMS) grant no. 1950563.

Solution by Edward Schmeichel, San José State University, San José, CA.
We claim that

f (n) =
⌊(

n+ 1

2

)2
⌋
.

Note first that for any graph G with n vertices,

α(G)+ χ(G) ≤ n+ 1.

To prove this, let I be any maximum independent subset of V (G) (so |I | = α(G)). If
we color the vertices of I with a first color, the remaining vertices in V (G)− I can be
colored using at most

|V (G)| − |I | = n− α(G)
additional colors. Thus χ(G) ≤ 1+ (n− α(G)).

By the AM-GM inequality, we have

α(G)χ(G) ≤
(
α(G)+ χ(G)

2

)2

≤
(
n+ 1

2

)2

for any graph G with n vertices. Thus

f (n) ≤
⌊(

n+ 1

2

)2
⌋
.

For the reverse inequality, consider the n-vertex graph

Gn = K
n/2� ∪Kn/2�,
where Km is the complete graph on m vertices and Km is the graph on m vertices
having no edges. We have

α(Gn) =
⌊n

2

⌋
+ 1, χ(Gn) =

⌈n
2

⌉
,

and therefore

f (n) ≥ α(Gn)χ(Gn) =
(⌊n

2

⌋
+ 1

) (⌈n
2

⌉)
=
⌊(

n+ 1

2

)2
⌋
.

The claim now follows.

Also solved by José Nieto and the proposers.
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Solutions

The quadrilateral must be a square December 2022

2156. Proposed by Cezar Lupu, Tsinghua University, Beijing, China.

Let ABCD be a convex quadrilateral in the plane with vertices having rational coor-
dinates. Let P be a point in its interior having rational coordinates such that

m∠PAB = m∠PBC = m∠PCD = m∠PDA = qπ, with q ∈ Q.

Show that ABCD is a square. Give an example to show that the condition that q ∈ Q
cannot be dropped.

Solution by Victor Pambuccian, Arizona State University, Phoenix, AZ.
Given that the coordinates of A, B, and P are rational, the distances AB, AP , and BP
are all of the form

√
r , where r ∈ Q. Therefore,

cos qπ = cos∠PAB = AP 2 + AB2 − BP 2

2 · AB · AP = √s,
where q, s ∈ Q.

Although it is a well-known result, we will show that

cos qπ = √s with q, s ∈ Q if and only if s = 0,
1

4
,

1

2
,

3

4
, or 1.

To see this, note that if q = m/n with m, n ∈ Z, then exp(qπi) and exp(−qπi) are
algebraic integers, being roots of x2n = 1. Therefore, their sum, 2 cos qπ = 2

√
s, is

also an algebraic integer. But then, 4s = (2√s)2
is a rational algebraic integer, hence

an integer, and the candidates given are the only possibilities. To finish, we note that
s = 0, 1/4, 1/2, 3/4, 1 give q = 1/2, 1/3, 1/4, 1/6, 0, respectively.

The case s = 1 is impossible since P would have to lie on all sides of the polygon.
If s = 0, then ∠PAB would be a right angle. But this would make all of the angles of
ABCD obtuse.

To deal with the cases s = 1/4 and s = 3/4, we need a well-known result: no
triangle in the plane whose coordinates are rational can have an angle with measure
π/3 or π/6. To see this, we let the vertices of the triangle be

A = (x1, y1), B = (x2, y2), and C = (x3, y3),

where xi, yi ∈ Q. If the side lengths of the triangle are a, b, and c, then a2, b2, c2 ∈ Q.
Let θ denote the angle between the sides of length a and length b. If K is the area of
the triangle, then

1

2
ab sin θ = K = 1

2

∣∣∣∣det

(
x1 − x3 y1 − y3

x2 − x3 y2 − y3

)∣∣∣∣ ∈ Q.

By the law of cosines, c2 = a2 + b2 − 2ab cos θ . Solving the displayed equation for
ab and substituting, we have

c2 = a2 + b2 − 4K cot θ or cot θ = a2 + b2 − c2

4K
∈ Q.

But cot(π/3) = 1/
√

3 and cot(π/6) = √3, which gives a contradiction.
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The result above eliminates the cases s = 1/4 and s = 3/4, so we are left with
s = 1/2 and q = 1/4. We will invoke the following result of Dmitriev and Dynkin
(see: Besenyei, Á. (2015). The Brocard angle and a geometrical gem from Dmitriev
and Dynkin. Amer. Math. Monthly 122(5): 495–499. https://doi.org/10.4169/amer.
math.monthly.122.5.495.)

Let P be an arbitrary point in the interior of a convex n-gon A1A2 . . . An and
denote An+1 = A1. Then

min
k=1,...,n

∠PAkAk+1 ≤ π
2
− π
n
.

Equality occurs if and only if A1A2 . . . An is a regular n-gon and P is its
center.

Applying this result with n = 4 and q = 1/4 gives the conclusion we seek.
Here is a non-square parallelogram with q = arccos(3/

√
10)/π �∈ Q:

A = (0, 0), B = (2, 0), C = (6, 2),D = (4, 2), and P = (3, 1).

Also solved by Robert Calcaterra and the proposer.

An application of the Rayleigh-Beatty theorem December 2022

2157. Proposed by Philippe Fondanaiche, Paris, France.

Consider two sequences. One is the number of digits in the base 2 representation of
10k, k = 1, 2, . . ., and the other is the number of digits in the base 5 representation of
10k, k = 1, 2, . . .. Show that every integer greater than 1 appears in exactly one of the
two sequences. Which sequence contains 2023?

Solution by Brian D. Beasley, Presbyterian College, Clinton, SC.
We denote the first sequence by ak and the second sequence by bk. Then for each
positive integer k,

ak = �log2(10k) + 1 = �k(log2 10) + 1

and

bk = �log5(10k) + 1 = �k(log5 10) + 1.

Let c = log2 10 and d = log5 10. Then c and d are irrational with

1

c
+ 1

d
= log10 2+ log10 5 = 1.

Given an integer n ≥ 2, we have

ak = n ⇐⇒ n < kc + 1 < n+ 1 ⇐⇒ n− 1

c
< k <

n

c

and

bk = n ⇐⇒ n < kd + 1 < n+ 1 ⇐⇒ n− 1

d
< k <

n

d
,

https://doi.org/10.4169/amer.math.monthly.122.5.495
https://doi.org/10.4169/amer.math.monthly.122.5.495
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since each of (n− 1)/c, n/c, (n− 1)/d, and n/d is irrational.
(i) If there are positive integers i and j with n = ai = bj , then

n− 1

c
< i <

n

c
and

n− 1

d
< j <

n

d
.

Adding the inequalities yields the contradiction n− 1 < i + j < n.
(ii) If neither sequence contains n, then there are positive integers p and q with

p − 1 <
n− 1

c
<
n

c
< p and q − 1 <

n− 1

d
<
n

d
< q.

Once again, adding the inequalities produces a contradiction, namely

p + q − 2 < n− 1 < n < p + q.
(iii) For n = 2023, we have

2022

c
≈ 608.683 and

2023

c
≈ 608.984,

while

2022

d
≈ 1413.317 and

2023

d
≈ 1414.016.

Thus b1414 = 2023.

Editor’s Note. Several solvers noted that the result follows from the Rayleigh-Beatty
theorem. Let

Nα = {�nα : n ∈ N}.
If α and β are real numbers, then

Nα ∪Nβ = N and Nα ∩Nβ = ∅
if and only if α and β are irrational and

1

α
+ 1

β
= 1.

Also solved by Ulrich Abel & Vitaliy Kushnirevych (Germany), Jacob Boswell, Robert Cal-
caterra, Eagle Problem Solvers, Dmitry Fleischman, Walther Janous (Austria), José Heber Nieto
(Venezuela), Michelle Nogin, Mariam Obeidallah, Shing Hin Jimmy Pa (China), Celia Schacht,
Edward Schmeichel, Randy K. Schwartz, Paul K. Stockmeyer, Ertugrul Tarhan, Enrique Treviño,
Edward White & Roberta White, and the proposer.

Adjacent numbers sum to a perfect square December 2022

2158. Proposed by the Missouri State University Problem Solving Group, Missouri
State University, Springfield, MO.

(a) Arrange the integers from 1 to 15 (inclusive) in a row so that the sum of any two
adjacent numbers is a perfect square.

(b) Find the smallest positive integer n such that the integers from 1 to n can be
arranged in a circle so that the sum of any two adjacent numbers is a perfect square.
Justify your answer.
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Solution by Jacob Boswell and Chip Curtis, Missouri Southern State University,
Joplin, MO.
Let �n denote the graph whose vertices are the integers from 1 to n with an edge
between two vertices if their sum is a perfect square. Part (a) asks for a Hamiltonian
path in �15 and part (b) askes for the smallest n such that �n has a Hamiltonian cycle.

(a) Since 8 and 9 are the only vertices of degree 1, a Hamiltonian path must start at one
of these and end at the other. It is not difficult to show that the following solution is
unique (up to reversal).

8 – 1 – 15 – 10 – 6 – 3 – 13 – 12 – 4 – 5 – 11 – 14 – 2 – 7 – 9.

(b) We claim that the smallest possible integer with the given property is n = 32. To
prove this, we first exhibit a solution for n = 32.

22 – 27 – 9 – 16 – 20 – 29 – 7 – 18 – 31 – 5 – 11 – 25 – 24 – 12

– 13 – 3 – 6 – 30 – 19 – 17 – 32 – 4 – 21 – 28 – 8 – 1 – 15

– 10 – 26 – 23 – 2 – 14 – 22

We next show that no n with 3 ≤ n ≤ 30 works. (We exclude n = 1 and n = 2
from consideration.) A necessary condition for �n to have a Hamiltonian cycle is
that every vertex must have degree at least two.

• For 3 ≤ n ≤ 4, the only neighbor of 1 is 3.
• For 5 ≤ n ≤ 8, the only neighbor of 4 is 5.
• For 9 ≤ n ≤ 15, the only neighbor of 9 is 7.
• For 16 ≤ n ≤ 19, the only neighbor of 16 is 9.
• For 20 ≤ n ≤ 30, the only neighbor of 18 is 7.

Finally, we show that n = 31 does not work. Two edges emanating from a vertex
of degree two must be part of any Hamiltonian cycle. This gives the following
fragments.

22 – 27 – 9 – 16 – 20 – 29 – 7 – 18 – 31 – 5,

21 – 28 – 8 – 17 – 19 – 30 – 6,

10 – 26 – 23, and 11 – 25 – 24

Consider a vertex of degree three. Suppose one of its neighbors already has two
edges of the Hamiltonian cycle we are building emanating from it. Then the Hamil-
tonian cycle must contain the other two edges emanating from the given vertex.
This gives the fragments

14 – 2 – 23, 3 – 1 – 24, (and subsequently) 10 – 15 – 24.

Finally, the only possible remaining edge emanating

from 6 is 6 – 3, from 22 is 22 – 14, and from 11 is 11 – 5.

However, this gives a cycle that does not contain all of the vertices, yielding a
contradiction.

We note that this type of argument shows that there are two solutions when
n = 32 (up to reversal).
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Also solved by Carl Axness (Spain), Brett Chiodo, Keon Cruz, Eagle Problem Solvers, Dmitry
Fleischman (part (a)), Evan Grahn, Shannon Heinig, Alyssa Janowski, Kelly McLenithan &
Stephen Mortenson, José Heber Nieto (Venezuela), Michelle Nogin, Pittsburg State University
Problem Solving Group, Rob Pratt, Zaur Rajabov (Azerbaijan), Mary Reil (part (a)), Edward
Schmeichel, Randy Schwartz, Paul Stockmeyer, and the proposers.

The winner is the one whose roll occurs first December 2022

2159. Proposed by George Stoica, Saint John, NB, Canada.

Two players, A and B, alternately throw a pair of dice with A going first. Let a, b ∈
{2, 3, . . . , 12} be fixed. Player A wins by having a roll worth a points before player B
has a roll worth b points. Otherwise, player B wins.

What is the probability that player A wins?

Solution by Michelle Nogin (student), Clovis North High School, Fresno, CA.
Let f (n) be the probability of having a roll worth n points. Observe that there are
36 possible outcomes when rolling two dice. Since there is only one way to get the
value 2 (1+ 1) and only one way to get the value 12 (6+ 6), f (2) = f (12) = 1/36.
Similarly, since there are two ways to get the value 3 (1+ 2 and 2+ 1) and two ways
to get the value 11 (5+ 6 and 6+ 5), f (3) = f (11) = 2/36, and so forth until there
are six ways to get the value 7, so f (7) = 6/36. From this, we can write an explicit
formula for f (n):

f (n) = 6− |7− n|
36

.

The probability of player A winning on the first move is the probability of player A
having a roll worth a points on their first move, that is, f (a). The probability of player
A winning on the second move is the probability of player A and player B not having
rolls worth a and b points, respectively, on their first moves times the probability of
player A having a roll worth a points on their second move, that is,

(1− f (a))(1− f (b))f (a).
Similarly, the probability of player A winning on the third move is

((1− f (a))(1− f (b)))2 f (a),
and so forth. Thus, the probability of player A winning is the sum of the geometric
series

f (a)+ (1− f (a))(1− f (b))f (a)+ ((1− f (a))(1− f (b)))2 f (a)+ · · ·
which is equal to

f (a)

1− (1− f (a))(1− f (b)) .

Also solved by Robert A. Agnew, Jacob Boswell & Chip Curtis, Brian Bradie, Cal Poly Pomona
Problem Solving Group, Robert Calcaterra, Eagle Problem Solvers, Eugene A. Herman, Stephen
Herschkorn, Walther Janous (Austria), Kenneth Levasseur, Northwestern University Math Prob-
lem Solving Group, Pittsburgh State University Problem Solving Group, Rob Pratt, Gary Rad-
mus, Celia Schacht, Edward Schmeichel, Randy K. Schwartz, and the proposer. There were two
incomplete or incorrect solutions.
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Find the area of the checkerboard pattern December 2022

2160. Proposed by Gregory Dresden, Washington & Lee University, Lexington, VA.

Consider the lines

y = x/1, y = x/2, y = x/3, y = x/4, . . .
and the lines

y = (1− x)/1, y = (1− x)/2, y = (1− x)/3, y = (1− x)/4, . . . ,
which intersect to form an infinite number of quadrilaterals. Starting with the lozenge
at the top, shade every other quadrilateral, as shown in the figure.

Find the total area of all the shaded quadrilaterals.

Solution by Clayton Coe (student), Cal Poly Pomona, Pomona, CA.
The total area is 2 ln 2− 5

4 .
Let y = x/n be the equation of line Ln, and y = (1− x)/k be the equation of line

Mk, where n, k ≥ 1. Observe that

Ln ∩Mk =
(

n

n+ k ,
1

n+ k
)
.

The set of vertices of any of these tiles is

{Ln ∩Mk,Ln ∩Mk+1, Ln+1 ∩Mk+1, Ln+1 ∩Mk}.
Note that Ln+1 ∩Mk and Ln ∩Mk+1 have the same y-coordinate. Therefore, we can
calculate the area of a quadrilateral to be the sum of the area of two triangles with hori-
zontal bases. Doing so, we find the area to be hw/2, where h is the difference between
the y-coordinates of Ln ∩Mk and Ln+1 ∩Mk+1, and w is the difference between the
x-coordinates of Ln ∩Mk+1 and Ln+1 ∩Mk.

Let A(n, k) denote the area of a single tile, with uppermost vertex Ln ∩Mk. We
therefore have

A(n, k) = 1

2

(
1

n+ k −
1

n+ k + 2

)(
n+ 1

n+ k + 1
− n

n+ k + 1

)
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= 1

2

(
2

(n+ k)(n+ k + 2)

)(
1

n+ k + 1

)

= 1

(n+ k)(n+ k + 1)(n+ k + 2)
.

Note that each black quadrilateral has uppermost vertex Ln ∩Mk with n + k even.
Letting n+ k = 2m,

A(n, k) = 1

2m(2m+ 1)(2m+ 2)
.

In each horizontal row of quadrilaterals, n+ k is constant, and there are n+ k − 1 =
2m − 1 quadrilaterals in that row. Consequently, the sum of the areas of all black
quadrilaterals is

S =
∞∑
m=1

2m− 1

2m(2m+ 1)(2m+ 2)

Observe that the above sum is absolutely convergent because it is comparable to a
p-series, with p = 2. We perform a partial fraction decomposition, yielding

S =
∞∑
m=1

(−1/2

2m
+ 2

2m+ 1
+ −3/2

2m+ 2

)

Because of absolute convergence, we may shift the index of the first term of the sum-
mand, and obtain

S = −1

4
+
∞∑
m=1

( −1/2

2(m+ 1)
+ 2

2m+ 1
+ −3/2

2m+ 2

)

= −1

4
+
∞∑
m=1

(
2

2m+ 1
− 2

2m+ 2

)

= −1

4
+ 2

∞∑
m=0

(
1

2m+ 1
− 1

2m+ 2

)
− 2

(
1− 1

2

)

= −5

4
+ 2

∞∑
i=1

(−1)i+1

i

= −5

4
+ 2 ln 2

Also solved by Farrukh Rakhimjanovich Ataev (Uzbekistan), Chip Curtis, Eagle Problem
Solvers, Dmitry Fleischman, Eugene A. Herman, Walther Janous (Austria), Do Hyun Lee (South
Korea), Chrysostom G. Petalas (Greece), William Reil, Volkhard Schindler (Germany), Edward
Schmeichel, Paul K. Stockmeyer, Maria van der Walt, and the proposer.
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Solutions

Two directly similar squares October 2022

2151. Proposed by Tran Quang Hung, Hanoi, Vietnam.

Let ABCD and XYZT be two directly similar squares such that A and Y lie on the
lines XT and CD, respectively. Let M be the intersection of lines XZ and AC, and
let N be the intersection of lines XY and BC. Prove that the circumcenter of �XAC
lies on the line MN .

Solution by Katherine Nogin, Clovis North High School (student), Fresno, CA.
Position the squares in the coordinate plane, so that D is at the origin and ABCD is a
unit square with A(0, 1), B(1, 1), and C(1, 0). Let the coordinates of X be (r, s) and
let P be the circumcenter of �XAC.

We will make calculations in terms of r and s assuming that none of the resulting
denominators are zero. We will address the question of what happens if some of the
denominators are zero later.

It is straightforward to determine that the equation of line XY is

y = r

1− s (x − r)+ s.

Since N lies on XY , we have

N =
(

1,
r

1− s (1− r)+ s
)
=
(

1,
r + s − r2 − s2

1− s
)
.
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Since the y-coordinate of Y is 0, we can solve the equation

0 = r

1− s (x − r)+ s

to obtain

Y =
(
r2 + s2 − s

r
, 0

)
,

therefore

−→
XY =

(
s2 − s
r

,−s
)
.

Since
−→
XT is perpendicular to

−→
XY and has the same length,

−→
XT =

(
−s, s − s

2

r

)
.

As
−→
T Z = −→XY , we have

−→
XZ = −→XT +−→T Z =

(
s2 − s
r
− s, s − s

2

r
− s

)
.

The slope of line XZ is thus

mXZ =
s−s2

r
− s

s2−s
r
− s =

1− s − r
s − 1− r ,

and its equation is therefore

y = 1− s − r
s − 1− r (x − r)+ s.

The equation of line AC is y = −x + 1. Since M is the intersection of XZ and AC,
we can solve the corresponding system of linear equations to obtain

M =
(
r2 + s2 − 2s + 1

2r
,

2r + 2s − r2 − s2 − 1

2r

)
.

In order to find the coordinates of P , we will find the intersection of the perpendicular
bisectors of AC and AX. The equation of BD, which is the perpendicular bisector of
AC, is y = x. The midpoint of AX is(

r

2
,

1+ s
2

)

and the slope of the perpendicular bisector of AX, which is also the slope of XY , is
r/(1− s). Thus, the equation of the perpendicular bisector of AX is

y = r

1− s
(
x − r

2

)
+ 1+ s

2
.

Setting these two expressions for y equal to each other and solving, we find

P =
(
r2 + s2 − 1

2(r + s − 1)
,
r2 + s2 − 1

2(r + s − 1)

)
.
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In order to prove that P lies on line MN , we will show that the slopes of line NP
and line MN are equal. We have

mMN =
2r+2s−r2−s2−1

2r − r+s−r2−s2

1−s
r2+s2−2s+1

2r − 1

= (2r + 2s − r2 − s2 − 1)(1− s)− (r + s − r2 − s2)2r

(r2 + s2 − 2r − 2s + 1)(1− s) .

Then

mNP =
r2+s2−1
2(r+s−1) − r+s−r2−s2

1−s
r2+s2−1
2(r+s−1) − 1

= (r2 + s2 − 1)(1− s)− (r + s − r2 − s2)2(r + s − 1)

(r2 + s2 − 2r − 2s + 1)(1− s)

= (r2 + s2 − 1)(1− s)− (r + s − r2 − s2)2r + (r + s − r2 − s2)2(1− s)
(r2 + s2 − 2r − 2s + 1)(1− s)

= (2r + 2s − r2 − s2 − 1)(1− s)− (r + s − r2 − s2)2r

(r2 + s2 − 2r − 2s + 1)(1− s)
= mMN.

It follows that the three points N , P , and M lie on the same line, thus the circum-
center of �XAC lies on the line MN .

We now consider the cases where the denominators in the above expressions are
zero. Note that r �= 0, otherwise XZ ‖ AC, so point M would not be defined. Also,
1− s �= 0, otherwiseXY ‖ BC, so pointN would not be defined. Next, r + s − 1 �= 0,
otherwise point X lies on AC, so �XAC is degenerate and does not have a circum-
center.

The case s − 1− r = 0 is possible, however. In that case,

N = (1, 2r) ,M = (r, 1− r) , and P =
(
r + 1

2
,
r + 1

2

)
,

which are collinear.
Finally, r2 + s2 − 2r − 2s + 1 = 0 is possible. This equation is equivalent to (r −

1)2 + (s − 1)2 = 1, so point X lies on a circle of radius 1 centered at B. It follows that
P = B, M = C, and N lies on BC. Thus, in all possible cases P lies on MN .

Also solved by Robert Calcaterra, Ivko Dimitric̀, Walther Janous (Austria), Michael Vowe
(Switzerland), and the proposer. There was one incomplete or incorrect solution.

Evaluate the double integral October 2022

2152. Proposed by Paul Bracken, University of Texas Rio Grande Valley, Edinburg,
TX.

Evaluate ∫ 1

0

∫ 1

0

dy dx√
1− x2

√
1− y2 (1+ xy) .
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Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.
Denote the proposed integral by I . The change of variables x = sin θ , y = sinϕ shows
that

I =
∫ π/2

0

∫ π/2

0

dθ dϕ

1+ sinϕ sin θ
.

For ϕ ∈ (−π/2, π/2), we define F(ϕ) by

F(ϕ) =
∫ π/2

0

dθ

1+ sinϕ sin θ

Clearly, for 0 < ϕ < π/2 we have

F(ϕ)+ F(−ϕ) = 2
∫ π/2

0

dθ

1− sin2 ϕ sin2 θ
= 2

∫ π/2

0

1

1+ cot2 θ − sin2 ϕ

dθ

sin2 θ

= 2
∫ ∞

0

du

cos2 ϕ + u2
= π

cosϕ

F(ϕ)− F(−ϕ) =
∫ π/2

0

−2 sinϕ sin θ

1− sin2 ϕ sin2 θ
dθ =

∫ π/2

0

−2 sinϕ sin θ

cos2 ϕ + sin2 ϕ cos2 θ
dθ

= 2

cosϕ

∫ 0

tanϕ

du

1+ u2
= − 2ϕ

cosϕ
(u = tanϕ cos θ).

Thus

F(ϕ) = π − 2ϕ

2 cosϕ
, 0 < ϕ <

π

2
.

Integrating and using the change of variables ϕ = π

2 − 2x, we get

I =
∫ π/2

0
F(ϕ) dϕ

=
∫ π/4

0

4x

sin 2x
dx = 2

∫ π/4

0

x

sin x cos x
dx

=
[
2x ln(tan x)

]π/4
0
− 2

∫ π/4

0
ln(tan x) dx = −2

∫ 1

0

ln(u)

1+ u2
du

= −
∞∑
n=0

(−1)n
∫ 1

0
u2n ln(u) du = 2

∞∑
n=0

(−1)n

(2n+ 1)2
= 2G.

where G is the Catalan number.

Also solved by Ulrich Abel & Vitaliy Kushnirevych (Germany), Carl Axness, Michel Bataille
(France), Khristo N. Boyadzhiev, Brian Bradie, James Brewer, Charles Burnette, Robert Cal-
caterra, Hongwei Chen, Bruce Davis, Cal Poly Pomona Problem Solving Group, Eagle Problem
Solvers, Fejéntalàltuka Szeged Problem Solving Group (Hungary), Jan Grzesik, Walther Janous
(Austria), Stephen Kaczkowski, Kee-Wai Lau (Hong Kong, China), Muzahim Mamedov (Azer-
baijan), Moubinool Omarjee (France), Shing Hin Jimmy Pa (China), Paolo Perfetti, Volkhard
Schindler (Germany), Seán Stewart (Saudi Arabia), Michael Vowe (Switzerland), Haohao Wang,
and the proposer. There were two incomplete or incorrect solutions.
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Series involving Fibonacci and Lucas numbers October 2022

2153. Proposed by Rex H. Wu, New York, NY.

Let Fn and Ln be the Fibonacci and Lucas numbers, respectively. Evaluate the follow-
ing for k ≥ 0.

(a)
∞∑
n=0

arctan
F2k

F2n+1

(b)
∞∑
n=0

arctan
L2k+1

L2n

Solution by Russell Gordon, Whitman College, Walla Walla, WA.
We first establish some common notation and make note of a simple trigonometric
identity. Let α = φ and β = −1/φ, where φ is the golden ratio. By the Binet formulas
for the Lucas and Fibonacci numbers, we have

Fn = αn − βn√
5

and Ln = αn + βn

for all nonnegative integers n. In addition, the trigonometric identity

arctan u− arctan v = arctan
( u− v

1+ uv
)
,

is valid for all positive real numbers u and v.
When k = 0, the Fibonacci series clearly sums to 0. For the other series involving

the Fibonacci numbers, we begin by noting that

α2n+2k+1 − α2n−2k+1

1+ α4n+2
= −α

2k + α−2k

β2n+1 − α2n+1
= α2k − β2k

α2n+1 − β2n+1
= F2k

F2n+1

for all positive integers k and all nonnegative integers n. It follows that

∞∑
n=0

arctan
( F2k

F2n+1

)
= lim

N→∞

N∑
n=0

(
arctan

(
α2n+2k+1

)− arctan
(
α2n−2k+1

))

= lim
N→∞

( N∑
n=N−2k+1

arctan
(
α2n+2k+1

)− 2k−1∑
n=0

arctan
(
α2n−2k+1

))

= lim
N→∞

( 2k∑
�=1

arctan
(
α2N−2k+2�+1

))− 2k−1∑
n=0

arctan
(
α2n−2k+1

)

= 2k · π
2
−

k−1∑
n=0

arctan
(
α−2(k−n−1)−1

)− 2k−1∑
n=k

arctan
(
α2(n−k)+1

)

= 2k · π
2
−

k−1∑
j=0

arctan
(
α−(2j+1)

)− k−1∑
j=0

arctan
(
α2j+1

)

= 2k · π
2
−

k−1∑
j=0

(
arctan

(
α2j+1

)+ arctan
(
α−(2j+1)

))
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= 2k · π
2
− k · π

2

= kπ

2
.

This gives the sums of the series involving the Fibonacci numbers.
For the series involving the Lucas numbers, we first observe that

α2n+2k+1 − α2n−2k−1

1+ α4n
= α2k+1 − α−2k−1

β2n + α2n
= α2k+1 + β2k+1

α2n + β2n
= L2k+1

L2n

for all positive integers k and all nonnegative integers n. It follows that

∞∑
n=0

arctan
(L2k+1

L2n

)
= lim

N→∞

N∑
n=0

(
arctan

(
α2n+2k+1

)− arctan
(
α2n−2k−1

))

= lim
N→∞

( N∑
n=N−2k

arctan
(
α2n+2k+1

)− 2k∑
n=0

arctan
(
α2n−2k−1

))

= lim
N→∞

( 2k∑
�=0

arctan
(
α2N−2k+2�+1

))− 2k∑
n=0

arctan
(
α2n−2k−1

)

= (2k + 1) · π
2
−

k∑
n=0

arctan
(
α−2(k−n+1)+1

)− 2k∑
n=k+1

arctan
(
α2(n−k)−1

)

= (2k + 1) · π
2
− arctan

(
α−(2k+1)

)− k∑
j=1

arctan
(
α−(2j−1)

)− k∑
j=1

arctan
(
α2j−1

)

= (2k + 1) · π
2
− arctan

(
α−(2k+1)

)− k∑
j=1

(
arctan

(
α2j−1

)+ arctan
(
α−(2j−1)

))

= 2k · π
2
+
(π

2
− arctan

(
α−(2k+1)

))− k · π
2

= kπ

2
+ arctan

(
α2k+1

)
= kπ

2
+ arctan

(
φ2k+1

)
.

We have thus found the sums of all of the series involving the Lucas numbers.

Also solved by Michel Bataille (France), Brian Bradie, Hongwei Chen, Michael Goldenberg &
Mark Kaplan, Walther Janous (Austria), Won Kyun Jeong (South Korea), Omran Kouba (Syria),
Angel Plaza (Spain), Albert Stadler (Switzerland), and the proposer.

Ordered partitions with all parts odd October 2022

2154. Proposed by the Columbus State University Problem Solving Group, Columbus,
GA.

Let f (n) denote the number of ordered partitions of a positive integer n such that all of
the parts are odd. For example, f (5) = 5, since 5 can be written as 5, 3+ 1+ 1, 1+
3+ 1, 3+ 1+ 1, and 1+ 1+ 1+ 1+ 1. Determine f (n).
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Solution by Dominic Kozlowski and Anayelli Vigo (students), Seton Hall University,
South Orange, NJ.
We claim that f (n) = Fn, where Fn is the nth Fibonacci number. We will write indi-
vidual partitions as ordered k-tuples and denote the set of odd partitions of n by An.
For example,

A5 = {(5), (3, 1, 1), (1, 3, 1), (1, 1, 3), (1, 1, 1, 1, 1)}.
It will suffice to show that

|A1| = 1, |A2| = 1, and |An| = |An−1| + |An−2| for all n > 2.

That |A1| = |A2| = 1 can be calculated immediately. For n > 2, define the maps p1 :
An−1 → An and p2 : An−2 → An as

p1(a1, a2, . . . , ak) = (1, a1, a2, . . . , ak),

p2(a1, a2, . . . , ak) = (a1 + 2, a2, . . . , ak).

Now let p : An−1 ∪ An−2 → An be the map consisting of the application of p1 to the
elements of An−1 and the application of p2 to the elements of An−2.

To show p is onto, let b ∈ An, with b = (b1, b2, . . . , bk). We have two cases.
Case 1: b1 = 1. In this case (b2, b3, . . . , bk) is an odd partition of n − 1, and so

(b2, b3, . . . , bk) ∈ An−1. But then

p(b2, b3, . . . , bk) = p1(b2, b3, . . . , bk) = b.
Case 2: b1 > 1. In this case since b1 is odd we must have b1 ≥ 3 and odd. But then

b1 − 2 ≥ 1 and is odd, and so (b1 − 2, b2, . . . , bk) is an odd partition of n− 2 and so
(b1 − 2, b2, . . . , bk) ∈ An−2. But then

p(b1 − 2, b2, . . . , bk) = p2(b1 − 2, b2, . . . , bk) = b.
To show that p is one-to-one, we note that both of the individual maps p1 and p2 are

clearly one-to-one. We need only check a �= a′ implies p(a) �= p(a′) for all a ∈ An−1,
a′ ∈ An−2. But p(a) starts with a 1, and p(a′) starts with a number greater than 1, so
p(a) �= p(a′).

Since p is a bijection between An−1 ∪ An−2 and An, |An−1| + |An−2| = |An| for all
n > 2 and the claim follows.

Also solved by Alrich Abel & Vitaliy Kushnirevych (Germany), Ashland University Prob-
lem Solving Group, McCrea Black & the Texas State University Problem Solvers Group, Saham
Bhadra (India), Ricardo Bittencourt (Brazil), Charles Burnette, Robert Calcaterra, Rohan Dalal,
Eagle Problem Solvers, Fejéntalátuka Szeged Problem Solving Group (Hungary), Haydn Gwyn,
Brian Hopkins, Walther Janous (Austria), Kenneth Klinger, Kee-Wai Lau (Hong Kong, China),
S. C. Locke, Samuel Lucas Mazariegos, Katherine Nogin, Northwestern University Math Problem
Solving Group, Rob Pratt, Edward Schmeichel, Albert Stadler (Switzerland), Paul K. Stockmeyer,
and the proposers. There was one incomplete or incorrect solution.

A problem from ring theory October 2022

2155. Proposed by Ioan Băetu, Botoşani, Romania.

Let R be a ring with identity and U a subset of the units of R with |U | = p, where p
is an odd prime. Suppose that for all a ∈ R, there is a u ∈ U and a k ∈ Z+ such that
uak = ak+1. Show that

(a) For all a ∈ R, there is a u ∈ U such that ua = a2.
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(b) The ring R is commutative.

Solution by Robert Calcaterra, University of Wisconsin - Platteville, Platteville, WI.
The condition that p be prime is unnecessary; it suffices to assume that p is odd.

Suppose v is an invertible element of R. Then uvk = vk+1 for some u ∈ U and
k ∈ Z+ and so v = u ∈ U . Therefore, U must be the group of all the units of R. The
order of −1 in the group U is 1 as it is a divisor of both 2 and p. Hence, −1 = 1 and
R has characteristic 2.

Next we claim a2 = 0 in the ring R if and only if a = 0 and that every finite subring
of R containing 1 is the direct sum of fields. To prove this, suppose a ∈ R and a2 = 0.
Then (a + 1)2 = a2 + 1 = 1. Thus, a + 1 is its own inverse in the group U and so
a + 1 = 1, and a = 0 and the first part of the claim is validated. Note that this implies
every finite subring of R containing 1 is semiprime. Since such a ring must also be
artinian, The Wedderburn-Artin theorem implies it is isomorphic to the direct sum

M1 ⊕M2 ⊕ · · · ⊕Mk,

where each Mi is a full matrix ring over a division ring. Since these division rings are
necessarily finite, another theorem of Wedderburn implies they are fields. Finally, note
that the square of any n× nmatrix with n > 1 that has a 1 as the upper right entry and
zeros elsewhere is the zero matrix. This is impossible by the first part of the claim, so
each Mi must consist of 1× 1 matrices and therefore be isomorphic to its component
field. This verifies the second part of the claim.

Let a ∈ R and let Sa be the set of finite sums in R in which each term is either 1
or a raised to a positive integer. Then Sa is a subring of R. Since uak = ak+1 for some
u ∈ U and k ∈ Z+, it follows that

u2ak = uak+1 = ak+2, u3ak = uak+2 = ak+3,

and so on. Therefore,

ak = upak = ak+p, ak+1 = ak+p+1,

and so on. Consequently, Sa is finite, so by the claim above

Sa ∼= F1 ⊕ F2 ⊕ · · · ⊕ Fn,
where the Fi are finite fields. Let a ∈ Sa be represented by (a1, a2, . . . , an) in that
direct sum and let uj be the identity of Fj if aj = 0 and aj if aj �= 0. Then

(u1, u2, . . . , un)(a1, a2, . . . , an) = (a1, a2, . . . , an)
2,

where (u1, u2, . . . , un) is a unit in F1 ⊕ F2 ⊕ · · · ⊕ Fn. Hence, there is a unit u ∈ Sa
such that ua = a2. Since Sa andR share the same identity, a unit of Sa is also invertible
in R. This proves statement (a).

Suppose a ∈ R. Let Ta be the set of all finite sums in which each term is of the form
u or uav for some u, v ∈ U . Observe that if x, y, s, t ∈ U then

(xay)(sat) = x(ays)(ays)s−1y−1t = x(uays)s−1y−1t = xuat
for some u ∈ U by (a). Hence, Ta is a subring of R and is finite because U is finite.
Therefore, Ta is isomorphic to the direct sum of fields and is commutative. Since a is
an arbitrary element of R, U must be in the center of R.

Lastly, let a and b be elements of R. Let Qab be the set of all finite sums in which
each term is of the form u, ua, ub, uab, uba, uaba, or ubab for some u ∈ U . Note
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that whenever two elements of these types are multiplied, their product is also of one
of these types. For example, if x, y ∈ U , then there exists u, v,w ∈ U such that

(xa)(yab) = xya2b = xy(ua)b,
(xb)(yaba) = xy(ba)2 = xy(vba), and,

(xab)(yaba) = xy(ab)2a = xy(wab)a.
But Qab is finite, hence ab = ba for all a, b ∈ R by the claim above. This verifies
statement (b).

Also solved by the proposer.

Answers

Solutions to the Quickies from page 469.

A1133. We have(
2n+ 2

n+ 1

)
=

n+1∑
k=0

(
2k

k

)
−

n∑
k=0

(
2k

k

)
= an+1

(
2n+ 2

n+ 1

)
− an

(
2n

n

)
.

Since (
2n

n

)
= (2n)!

(n!)2
= (n+ 1)2

(2n+ 2)(2n+ 1)
· (2n+ 2)!

((n+ 1)!)2
= n+ 1

4n+ 2

(
2n+ 2

n+ 1

)
,

we have (
2n+ 2

n+ 1

)
= an+1

(
2n+ 2

n+ 1

)
− an · n+ 1

4n+ 2

(
2n+ 2

n+ 1

)
.

Therefore

an+1 = n+ 1

4n+ 2
an + 1 with a0 = 1.

A1134. Let r be the rank of A. The condition we seek is that all of the entries in the
last m− r rows of A are zero.

Suppose the column spaces are equal. Since the lastm− r rows ofR consist entirely
of zeros, the last m− r rows of A must also have this property.

Now suppose that the last m− r rows of A consist entirely of zeros. The last m− r
rows of R must have the same property. Let V be the r-dimensional subspace of Fm

consisting of vectors whose final m − r entries are zero. Clearly the column space
of A and the column space of R are subspaces of V . But both column spaces have
dimension r , so both are equal to V .
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Solutions

Good and bad integer pairs June 2022

2146. Proposed by Kenneth Fogarty, Bronx Community College (emeritus), Bronx, NY.

Let a and d be integers with d > 0. We say that (a, d) is good if there is an arithmetic
sequence with initial term a and difference d that can be split into two sequences of
consecutive terms with the same sum. In other words, there exist integers k and n with
0 < k < n such that

k−1∑
i=0

(a + di) =
n−1∑
i=k

(a + di) .

If there is no such arithmetic sequence, we say that (a, d) is bad.

(a) Show that if 2a > d, then (a, d) is good.
(b) Show that if 2a = d, then (a, d) is bad.
(c) Show that if a = 0 (and hence 2a < d), then (a, d) is good.
(d) Show that if 2a < d and a �= 0, then there is a d such that (a, d) is good and a d

such that (a, d) is bad.

Solution by Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.
It is straightforward to verify that

k−1∑
i=0

(a + di) = k(2a + d(k − 1))

2
and

n−1∑
i=k
(a + di) = (n− k)(2a + d(k + n− 1))

2
.

One then readily deduces that (a, d) is good if and only if there exist integers k and n
with 0 < k < n such that

(2a − d)(2k − n) = d(n2 − 2k2). (1)

For part (a), if 2a > d, then 2a − d ∈ N. Thus, to show (a, d) is good, it suffices
to show there is a solution to (2k − n) = d(n2 − 2k2) since if (k1, n1) is a solution to
(2k − n) = d(n2 − 2k2)with 0 < k1 < n1, then ((2a − d)k1, (2a − d)n1) is a solution
to (2a − d)(2k − n) = d(n2 − 2k2) with 0 < (2a − d)k1 < (2a − d)n1. Multiplying
both sides of (2k − n) = d(n2 − 2k2) by 4d and rearranging gives

4d2n2 + 4dn− 2(4d2k2 + 4dk) = 0

(2dn+ 1)2 − 2(2dk + 1)2 = −1

x2 − 2y2 = −1,

where x = 2dn+ 1 and y = 2dk + 1. Positive integer solutions (x, y) to Pell’s equa-
tion x2 − 2y2 = −1 are given by(

xj
yj

)
=
(

3 4
2 3

)j (
1
1

)
,
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where j is a nonnegative integer. Since

(
x0

y0

)
=
(

1
1

)
corresponds to k = n = 0, we

seek a positive integer j such that xj ≡ 1 ≡ yj (mod 2d). Since A =
(

3 4
2 3

)
has

determinant 1, it follows that A ∈ SL2(Z2d), which has finite order for each positive

integer d. Thus, there exists j ∈ N such that Aj ≡
(

1 0
0 1

)
(mod 2d), and

(
xj
yj

)
=
(

3 4
2 3

)j (
1
1

)
≡
(

1
1

)
(mod 2d).

So, xj = 2dn + 1 and yj = 2dk + 1 for positive integers k and n, and (k, n) is a
solution to (2k − n) = d(n2 − 2k2). An easy induction argument shows that xj > yj
for j > 9 and hence, n > k > 0. Thus, (a, d) is good for all integers a and d with
2a > d > 0.

For part (b), if 2a = d, then we would need n2 = 2k2 or
√

2 = n/k, which is impos-
sible for positive integers n and k since

√
2 is irrational. Thus, (a, d) is bad if 2a = d.

For part (c), if a = 0, then equation (1) becomes 2k − n = 2k2 − n2, or n2 − n =
2(k2 − k), which is satisfied for k = 3 and n = 4 (for all positive integers d). Thus
(a, d) is good if a = 0.

For part (d), we show that for each nonzero integer a, there exist positive integers
d1 > 2a and d2 > 2a for which (a, d1) is good and (a, d2) is bad. If 2a < d, then
equation (1) becomes

(d − 2a)(2k − n) = d(2k2 − n2).

We consider two cases, depending on the sign of a.

Case 1: a > 0. Let d1 = 3a > 0. Letting k = 5 and n = 7,

(d1 − 2a)(2k − n) = a(10− 7) = 3a = d1 = d1(2k
2 − n2),

so that (a, 3a) is good for every positive integer a.
Let d2 = 4a > 0. Then equation (1) becomes 2k − n = 2(2k2 − n2). Multiplying

both sides by 8 and rearranging gives us

(16n2 − 8n)− 2(16k2 − 8k) = 0

(16n2 − 8n+ 1)− 2(16k2 − 8k + 1) = −1

x2 − 2y2 = −1,

where x = 4n− 1 ≡ 3 (mod 4) and y = 4k − 1 ≡ 3 (mod 4). From our earlier dis-

cussion of solutions to x2 − 2y2 = −1 in part (a), we see that

(
3 4
2 3

)2

≡
(

1 0
0 1

)
(mod 4). So, if j is odd, then(

xj
yj

)
=
(

3 4
2 3

)j (
1
1

)
≡
(

3
1

)
(mod 4);

meanwhile, if j is even, then(
xj
yj

)
=
(

3 4
2 3

)j (
1
1

)
≡
(

1
1

)
(mod 4).
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Thus, there are no solutions (x, y) to x2 − 2y2 = −1 with x ≡ 3 ≡ y (mod 4). Hence,
(a, 4a) is bad for every positive integer a.

Case 2: a < 0. Then 2a < d for any positive integer d. Let d1 = 1. Then d1 − 2a =
1− 2a > 0. Letting k = 3(1− 2a) and n = 4(1− 2a), we see that 0 < k < n and

(d1 − 2a)(2k − n) = (1− 2a)2 · 2 = 2 (3(1− 2a))2 − (4(1− 2a))2 = d1(2k
2 − n2),

and (a, 1) is good for every negative integer a.
Let d2 = −4a > 0. Then d2 − 2a = −6a and equation (1) becomes

−6a(2k − n) = −4a(2k2 − n2)

3(2k − n) = 2(2k2 − n2)

(16n2 − 24n+ 9)− 2(16k2 − 24k + 9) = −9

x2 − 2y2 = −9,

where x = 4n− 3 ≡ 1 (mod 4) and y = 4k − 3 ≡ 1 (mod 4). Positive solutions to
x2 − 2y2 = −9 are given by (

xj
yj

)
=
(

3 4
2 3

)j (
3
3

)
,

where j is a nonnegative integer. If j is odd, then(
xj
yj

)
=
(

3 4
2 3

)j (
3
3

)
≡
(

1
3

)
(mod 4);

meanwhile, if j is even, then(
xj
yj

)
=
(

3 4
2 3

)j (
3
3

)
≡
(

3
3

)
(mod 4).

Thus, there is no solution (x, y) to x2 − 2y2 = −9 with x ≡ 1 ≡ y (mod 4); hence,
(a,−4a) is bad for every negative integer a.

Also solved by Eugene A. Herman, Dmitry Fleischman (partial solution), Fresno State Problem
Solving Group (partial solution), William Boyd & Ernest James (partial solution), Fejéntaláltuka
Szeged Problem Solving Group (Hungary) (partial solution), and the proposer.

Evaluate the infinite product June 2022

2147. Proposed by Lokman Gökçe, Istanbul, Turkey.

Evaluate

∞∏
n=2

n4 + 4

n4 − 1
.

Solution by Michel Bataille, Rouen, France.

We prove that the value of the given infinite product is
2 sinh(π)

5π
.
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From Sophie Germain’s identity

x4 + 4 = ((x + 1)2 + 1)((x − 1)2 + 1),

we deduce that for any integer N ≥ 3, we have

PN :=
N∏
n=2

n4 + 4

n4 − 1
=

N∏
n=2

((n+ 1)2 + 1)((n− 1)2 + 1)

(n2 − 1)(n2 + 1)
= 2

N2 + 1
·

N+1∏
n=3
(n2 + 1)

N∏
n=2
(n2 − 1)

,

that is,

PN = N2 + 2N + 2

2(N2 + 1)
·

N∏
n=3

(
1+ 1

n2

)
N∏
n=2

(
1− 1

n2

) .

Now, from

N∏
n=2

(
1− 1

n2

)
=

N∏
n=2

(n− 1)(n+ 1)

n · n = 1

2
· N + 1

N
,

we obtain

lim
N→∞

N∏
n=2

(
1− 1

n2

)
= 1

2

and from the well-known
∞∏
n=1

(
1− z2

n2

)
= sin(πz)

πz
(z ∈ C, z �= 0),

we deduce that

lim
N→∞

N∏
n=1

(
1+ 1

n2

)
= sin(πi)

πi
= sinh(π)

π
.

Since

lim
N→∞

N2 + 2N + 2

N2 + 1
= 1,

it follows that
∞∏
n=2

n4 + 4

n4 − 1
= lim

N→∞
PN = sinh(π)/π

2(1+ 1
12 )(1+ 1

22 )
· 1

1/2
= 2 sinh(π)

5π
.

Also solved by Anthony J. Bevelacqua, Ricardo Bittencourt (Brazil), Paul Bracken, Brian
Bradie, Hongwei Chen, Junan Chen (China), Bruce E. Davis, Fejéntaláltuka Szeged Problem Solv-
ing Group (Hungary), Tasha Fellman, Shuyang Gao, Eugene A. Herman, Walther Janous (Aus-
tria), Warren P. Johnson, Sofia Lacerda (Brazil), Kee-Wai Lau (China), Isaac Venegas Macevschi,
Donald Jay Moore, Raymond Mortini (Luxembourg) & Rudolf Rupp (Germany), Northwestern
University Math Problem Solving Group, Peter Oman & Haohao Wang, Celia Schacht, Albert
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Stadler (Switzerland), Seán M. Stewart (Saudi Arabia), Michael Vowe (Switzerland), Mark Wildon
(UK), and the proposer. There were four incomplete or incorrect solutions.

An application of the Erdős-Mordell inequality June 2022

2148. Proposed by Quang Hung Tran, Hanoi, Vietnam.

Let P be an interior point of triangle ABC. Denote by δa , δb, and δc the distances from
the midpoints of segments PA, PB, and PC to the lines BC, CA, and AB. Prove that

PA+ PB + PC ≥ δa + δb + δc.
Show that equality holds if and only if triangle ABC is equilateral and P is its center.

Solution by Fejéntaláltuka Szeged Problem Solving Group, University of Szeged,
Szeged, Hungary.
Let ha , hb, and hc be the altitudes of triangle ABC through the vertices A, B, and C
respectively. Denote by x, y, and z the distances from P to the lines BC, CA, and AB.

Consider the trapezoid defined by the points A,A′, Pa, P . The segment of length
δa is the midline of this trapezoid, thus δa = (ha + x)/2, and ha = 2δa − x.

From the triangle inequality we have PA+ x ≥ APa . As the segment of length ha
is also the altitude of triangle ABPa , we have APa ≥ ha . Thus,

PA+ x ≥ ha
PA+ x ≥ 2δa − x,

which implies

PA ≥ 2δa − 2x.
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Similarly, it can be shown that

PB ≥ 2δb − 2y,

PC ≥ 2δc − 2z.

The sum of these inequalities gives

PA+ PB + PC ≥ 2δa + 2δb + 2δc − 2x − 2y − 2z.

The Erdős-Mordell inequality states that

PA+ PB + PC ≥ 2(x + y + z).
Adding this to the inequality preceding it gives

2(PA+ PB + PC) ≥ 2(δa + δb + δc).
After dividing both sides by 2, we obtain the desired inequality.

It is clear from the proof that if equality holds in the proposed inequality, then we
must have equality in all the inequalities above. However, it is known that the Erdős-
Mordell equality holds if and only if triangle ABC is equilateral and P is its center.
One can easily show that if triangleABC is equilateral and P is its center then equality
holds in the desired inequality. This finishes the solution.

Also solved by Nandan Sai Dasireddy (India), Celia Schacht, Michael Vowe (Switzerland), and
the proposer.

An irrational alternating sum June 2022

2149. Proposed by Ioan Băetu, Botoşani, Romania.

Let a1, a2, . . . be a sequence of integers greater than 1. The series

∞∑
k=0

(−1)k∏k

i=1 ai
= 1− 1

a1
+ 1

a1a2
− 1

a1a2a3
+ · · ·

converges by the alternating series test.

(a) If the sequence a1, a2, . . . is unbounded, show that the sum of the series is irrational.
(b) Give an example of a bounded sequence of ai’s such that the sum of the series is

irrational.

Solution by the Fresno State Journal Problem Solving Group, Fresno State University,
CA.

(a) Suppose to the contrary that for some unbounded sequence a1, a2, . . . , the sum of
the series is rational, say,

∞∑
k=0

(−1)k∏k

i=1 ai
= m

n
,

where m, n ∈ Z, n > 0. Since the sequence {ai} is unbounded, there exists r ∈ N
such that ar > n. Expanding the left-hand side of the above equation, we have

1− 1

a1
+ 1

a1a2
− 1

a1a2a3
+ · · · + (−1)r−1 1

a1a2 . . . ar−1
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+ (−1)r
1

a1a2 . . . ar−1ar
+ (−1)r+1 1

a1a2 . . . ar−1arar+1
+ · · ·

= m

n
.

Multiplying both sides by a1a2 . . . ar−1n gives

a1a2 . . . ar−1n

(
1− 1

a1
+ 1

a1a2
− 1

a1a2a3
+ · · · + (−1)r−1 1

a1a2 . . . ar−1

)

+ (−1)r
n

ar
+ (−1)r+1 n

arar+1
+ · · ·

= a1a2 . . . ar−1m,

or, equivalently,

a1a2 . . . ar−1n

(
1− 1

a1
+ 1

a1a2
− 1

a1a2a3
+ · · · + (−1)r−1 1

a1a2 . . . ar−1

)
︸ ︷︷ ︸

S

+ (−1)r

⎛
⎜⎜⎝ n

ar
− n

arar+1
+ · · ·︸ ︷︷ ︸

X

⎞
⎟⎟⎠

= a1a2 . . . ar−1m,

Observe that S and a1a2 · · · ar−1m are integers, therefore, X is an integer. How-
ever, X is the sum of an alternating series with decreasing terms approaching 0

(i.e., lim
q→∞

n

ar · · · aq = 0), therefore, 0 < X <
n

ar
< 1. In this case X cannot be an

integer, so we have a contradiction.
(b) Consider the following sequence:

2, 5, 5, 2, 2, 5, 2, 5, 5, 2, 2, 5, 2, 5, 2, 5, 5, 2, . . . ,

where a block of 2,5 is followed by one block of 5,2, then two blocks of 2,5 are
followed by one block of 5,2, then three blocks of 2,5 are followed by one block of
5,2, and so on.

In this case, we have

∞∑
k=0

(−1)k∏k

i=1 ai
=
(

1− 1

a1

)
+
(

1

a1a2
− 1

a1a2a3

)
+ · · ·

=
(

1− 1

a1

)
+ 1

a1a2

(
1− 1

a3

)
+ 1

a1a2a3a4

(
1− 1

a5

)
+ · · ·

= 0.5+ 1

10
· 0.8+ 1

102
· 0.5+ 1

103
· 0.5+ 1

104
· 0.8+ · · ·

= 0.585585558 . . . .

Since the blocks of 5 in the resulting number increase in length, this is a non-
repeating decimal, so it represents an irrational number.
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Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Eugene A. Herman
(partial solution), Evin Liang, Northwestern University Problem Solving Group, Ioana Mihaila &
Ivan Ventura, Celia Schacht, and the proposer. There was one incomplete or incorrect solutions.

Maximize the area of a triangle in a cardioid June 2022

2150. Proposed by Matthew McMullen, Otterbein University, Westerville, OH.

Find the maximum area of a triangle whose vertices lie on the cardioid r = 1+ cos θ .

Editor’s Note. Unfortunately, the argument that the triangle having maximal area is
symmetric with respect to the x-axis is too long and involved to include here. The
statement of the problem should have included the condition that this symmetry held
in order to make the problem more tractable. We regret not having done so.

Solution by the proposer.
There are two cases to consider. First, assume the vertex lying on the x-axis is (0, 0). If
the other vertices are ((1+ cos θ) cos θ,±(1+ cos θ) sin θ) with 0 ≤ θ ≤ π , the area
of the triangle is A(θ) = |f (θ)|, where

f (θ) = sin θ cos θ (1+ cos θ)2 .

Now

f ′(θ) = cos2 θ (1+ cos θ)2 − sin2 θ (1+ cos θ)2 − sin2 θ cos θ (1+ cos θ) .

Letting sin2 θ = 1− cos2 θ and simplifying gives

f ′(θ) = (1+ cos θ)2
(
4 cos2 θ − 2 cos θ − 1

)
.

The only critical points forA(θ) having a nonzero area are when cos θ =
(

1±√5
)
/4.

The maximum value of A(θ) occurs when cos θ =
(

1+√5
)
/4 and in that case

A(θ) = 5

32

√
50+ 22

√
5 ≈ 1.55619.

The second case is when the vertex lying on the x-axis is (2, 0). In this case,

A(θ) = sin θ(1+ cos θ)(2− cos θ(1+ cos θ))

= (2+ cos θ) sin3 θ.

Therefore,

A′(θ) = (4 cos2 θ + 6 cos θ − 1) sin2 θ.

The only critical point for A(θ) having a nonzero area is when cos θ =
(√

13− 3
)
/4.

In that case

A(θ) = 3

32

√
105+ 39

√
13 ≈ 2.07785.

This is therefore the overall maximum area.
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Solutions

An improper logarithmic integral April 2022

2141. Proposed by Paul Bracken, University of Texas Rio Grande Valley, Edinburg,
TX.

Evaluate ∫ ∞
0

ln
(
1+ 2x−2 cosϕ + x−4

)
dx.

Solution by J. A. Grzesik, Torrance, CA.
Let

I (ϕ) =
∫ ∞

0
ln(1+ 2x−2 cosϕ + x−4) dx

=
∫ ∞

0
ln(x4 + 2x2 cosϕ + 1)− 4 ln x dx.

Since I has period 2π , we may take ϕ ∈ (−π, π]. We claim that I (ϕ) = 2π cos(ϕ/2).
One obtains this by first noting that

x4 + 2x2 cosϕ + 1 = (x2 + eiϕ)(x2 + e−iϕ),
whence

I (ϕ) = 2Re
∫ ∞

0
ln(x2 + eiϕ)− 2 ln x dx

= 2Re
∫ ∞

0
ln(x + ei(π+ϕ)/2)+ ln(x − ei(π+ϕ)/2)− 2 ln x dx

= 2Re
(
(x + ei(π+ϕ)/2) ln(x + ei(π+ϕ)/2)− x

+ (x − ei(π+ϕ)/2) ln(x − ei(π+ϕ)/2)− x − 2x ln x + 2x
)∣∣∣∣
x=∞

x=0

= 2πIm
(
ei(π+ϕ)/2

)
= 2π cos(ϕ/2).

These manipulations hold so long as ϕ 	= π . When ϕ = π , there is a singularity when
x = 1 and the integral must be split into two parts. Here one finds that

I (π) = 2
∫ ∞

0
ln
(
|x − 1|(x + 1)

)
− 2 ln x dx

= 2

[∫ 1

0
ln(1− x)dx +

∫ ∞
1

ln(x − 1)dx +
∫ ∞

0
ln(x + 1)− 2 ln x dx

]

= 2

⎡
⎣ − (1− x) ln(1− x)+ (1− x)

∣∣∣∣∣
1

0

+ (x − 1) ln(x − 1)− (x − 1)

∣∣∣∣∣
∞

1
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(x + 1) ln(x + 1)− (x + 1)

∣∣∣∣∣
∞

0

− 2

(
x ln x − x

)∣∣∣∣∣
∞

0

]

= 0 ,

in agreement with the claimed value of I (ϕ) = 2π cos(ϕ/2).
Note that replacing the definite integrals with indefinite integrals in the second set

of displayed equations allows us to find an elementary antiderivative∫
ln
(
x−4 + 2x−2 cosϕ + 1

)
dx = x ln

(
x−4 + 2x−2 cosϕ + 1

)

+ sin
(ϕ

2

)
ln

(
x2 + 2x sin(ϕ/2)+ 1

x2 − 2x sin(ϕ/2)+ 1

)

+ 2 cos
(ϕ

2

)
arctan

(
2x cos(ϕ/2)

1− x2

)
.

Also solved by Ulrich Abel & Vitaliy Kushnirevych (Germany), Carl Axness (Spain), Michel
Bataille (France), Robert Benim, Khristo N. Boyadzhiev, Brian Bradie, Bruce S. Burdick, Hong-
wei Chen, Bruce E. Davis, John N. Fitch, Fatima Gulieva (Azerbaijan), Eugene A. Herman,
Walther Janous (Austria), Warren P. Johnson, Stephen Kaczkowski, Omran Kouba (Syria), James
Magliano, Kelly D. McLenithan, Raymond Mortini (France) & Rudolph Rupp (Germany), North-
western University Math Problem Solving Group, Moubinool Omarjee (France), Shing Hin Jimmy
Pa (China), Paolo Perfetti (Italy), Didier Pinchon (France) Albert Stadler (Switzerland), Seán M.
Stewart (Saudi Arabia), Michael Vowe (Switzerland), and the proposer.

Constructing the axis and focus of a parabola April 2022

2142. Proposed by Roger Izard, Dallas, TX.

Given a parabola in the plane, find its axis and focus using compass and straightedge.

Solution by Michelle Nogin (student), Clovis North High School, Fresno, CA.
We will use the following facts about parabolas.

(1) If points A, B, C, and D lie on the parabola with AB ‖ CD, then the line through
the midpoints of segments AB and CD is parallel to the axis of symmetry.

Proof. Choose the coordinate system so that the vertex of the parabola is at
the origin and the axis of symmetry is the y-axis. Then the parabola is given by
y = ax2. Let the lines AB and CD be given by y = mx + b1 and y = mx + b2,
respectively. The x-coordinates of points A and B are the roots of ax2 = mx + b1.
By Vieta’s formulas, their sum is m/a. Thus, the x-coordinate of the midpoint of
AB is m/(2a). Similarly, the x-coordinate of the midpoint of CD is also m/(2a).
Therefore, the line going through the midpoints of AB and CD is parallel to the
y-axis, which is the axis of symmetry.

(2) If points G and H lie on the parabola and line GH is perpendicular to the axis of
symmetry, then the axis goes through the midpoint of segment GH .

(3) For the parabola y = ax2, the line y = x meets the parabola at the origin and
another point, whose y-coordinate is four times larger than the y-coordinate
of the focus. Note that the line y = x forms a 45◦ angle with the axis of the
parabola.
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Proof. The x-coordinates of the intersection points satisfy the equation ax2 =
x. Therefore, the points of intersection are (0, 0) and (1/a, 1/a). Since the focus
is at (0, 1/(4a)), the result follows.

We will also use the following well-known constructions using compass and straight-
edge:

(a) Construct a line through a given point parallel to a given line.
(b) Construct a line through a given point perpendicular to a given line.
(c) Construct the midpoint of a given line segment.
(d) Given a point that lies on a line, construct a line through the given point that forms

a 45◦ angle with the given line.

We first give the construction of the axis of the parabola. Take any two points A
and B on the given parabola and draw a line through them. Take another point C
on the parabola and draw a second line through C parallel to line AB. Let D be the
other intersection point of this line and the parabola. (If the line through C happens to
be tangent to the parabola, choose another point C.) Next, take points E and F , the
midpoints of line segments AB and CD, respectively, and draw line EF . By Fact 1,
this line is parallel to the axis of symmetry. Next, pick a pointG on the parabola. Draw
a line perpendicular to EF through G and call the other intersection point of that line
and the parabola H . (If the line through G happens to be tangent to the parabola,
choose another point G.) Let I be the midpoint of GH . By Fact 2, the line parallel to
EF that goes through I is the parabola’s axis of symmetry.

We now construct the focus of the parabola. The vertex of the parabola is J , the
intersection point of the axis of symmetry and the parabola. Through J , draw a line
that forms a 45◦ angle with the axis of symmetry. Call the second intersection point of
this line and the parabola K . Next, draw a line perpendicular to the axis of symmetry
through K . Call the intersection point of that line and the axis of symmetry L. Con-
struct N , the midpoint of segment JL and M , the midpoint of segment JN . By Fact
3, M is the focus of the parabola.

Also solved by Michel Bataille (France), Bruce S. Burdick, Elton Bojaxhiu (Germany) & Enkel
Hysnelaj (Australia), Micah Fogel, Michael Goldenberg & Mark Kaplan, Shing Hin Jimmy Pa
(China), Randy K. Schwartz, and the proposer.

The limit of a binomial sum April 2022

2143. Proposed by Florin Stănescu, Şerban Cioculescu School, Găeşti, Romania.
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Evaluate

lim
n→∞

n∑
i=0

n∑
j=0

(−1)i+j

2i + 2j + 1

(
n+ i
n− i

)(
n+ j
n− j

)
.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.
Let

Sn =
n∑
i=0

n∑
j=0

(−1)i+j

2i + 2j + 1

(
n+ i
n− i

)(
n+ j
n− j

)
.

The Chebyshev polynomials of the second kind, Un(x), are given by

Un(x) =
�n/2∑
j=0

(−1)j
(
n− j
j

)
(2x)n−2j ,

so

U2n(x) =
n∑
j=0

(−1)j
(

2n− j
j

)
(2x)2n−2j =

n∑
j=0

(−1)n−j
(
n+ j
n− j

)
(2x)2j

= (−1)n
n∑
j=0

(−1)j
(
n+ j
n− j

)
(2x)2j .

Write
1

2i + 2j + 1
=
∫ 1

0
x2i+2j dx.

Then

Sn =
∫ 1

0

(
n∑
i=0

(−1)i
(
n+ i
n− i

)
x2i

)⎛⎝ n∑
j=0

(−1)j
(
n+ j
n− j

)
x2j

⎞
⎠ dx

=
∫ 1

0
U 2

2n

(x
2

)
dx.

With the substitution x = 2 cos θ , we get

Sn = 2
∫ π/2

π/3
U 2

2n(cos θ) sin θ dθ = 2
∫ π/2

π/3

sin2(2n+ 1)θ

sin θ
dθ.

Now,

sin θ
2n∑
j=0

sin(2j + 1)θ = 1

2

2n∑
j=0

[cos 2jθ − cos(2j + 2)θ]

= 1

2
(1− cos(4n+ 2)θ) = sin2(2n+ 1)θ,

so

Sn = 2
∫ π/2

π/3

2n∑
j=0

sin(2j + 1)θ dθ = −2
2n∑
j=0

cos(2j + 1)θ

2j + 1

∣∣∣∣
π/2

π/3

= 2
2n∑
j=0

cos(2j + 1)π3
2j + 1

= 2
2n∑
j=0

cos((2j + 1) arccos 1
2 )

2j + 1
= 2

2n∑
j=0

T2j+1

(
1
2

)
2j + 1

,
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where Tn(x) is a Chebyshev polynomial of the first kind. Next, the generating function
for the Chebyshev polynomials of the first kind is

∞∑
j=0

Tj (x)t
j = 1− xt

1− 2xt + t2 .

Separating the j = 0 term from the series, dividing by t , and integrating yields

∞∑
j=1

Tj (x)

j
tj = ln

1√
1− 2xt + t2 ,

from which it follows that
∞∑
j=0

T2j+1(x)

2j + 1
= 1

2

(
ln

1√
1− 2xt + t2 − ln

1√
1+ 2tx + t2

) ∣∣∣∣
t=1

= 1

2
ln

√
2+ 2x√
2− 2x

= 1

4
ln

1+ x
1− x .

Finally,

lim
n→∞ Sn = 2

∞∑
j=0

T2j+1

(
1
2

)
2j + 1

= 1

2
ln

1+ 1
2

1− 1
2

= 1

2
ln 3.

Also solved by Ulrich Abel & Vitaliy Kushnirevych (Germany), Omran Kouba (Syria), Didier
Pinchon (France), Albert Stadler (Switzerland) Séan M. Stewart (Saudi Arabia) Michael Vowe
(Switzerland) and the proposer.

A ring with distinct ideals having distinct orders April 2022

2144. Proposed by Souvik Dey (graduate student), University of Kansas, Lawrence,
KS.

LetR be a finite commutative ring with unity such that distinct ideals ofR have distinct
orders. Show that R is a principal ideal ring.

Solution by the Missouri State University Problem Solving Group, Missouri State Uni-
versity, Springfield, MO.
We will define a finite commutative ring with unity such that distinct ideals have dis-
tinct orders to be distinctive. It is well known that any finite ring R is a direct sum of
finite local rings, that ideals of R correspond to direct sums of ideals of the finite local
rings, and that a direct sum of principal ideals is principal. Clearly, any summand of
a distinctive ring must be distinctive. Therefore, it suffices to prove the result for R
local with maximal ideal m. Suppose, to the contrary, that a, b ∈ m are distinct ele-
ments of a minimal generating set for m, and let I = (a,m2) and J = (b,m2). Then I
and J are distinct ideals. Both I/m2 and J/m2 are one-dimensional vector spaces over
R/m, implying that

∣∣I/m2
∣∣ = |R/m| = ∣∣J/m2

∣∣. Since R is finite,
∣∣I/m2

∣∣ = |I | / ∣∣m2
∣∣,

hence |I | = |R/m| |m2|. Similarly, |J | = |R/m| |m2|, which contradicts the fact that
I and J are distinct ideals. Thus, m is principal. It is well known that if the maximal
ideal of a finite local ring R is principal, then R is a principal ideal ring, and the result
follows.
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We note that if R is a finite principal ideal ring, then for R to be distinctive, it
is necessary that the cardinalities of all its summands are distinct, and it is sufficient
for the cardinalities of its summands to be pairwise relatively prime. The problem of
completely characterizing distinctive rings seems to be complicated.

Also solved by the proposer.

Determine L(L(S)) April 2022

2145. Proposed by the Missouri State University Problem Solving Group, Missouri
State University, Springfield, MO.

Given a set of points S, letL(S) be the set of all points lying on any line connecting two
distinct points in S. For example, if S is the disjoint union of a closed line segment and
a point not lying on the line containing the segment, then L(S) consists of two vertical
angles, their interiors, and the line containing the segment. In this case, L(L(S)) is the
entire plane.

Determine L(L(S)) when S consists of the vertices of a regular tetrahedron.

Solution by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela.
Without loss of generality, we may assume that the vertices of the tetrahedron are
S = {A,B,C,D}, where

A = (1, 1, 1), B = (1,−1,−1), C = (−1, 1,−1), and D = (−1,−1, 1).

Let

A′ = (−1,−1,−1), B ′ = (−1, 1, 1), C ′ = (1,−1, 1), and D′ = (1, 1,−1).

Note that A′, B ′, C ′, and D′ are the reflections of A,B,C, and D through the origin,
which is the centroid of the tetrahedron. We claim that

L(L(S)) = R− {A′, B ′, C ′,D′}.
Clearly, L(S) consists of the lines through the vertices. The points on line AB are of
the form (1, s, s) and those on line CD are of the form (−1, t,−t). Given any point
(x, y, z) with x 	= ±1, we have (x, y, z) = λ(1, s, s)+ (1− λ)(−1, t,−t), where

λ = x + 1

2
, s = y + z

x + 1
, and t = y − z

1− x .

Therefore, L(L(S)) contains all points with x 	= ±1. Similar arguments using the
other pairs of skew lines shows that L(L(S)) contains all points with y 	= ±1 and
all points with z 	= ±1. Hence,

L(L(S)) ⊇ R− {A,B,C,D,A′, B ′, C ′,D′},
but L(L(S)) clearly contains A,B,C, and D, so L(L(S)) ⊇ R− {A′, B ′, C ′,D′}. It
only remains to prove that A′, B ′, C ′, and D′ do not belong to L(L(S)). Suppose, on
the contrary, that A′ is on the line between P and Q with P,Q ∈ L(S). Then P must
be on the line determined by two vertices and Q on the line determined by the other
two (if P and Q were on two intersecting lines A′ would lie on the plane of a face,
and it does not). For example, suppose that P lies on line AB and Q lies on line CD.
But then the line through Q and A′ lies in the plane x = −1, which does not meet line
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AB, whch lies in the plane x = 1. This gives a contradiction. Examining the other two
pairs of skew lines, shows that A′ 	∈ L(L(S)). Similar arguments show the same for
B ′, C ′, and D′. Therefore, L(L(S)) = R− {A′, B ′, C ′,D′}, as claimed.

Also solved by Robert Calcaterra, Eugene A. Herman, Didier Pinchon (France), and the pro-
posers. There were three incomplete or incorrect solutions.

Answers

Solutions to the Quickies from page 191.

A1129. The series equals 1.
Let

xn =
∞∑
k=n

1

k2
= 1

n2
+ 1

(n+ 1)2
+ · · · .

We have

xn

n(n+ 1)
= xn

n
− xn

n+ 1
= xn

n
−

1
n2 + xn+1

n+ 1

= xn

n
− xn+1

n+ 1
− 1

n2(n+ 1)

= xn

n
− xn+1

n+ 1
− 1

n2
+ 1

n(n+ 1)

= xn

n
− xn+1

n+ 1
− 1

n2
+ 1

n
− 1

n+ 1
.

It follows that

∞∑
n=1

1
n2 + 1

(n+1)2
+ · · ·

n(n+ 1)
=
∞∑
n=1

(
xn

n
− xn+1

n+ 1

)
−
∞∑
n=1

1

n2
+
∞∑
n=1

(
1

n
− 1

n+ 1

)

= x1 − ζ(2)+ 1 = 1,

as claimed.

A1130. Note that if gcd(i, n) = 1, then gcd(n− i, n) = 1. Hence,

S =
∑

1≤i<n
gcd(i,n)=1

i

n
=

∑
1≤i<n

gcd(i,n)=1

n− i
n

and

2S =
∑

1≤i<n
gcd(i,n)=1

1 = φ(n),

where φ(n) is the Euler totient function. Therefore, S = φ(n)/2, and we must solve
φ(n) = 628318. Since 628319 is prime, and since for p an odd prime we have that
φ(p) = p − 1 and φ(2p) = φ(2)φ(p) = p − 1, we can immediately give two solu-
tions to the original equation: n = 628319 and n = 1256638. One readily verifies that,
in fact, these are the only solutions.
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Solutions

A formula for ζ(3) February 2022

2136. Proposed by Necdet Batir, Nevşehir HBV University, Nevşehir, Turkey.

Evaluate

lim
n→∞

((
n∑
k=1

H 2
k

k

)
− H

3
n

3

)
,

where Hn =∑n

k=1
1
k

is the nth harmonic number.

Solution by Kelly D. McLenithan, Los Alamos, NM.
The desired limit is

lim
n→∞

((
n∑
k=1

H 2
k

k

)
− H

3
n

3

)
= 5

3
ζ(3) ,

where ζ(3) is Apéry’s constant given by

ζ(3) =
∞∑
k=1

1

k3
= 1.20205 69031 59594 . . . .

This follows from an application of the summation-by-parts formula

n∑
k=1

(ak+1 − ak)bk = an+1bn+1 − a1b1 −
n∑
k=1

ak+1(bk+1 − bk) .

Letting a1 = 0, ak+1 − ak = 1/k, and bk = H 2
k , we find that ak = Hk−1 and

bk+1 − bk = H 2
k+1 −H 2

k

= (Hk+1 −Hk)(Hk+1 +Hk)

= 1

k + 1

(
1

k + 1
+ 2Hk

)

= 2Hk

k + 1
+ 1

(k + 1)2
.

By summation by parts, we have

n∑
k=1

H 2
k

k
= HnH

2
n − 0−

n∑
k=1

Hk

(
2Hk

k + 1
+ 1

(k + 1)2

)

= H 3
n − 2

n∑
k=1

H 2
k

k + 1
−

n∑
k=1

Hk

(k + 1)2

= H 3
n − 2

n∑
k=1

H 2
k−1

k
−

n∑
k=1

Hk−1

k2
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= H 3
n − 2

n∑
k=1

1

k

(
Hk − 1

k

)2

−
n∑
k=1

1

k2

(
Hk − 1

k

)

= H 3
n − 2

n∑
k=1

H 2
k

k
+ 4

n∑
k=1

Hk

k2
− 2

n∑
k=1

1

k3
−

n∑
k=1

Hk

k2
+

n∑
k=1

1

k3
.

Collecting terms and rearranging, it follows that

n∑
k=1

H 2
k

k
− H

3
n

3
=

n∑
k=1

Hk

k2
− 1

3

n∑
k=1

1

k3
.

After taking the limit, we obtain

lim
n→∞

((
n∑
k=1

H 2
k

k

)
− H

3
n

3

)
=
∞∑
k=1

Hk

k2
− 1

3

∞∑
k=1

1

k3

=
∞∑
k=1

Hk

k2
− 1

3
ζ(3) .

In 1775, Euler showed that for integers q ≥ 2

2
∞∑
k=1

Hk

kq
= (q + 2)ζ(q + 1)−

q−2∑
m=1

ζ(m+ 1)ζ(q −m).

When q = 2, this gives

∞∑
k=1

Hk

k2
= 2ζ(3).

Therefore, our desired limit is

lim
n→∞

((
n∑
k=1

H 2
k

k

)
− H

3
n

3

)
=
∞∑
k=1

Hk

k2
− 1

3
ζ(3)

= 2ζ(3)− 1

3
ζ(3) = 5

3
ζ(3),

as claimed.
Also solved by Michel Bataille (France), Jake Boswell & Chip Curtis, Paul Bracken, Brian

Bradie, Bruce S. Burdick, Hongwei Chen, Robert L. Doucette, Russell Gordon, Lixing Han, Eugene
A. Herman, Walther Janous (Austria), Kee-Wai Lau (Hong Kong, China), Shing Hin Jimmy Pa
(Canada), Paolo Perfetti (Italy), Didier Pinchon (France), Albert Stadler (Switzerland), Séan M.
Stewart (Saudi Arabia), and the proposer.

The gcd of terms in a recursive sequence February 2022

2137. Proposed by the Columbus State University Problem Solving Group, Columbus
State University, Columbus, GA.

For a positive integer n, let an and bn be the unique integers such that

(5+√3)n = an + bn
√

3.
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Find gcd(an, bn) as a function of n. Solve the analogous problem when 5 + √3 is
replaced by 3+√5.

Solution by Jacob Boswell and Chip Curtis, Missouri Southern State University,
Joplin, MO.
For the first version of the problem, we claim that

gcd (an, bn) = 2�n/2	.

To see this, set vn = [an, bn]
T. The sequence vn satisfies the recurrence

vn+1 = Mvn, and v0 = [1, 0]T.

where M =
[

5 3
1 5

]
. We note that

M2 =
[

28 30
10 28

]
and M3 =

[
170 234
78 170

]
.

Solving vn+1 = Mvn for an and bn gives

22an = 5an+1 − 3bn+1

22bn = −an+1 + 5bn+1.

Set dn = gcd (an, bn). Thus, any factor that divides an+1 and bn+1 must also divide
22dn. Noting that

v1 = [5, 1]T, v2 = [28, 10]T, and M3 ∼= M mod 11,

we find that 11 is not a factor of gcd (an, bn) for any n. From vn+2 = M2vn, we see
that 2dn divides dn+2, but 4dn does not divide dn+2. Hence, dn+2 = 2dn. Consider the
subsequences of {dn} of even index and odd index separately, and note that

v1 = [5, 1]T and v2 = [28, 10]T,

so d1 = 1 and d2 = 2. A simple induction completes the proof.
For the second case, we claim that gcd (an, bn) = 2n−α(n), where α(n) is 0 if n is a

multiple of 3 and 1 otherwise.
Here

M =
[

3 5
1 3

]
, M2 =

[
14 30
6 14

]
, and M3 =

[
72 160
32 72

]
.

From vn+3 = M3vn, we find that 8dn divides dn+3, and from

8an = 9an+3 − 20bn+3

8bn = −4an+3 + 9bn+3,

obtained by solving vn+3 = M3vn for an and bn, we find that dn+3 divides 8dn. Hence,
dn+3 = 8dn. Since v1 = [3, 1]T, v2 = [14, 6]T, and v3 = [72, 32]T, we have d1 = 1,
d2 = 2, and d3 = 8. The claim again follows by induction.

Also solved by Michel Bataille (France), Anthony J. Bevelacqua, Robert Calcaterra, Hongwei
Chen, John Christopher, Rohan Dalal, John Ferdinands, Michael Goldenberg & Mark Kaplan,
Russell Gordon, Eugene A. Herman, Northwestern University Math Problem Solving Group,
Michael Reid, Albert Stadler (Switzerland), and the proposers.
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Find the locus of the circumcenter February 2022

2138. Proposed by Alexandru Girban, Constanta, Romania.

Let
ABC be a triangle with circumcircle ω and letD be a fixed point on sideBC. Let
E be a point on ω and let AE meet line BC at F . Find the locus of the circumcenter
of 
DEF as E varies along ω.

Solution by Michel Bataille, Rouen, France.
In what follows, the lineAE will be taken to be the tangent line to ω atAwhenA = E.

Let the parallel to BC throughA intersect ω again atX and let the lineXD intersect
ω again at Y (see the figure). We show that the required locus is the perpendicular
bisector of DY with three points removed.

Let ∠(	, 	′) denote the directed angle from line 	 to line 	′.
Let E be a point of ω, with E �= X (so that AE does intersect BC). Assuming that


DEF is not degenerate, we have

∠(YE, YD) = ∠(YE, YX) = ∠(AE,AX) (since A, Y,E,X are concyclic)

= ∠(AF,AX) = ∠(FA, FD) (since FD ‖ AX),
hence ∠(YE, YD) = ∠(FE, FD). Therefore, Y lies on the circumcircle of 
DEF .
The circumcenter of 
DEF is on the perpendicular bisector m of DY , so the locus
we seek is a subset of m.

Conversely, Let U be any point ofm and let γ be the circle with center U and radius
UD = UY . Let BC intersect γ again at F and ω intersect γ again at E. Then U is a
point of the locus if A,E, F are collinear and 
DEF is not degenerate.

Now, we have

∠(AF,AE) = ∠(AF,AX)+ ∠(AX,AE) = ∠(FA, FD)+ ∠(YX, YE)
= ∠(FA, FD)+ ∠(YD, YE) = ∠(FA, FD)+ ∠(FD,FE)
= ∠(AF, FE).

Therefore, A,E, and F are collinear. Since 
DEF is degenerate if and only if F =
D,B, or C, the centers P,Q, and R of the circle tangent to BC at D, of the circum-
circle of 
BDY , and of the circumcircle of 
CDY (respectively) must be excluded.
Finally, the desired locus is m− {P,Q,R}.



94 MATHEMATICS MAGAZINE

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Eugene A. Herman,
Walther Janous (Austria), Albert Stadler (Switzerland), and the proposer.

Infinitely many “very good” Pythagorean triples February 2022

2139. Proposed by Philippe Fondanaiche, Paris, France.

Recall that a Pythagorean triple is a triplet of positive integers (a, b, c) such that a2 +
b2 = c2. We say that a Pythagorean triple is good if adding the same single digit to the
front of the decimal representations of a, b, and c yields another Pythagorean triple.
We will call a Pythagorean triple very good if it is good and it is not a nontrivial scalar
multiple of another good Pythagorean triple. For example (50, 120, 130) is good, since
(150, 1120, 1130) is also a Pythagorean triple, but it is not very good since it is a scalar
multiple of the very good triple (5, 12, 13).

Show that there are infinitely many very good Pythagorean triples.

Solution by Michael Reid, University of Central Florida, Orlando, FL.
Let n ≥ 2 be an integer, and put

a = 5 · 10n,

b = 125 · 102n−2 − 5, and

c = 125 · 102n−2 + 5.

We have

c2 − b2 = (c − b)(c + b)
= (10)(250 · 102n−2)

= 25 · 102n = a2,

so (a, b, c) is a Pythagorean triple. LetA,B,C be the integers obtained by prepending
the digit 1 to the decimal representations of a, b, c. Then

A = 15 · 10n,

B = 1125 · 102n−2 − 5, and

C = 1125 · 102n−2 + 5.

Hence,

C2 − B2 = (C − B)(C + B) = (10)(2250 · 102n−2) = 225 · 102n = A2,

so (A,B,C) is a Pythagorean triple. Thus, (a, b, c) is a good Pythagorean triple.
The good Pythagorean triples above are all very good, as we now show. Note that

the only prime divisors of a = 5 · 10n are 2 and 5. Also, b and c are divisible by 5 but
not by 52. Since n ≥ 2, b and c are odd, so gcd(a, b, c) = 5. Thus, if (a, b, c) is not
very good, it is 5 times a good Pythagorean triple. Let

x = a/5 = 10n,

y = b/5 = 25 · 102n−2 − 1, and

z = c/5 = 25 · 102n−2 + 1,

and let X, Y,Z be the numbers obtained by prepending the nonzero digit d to x, y, z.
Since x, y, and z have n+ 1, 2n, and 2n digits, respectively,
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X = d · 10n+1 + x,
Y = d · 102n + y, and

Z = d · 102n + z.
The equation X2 + Y 2 = Z2 yields a quadratic equation in d whose roots are d = 0
and d = −4/25. This contradiction shows that (x, y, z) is not good, so (a, b, c) is
indeed very good.

Also solved by Arya Gupta & Amishi Gupta & Ethan Strubbe, and the proposer.

Minimize the exponential sum February 2022

2140. Proposed by Antonio Garcia, Strasbourg, France.

For a fixed integer n ≥ 2, find the minimum value of

f (x1, . . . , xn) =
n∑
i=1

exp
(
x2
i

)+ exp

⎛
⎝ ∑

1≤i<j≤n
−xixj

⎞
⎠ .

Solution by Ulrich Abel and Vitaliy Kushnirevych, Technische Hochschule Mittel-
hessen, Friedberg, Germany.
Application of the AGM inequality

(a1 · · · an)1/n ≤ (a1 + · · · + an) /n
for positive reals ai , yields

n∑
i=1

exp
(
x2
i

) ≥ n
(

n∏
i=1

exp
(
x2
i

))1/n

= n exp

(
n∑
i=1

x2
i /n

)
.

By the Cauchy–Schwarz inequality, it follows that(
n∑
i=1

xi

)2

=
(

n∑
i=1

xi · 1
)2

≤ n
n∑
i=1

x2
i ,

which implies

2
∑

1≤i<j≤n
xixj =

(
n∑
i=1

xi

)2

−
n∑
i=1

x2
i ≤ (n− 1)

n∑
i=1

x2
i .

Combining both inequalities leads to

f (x1, . . . , xn) ≥ n exp

(
1

n

n∑
i=1

x2
i

)
+ exp

(
−n− 1

2

n∑
i=1

x2
i

)
,

for all (x1, . . . , xn) ∈ Rn, and equality holds if and only if x1 = · · · = xn. Putting
t =∑n

i=1 x
2
i , we want to find the minimum of

g (t) = n exp

(
1

n
t

)
+ exp

(
−n− 1

2
t

)
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for t ≥ 0. We have

g′ (t) = exp

(
1

n
t

)
− n− 1

2
exp

(
−n− 1

2
t

)
= 0

if and only if

exp

((
n− 1

2
+ 1

n

)
t

)
= n− 1

2
,

which occurs at

t0 = ln((n− 1)/2)

(n− 1)/2+ 1/n
.

We also have

g′′ (t) = 1

n
exp

(
1

n
t

)
+
(
n− 1

2

)2

exp

(
−n− 1

2
t

)
> 0,

so g has an absolute minimum at t0.
For n = 2, we have t0 < 0. Since t is restricted to nonnegative values, the minimum

occurs when t = 0 giving 3 as the minimum value in this case.
For n ≥ 3, we have t0 ≥ 0 and

g (t0) =
(
n+ 2

n− 1

)
exp

(
1

n
t0

)
= n2 − n+ 2

n− 1

(
n− 1

2

) 2
n2−n+2

is the minimum value.

Also solved by Carl Axness (Spain), Jacob Boswell & Chip Curtis, Robert Calcaterra, Hongwei
Chen, Lixing Han, Eugene A. Herman, Kelly D. McLenithan, Michael Reid, Edward Schmeichel,
Albert Stadler (Switzerland), and the proposer. There were two incomplete or incorrect solutions.

Answers

Solutions to the Quickies from page 89.

A1127. Note that

(4+ i)(5+ i)(7+ i)(8+ i)(13+ i) = 11050+ 11050i.

Compare the arguments of the complex numbers on both sides of the equation. The
left-hand side is our sum, and the right-hand side must be π/4+ 2πk for some integer
k. But all the terms in our sum are greater than 0 and less than arctan(1) = π/4.
Therefore, our sum must lie between 0 and 5π/4, and π/4 is the only candidate.

A1128. There is a homomorphism from Z to R obtained by mapping 1 to 1R. The
image of this map is a subring of R, hence an ideal I . Therefore, for all r ∈ R, r =
r · 1R ∈ I , so R = I and the homomorphism is surjective. The kernel of this map is
nZ. By the first isomorphism theorem, R ∼= Z/nZ.

Note that the condition that R be commutative is unnecessary.
A ring R with trivial multiplication clearly satisfies the condition. A nontrivial

example is R = 2Z/8Z. The only subrings of R are {0}, {0, 4}, and R and these are all
ideals.
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Solutions

A property of the symmedian point December 2021

2131. Proposed by Tran Quang Hung, Hanoi, Vietnam.

Recall that a symmedian is the reflection of a median through a vertex across the angle
bisector passing through that vertex. The three symmedians of a triangle meet in a point
known as the symmedian (or Lemoine or Grebe) point. Let ABC be a triangle with
symmedian point S. Let X, Y , and Z be points lying on segments SA, SB, and SC,
respectively, such that ∠XBA ∼= ∠YAB and ∠XCA ∼= ∠ZAC. Prove that ∠ZBC ∼=
∠YCB.

Solution by Do Van Quyet, Vinh Phuc, Vietnam.
Recall that line �1 is said to be anti-parallel to line �2 with respect to lines m1 and m2

if the opposite angles in the quadrilateral formed by the four lines are supplementary.

Let the anti-parallel line to BC with respect to sides AC and AB passing through
X meet those sides at K and L, respectively.

Let the anti-parallel line to AC with respect to sides BA and BC passing through
Y meet those sides at M and N , respectively.
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Let the anti-parallel line to AB with respect to sides CB and CA passing through
Z meet those sides at P and Q, respectively.

Note that quadrilaterals BCKL,CAMN , and ABPQ are cyclic.
A key property of a symmedian through a vertex is that it bisects any anti-parallel

to the opposite side with respect to the adjacent sides. Therefore, X, Y , and Z are the
midpoints of segments KL,MN , and PQ, respectively.

We have

∠ALK ∼= ∠ACB (since BCKL is cyclic),

and

∠ACB ∼= ∠BMN (since CAMN is cyclic).

Therefore, ∠ALK ∼= ∠BMN and consequently, ∠BLX ∼= ∠AMY (supplementary
angles). We are given that ∠XBA ∼= ∠YAB, so

�AMY ∼ �BLX by the AA criterion.

Since X and Y are the midpoints of KL and MN , respectively, we deduce that
�AMN ∼ �BLK . Therefore, ∠LBK ∼= ∠MAN . Now

∠MAN ∼= ∠MCN

since CAMN is cyclic and the angles are subtended by the same arc. Therefore,
∠LBK ∼= ∠MCN .

A similar argument shows that ∠LCK ∼= ∠QBP .
We have

∠LBK ∼= ∠LCK,

since BCKL is cyclic and the angles are subtended by the same arc.
From the three congruences directly above, we obtain ∠MCN ∼= ∠QBP . Now

∠QPC ∼= ∠BAC (because CAMN is cyclic)

and

∠BAC ∼= ∠MNB (because ABPQ is cyclic).

Thus

∠QPC ∼= ∠MNB, and therefore, ∠BPQ ∼= ∠MNC (supplementary angles).

Hence,

�CMN ∼ �BQP by the AA criterion.

Since Y and Z are the midpoints of MN and PQ, respectively, �BZP ∼ �CYN .
Therefore, ∠ZBC = ∠YCB, as we wished to show.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Nandan Sai
Dasireddy (India), Michael Goldenberg & Mark Kaplan, Volkhard Schindler (Germany), and the
proposer.
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Buffon’s tetrahedron December 2021

2132. Proposed by the Missouri State University Problem Solving Group, Missouri
State University, Springfield, MO.

A regular tetrahedral die with sides of length 1 is tossed onto a floor having a family of
parallel lines spaced 1 unit apart. What is the probability that the die lands on a line?

Solution by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA
and Savannah, GA.
Since the tetrahedron is regular, every configuration of the bottom triangular face on
the floor is equally likely. In other words, the probability we seek is the same as the
probability of a randomly tossed equilateral triangle landing on a line. Orient the par-
allel lines horizontally and use the usual cartesian coordinate system. We can give the
vertical coordinate of any point on the floor as a real number in the interval [0, 1),
representing the distance to the closest horizontal line below, or passing through, the
given point. Let y represent the vertical coordinate of the lowest point of the triangular
face. Let θ represent the angle with smallest nonnegative measure between the sides
of the triangle containing the lowest point and the positive x-axis. Then

0 ≤ y < 1 and 0 ≤ θ < 2π

3
.

Thus, a random toss of the equilateral triangle corresponds to a random selection of a
point (θ, y) from the rectangle [

0,
2π

3

)
× [0, 1).

If we rotate around a vertex fixed on a horizontal line, then the vertical coordinate of
the highest vertex will be

sin
(π

3
+ θ

)
for 0 ≤ θ ≤ π

3
, and sin θ for

π

3
≤ θ < 2π

3
.

Thus, the triangle will miss all horizontal lines if and only if

0 < y < 1− sin
(π

3
+ θ

)
for 0 ≤ θ ≤ π

3 and

0 < y < 1− sin θ

for π

3 ≤ θ < 2π
3 .

The area of this region in the rectangle is given by∫ π/3

0

[
1− sin

(π
3
+ θ

)]
dθ +

∫ 2π/3

π/3
(1− sin θ) dθ = 2π

3
− 2.

Thus, the probability that the tetrahedral die misses all lines is

2π
3 − 2

2π
3

= 1− 3

π
,
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and the probability that the die lands on a line is

3

π
≈ 0.95493.

Editor’s Note. Michael Vowe points out that a more general result is known (and has
been rediscovered multiple times): if d is the distance between the lines, and p is
the perimeter of a convex polygon, then the probability the polygon lands on a line is
p/(πd) as long as the diameter of the polygon is less than or equal to d. See: Uspensky,
J. V. (1937). Introduction to Mathematical Probability. New York: McGraw-Hill, pp.
251–255.

Also solved by Jacob Boswell & Chip Curtis, Elton Bojaxhiu (Germany) & Enkel Hysnelaj
(Australia), Owen Byer and the Calculus II class at Eastern Mennonite University, Robert Cal-
caterra, Stephen J. Herschkorn, José Heber Nieto (Venezuela), Didier Pinchon (France), Volkhard
Schindler (Germany), Randy K. Schwartz, Michael Vowe (Switzerland), and the proposers. There
were three incomplete or incorrect solutions.

An infinite series involving the tangent function December 2021

2133. Proposed by Péter Kórus, University of Szeged, Szeged, Hungary.

Evaluate the infinite sum
∞∑
k=1

2−k tan
(
2−k

)
.

Solution by Seán M. Stewart, King Abdullah University of Science and Technology,
Thuwal, Saudi Arabia.
Observe that for x ∈ (0, π/2) we have

2 cot(2x)− cot(x) = 2 · cot2(x)− 1

2 cot(x)
− cot(x) = − 1

cot(x)
= − tan(x).

Setting x = 2−k in this trigonometric identity and multiplying both sides by 2−k we
obtain

1

2k
tan

(
1

2k

)
= − 1

2k
cot

(
1

2k

)
− 1

2k−1
cot

(
1

2k−1

)
.

Consider the nth partial sum

Sn =
n∑
k=1

2−k tan
(
2−k

)
.

From the equation above, we can write this partial sum as

Sn =
n∑
k=1

[
1

2k
cot

(
1

2k

)
− 1

2k−1
cot

(
1

2k−1

)]

= − cot(1)+ 2−n cot
(
2−n

)
since the sum telescopes. Therefore, the required sum is

∞∑
k=1

2−k tan
(
2−k

) = lim
n→∞ Sn = − cot(1)+ lim

n→∞ 2−n cot
(
2−n

)
.
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Letting u = 2−n, we have

lim
n→∞ 2−n cot

(
2−n

) = lim
u→0+

u cot(u) = lim
u→0+

u

tan(u)
= 1.

Therefore,

∞∑
k=1

2−k tan
(
2−k

) = 1− cot(1).

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Paul Bracken,
Brian Bradie, Robert Calcaterra, Hongwei Chen, CMC 328, Bruce Davis, Prithwijit De (India),
Noah Garson (Canada), Subhankar Gayen (India), G. Greubel, Lixing Han, Mark Kaplan, Kelly
McLenithan, Albert Natian, José Nieto (Venezuela), Northwestern University Math Problem
Solving Group, Shing Hin Jimmy Pa (China), Didier Pinchon (France), Angel Plaza & Francisco
Perdomo (Spain), Michael Reid, Henry Ricardo, Celia Schacht, Volkhard Schindler (Germany),
Vishwesh Ravi Shrimali (India), Albert Stadler (Switzerland), Michael Vowe (Switzerland), and
the proposer. There were three incomplete or incorrect solutions.

Questions about nilpotent matrices December 2021

2134. Proposed by Antonio Garcia, Strasbourg, France.

Let N ∈ Mn(R) be a nilpotent matrix. In what follows, X ∈ Mn(R).

(a) Show that there is always an X such that N = X2 +X − I .
(b) Show that if n is odd, there is no X such that N = X2 +X + I .
(c) Show that if n = 2 and N 
= 0, there is no X such that N = X2 +X + I .
(d) Give examples, when n = 4, of an N 
= 0 and an X such that N = X2 + X + I

and of an N with no X such that N = X2 +X + I .

Solution by the Case Western Reserve University Problem Solving Group, Case West-
ern Reserve University, Cleveland, OH.

(a) We claim that if M is a nilpotent matrix, then I +M has a square root. Consider
the formal power series

√
1+ x =

∞∑
i=0

(
1/2

i

)
xi.

If Mk = 0, we set x = M and obtain

√
1+M =

k−1∑
i=0

(
1/2

i

)
Mi.

Returning to the problem, we may rewrite the condition as

I + 4

5
N =

(
2
√

5

5
X +
√

5

5
I

)2

.

Since 4
5N is nilpotent, we can solve for X using the claim above.
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(b) Assume to the contrary that there exists such an X. Since N is nilpotent,

Nk = (X2 +X + I )k = 0

for some k. This implies that (λ2 + λ+ 1)k is a polynomial multiple of the min-
imal polynomial of X. Therefore X cannot have any real eigenvalues, since the
eigenvalues of X are the roots of the minimal polynomial, and (λ2 + λ+ 1)k has
no real roots. However, n is odd, which guarantees that X has a real eigenvalue.
This is a contradiction.

(c) Suppose there exists such an X. Since we are in dimension two,

N2 = (X2 +X + I )2 = 0.

This implies that (λ2 + λ + 1)2 is a polynomial multiple of the minimal poly-
nomial of X. Since N = X2 + X + I 
= 0, (λ2 + λ + 1)2 must be the minimal
polynomial ofX. The characteristic polynomial ofX must have degree 2, and also
must be a multiple of the minimal polynomial. But the minimal polynomial has
degree 4. This is a contradiction.

(d) Let

X =
⎡
⎢⎣
−2 −3 −2 −1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎦ .

It is straightforward to verify that the characteristic polynomial of X is

λ4 + 2λ3 + 3λ2 + 2λ+ 1 = (λ2 + λ+ 1
)2
.

Let N = X2 + X + I . One readily verifies that N 
= 0 and by the Cayley-
Hamilton theorem, N2 = 0. This solves the first part of the problem.

For the second part of the problem, let

N =
⎡
⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎦

and assume there were an X such that N = X2 +X + I . Since N4 = 0, the min-
imal polynomial of X must be a polynomial multiple of (λ2 + λ + 1). Because
Nk 
= 0 for k < 4, (λ2 + λ+ 1)4 must be the minimal polynomial. The character-
istic polynomial ofX must be a multiple of the minimal polynomial and also must
have degree 4. But (λ2 + λ+ 1)4 has degree 8. This is a contradiction.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Jacob Boswell & Chip
Curtis, Paul Budney, Robert Calcaterra, Lixing Han, Eugene A. Herman, Sonebi Omar (Morroco),
Didier Pinchon (France), Michael Reid, and the proposer.

An exponential generating function December 2021

2135. Proposed by Băetu Ioan, “Mihai Eminescu” National College, Botoşani, Roma-
nia.

For k ∈ Z
+, let an(k) denote the number of elements σ ∈ Sn, the group of all permu-

tations on an n-element set, such that σ k = e, the identity element. We take a0(k) = 1
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by convention. Find a closed form for the exponential generating function

fk(x) =
∞∑
n=0

an(k)x
n

n!
.

Solution by Jacob Boswell and Chip Curtis, Missouri Southern State University,
Joplin, MO.
Let N = {0, 1, 2, . . .}. A permutation σ satisfies σ k = e if and only if all of its disjoint
cycles have lengths which are factors of k. Let k1, k2, . . . , kr be the distinct factors
of k. We note that the number of permutations of jk objects that are a product of j
k-cycles is given by (jk)!/kj j !. Breaking permutations with σ k = e into a product
having ji ki-cycles, we see that

an(k) =
∑
(ji )∈Nr∑
ji ki=n

(
n

j1k1, j2k2, . . ., jrkr

)
(j1k1)!

k
j1
1 j1!

· · · (jrkr)!
k
jr
r jr !

=
∑
(ji )∈Nr∑
ji ki=n

n!

k
j1
1 · · · kjrr · j1! · · · jr !

,

where (
n

i1, i2, . . . , ir

)
= n!

i1!i2! · · · ir !
is a multinomial coefficient. Thus,

fk(x) =
∞∑
n=0

⎛
⎜⎜⎝ ∑

(ji )∈Nr∑
ji ki=n

1

k
j1
1 · · · kjrr j1! · · · jr !

⎞
⎟⎟⎠ xn

=
⎛
⎝ ∞∑

j1

xj1k1

k
j1
1 j1!

⎞
⎠ · · ·

⎛
⎝ ∞∑

jr

xjr kr

k
jr
r jr !

⎞
⎠

=
r∏
i=1

exp

(
xki

ki

)
= exp

(∑
d|k

xd

d

)
.

Editor’s Note. Albert Stadler notes that this result appears in an old paper of Chowla,
Herstein, and Scott: Chowla, S., Herstein, I. N., Scott, W. R. (1952). The solutions of
xd = 1 in symmetric groups. Norske Vid. Selsk. 25: 29–31.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), CMC 328, Reiner
Martin (Germany), José Heber Nieto (Venezuela), Michael Reid, and the proposer.
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Solutions

Minimize the length of the tangent segment October 2021

2126. Proposed by M. V. Channakeshava, Bengaluru, India.

A tangent line to the ellipse

x2

a2
+ y

2

b2
= 1

meets the x-axis and y-axis at the points A and B, respectively. Find the minimum
value of AB.

Solution by Kangrae Park (student), Seoul National University, Seoul, Korea.
We may assume that a, b > 0 and that the point of tangency P = (α, β) lies in the first
quadrant. One readily verifies that the tangent line to the ellipse at P is

αx

a2
+ βy
b2
= 1.

Therefore, A and B are (a2/α, 0) and (0, b2/β), respectively. Note that

α2

a2
+ β

2

b2
= 1
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since the point P is on the ellipse. Applying the Cauchy-Schwarz inequality with

u =
(
a2

α
,
b2

β

)
and v =

(
α

a
,
β

b

)
,

we obtain

a4

α2
+ b4

β2
=
(
a4

α2
+ b4

β2

)(
α2

a2
+ β

2

b2

)
= (u · u)(v · v) ≥ (u · v)2 = (a + b)2 .

It follows that

AB =
√
a4

α2
+ b4

β2
≥ a + b.

This lower bound is attained if and only if u and v are linearly dependent. A straight-
forward calculation shows that this occurs if and only if

α2 = a3

a + b and β2 = b3

a + b .

This gives the esthetically pleasing result that when AB attains its minimum value of
a + b, we have PB = a and PA = b.

Also solved by Ulrich Abel & Vitaliy Kushnirevych (Germany), Yagub Aliyev (Azerbaijan),
Michel Bataille (France), Bejmanin Bittner, Khristo Boyadzhiev, Paul Bracken, Brian Bradie,
Robert Calcaterra, Hongwei Chen, Joowon Chung (South Korea), Robert Doucette, Rob Downes,
Eagle Problem Solvers (Georgia Southern University), Habib Y. Far, John Fitch, Dmitry Fleis-
chman, Noah Garson (Canada), Kyle Gatesman, Subhankar Gayen (India), Jan Grzesik, Emmett
Hart, Eugene A. Herman, David Huckaby, Tom Jager, Walther Janous (Austria), Mark Kaplan &
Michael Goldenberg, Kee-Wai Lau (Hong Kong), Lucas Perry & Alexander Perry, Didier Pinchon
(France), Ivan Retamoso, Celia Schacht, Randy Schwartz, Ioannis Sfikas (Greece), Vishwesh Ravi
Shrimali (India), Albert Stadler (Switzerland), Seán M. Stewart (Saudi Arabia), David Stone &
John Hawkins, Nora Thornber, R. S. Tiberio, Michael Vowe (Switzerland), Lienhard Wimmer
(Germany), and the proposer. There were seventeen incomplete or incorrect solutions.

Two idempotent matrices October 2021

2127. Proposed by Jeff Stuart, Pacific Lutheran University, Tacoma, WA and Roger
Horn, Tampa, FL.

Suppose that A,B ∈ Mn×n (C) is such that AB = A and BA = B. Show that

(a) A and B are idempotent and have the same null space.
(b) If 1 ≤ rank A < n, then there are infinitely many choices of B that satisfy the

hypotheses.
(c) A = B if and only if A− I and B − I have the same null space.

Solution by Michel Bataille, Rouen, France.
(a) The fact that A2 = A and B2 = B follows from:

A2 = (AB)A = A(BA) = AB = A, B2 = (BA)B = B(AB) = BA = B.
In addition, if X is a column vector and AX = 0, then BAX = 0, that is, BX = 0.
Thus, kerA ⊆ kerB. Similarly, if BX = 0, then ABX = 0. Hence AX = 0 so that
kerB ⊆ kerA. We conclude that kerA = kerB.
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(b) Let r = rank(A). Since A is idempotent, we have range(A)⊕ kerA = C
n. Since

AX = X if X ∈ range(A) and dim(range(A)) = r , it follows that A = PJrP−1 for
some invertible n× n matrix P and

Jr =
(
Ir O

O O

)
,

where Ir denotes the r × r unit matrix and O a null matrix of the appropriate size.
Consider the matrices B = PB ′P−1 with

B ′ =
(
Ir O

C O

)
,

where C is an arbitrary (n− r)× r matrix with complex entries. There are infinitely
many such matrices B, and we calculate

AB = PJrP−1PB ′P−1 = PJrB ′P−1 = PJrP−1 = A,
and

BA = PB ′P−1PJrP
−1 = PB ′JrP−1 = PB ′P−1 = B.

(c) Clearly, A− I and B − I have the same null space if A = B. Conversely, suppose
that ker(A− I ) = ker(B − I ). Let X be a column vector. Since (A− I )A = O, the
vector AX is in ker(A− I ), hence is in ker(B − I ). This means that (B − I )AX =
0, that is, BX = AX (since BA = B). Since X is arbitrary, we can conclude that
A = B.

Also solved by Paul Budney, Robert Calcaterra, Hongwei Chen, Robert Doucette, Dmitry Fleis-
chman, Kyle Gatesman, Eugene A. Herman, Tom Jager, Rachel McMullan, Thoriq Muhammad
(Indonesia), Didier Pinchon (France), Michael Reid, Randy Schwartz, Omar Sonebi (Morroco),
and the proposer. There was one incomplete or incorrect solution.

Two exponential inequalities October 2021

2128. Proposed by George Stoica, Saint John, NB, Canada.

Let 0 < a < b < 1 and ε > 0 be given. Prove the existence of positive integers m and
n such that (1− bm)n < ε and (1− am)n > 1− ε.

Solution by Robert Doucette, McNeese State University, Lake Charles, LA.
It is well known that

lim
x→0

(1− x)1/x = e−1.

Suppose 0 < α < 1. Then, since αx → 0+ as x →∞,

lim
x→∞(1− α

x)α
−x = e−1.

Hence,

lim
x→∞(1− α

x)β
−x = lim

x→∞

[
(1− αx)α−x

](β/α)−x =
{

0, if 0 < β < α < 1
1, if 0 < α < β < 1

.
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Choose c and d such that 0 < a < c < d < b < 1. Note that c−x − d−x → ∞ as
x →∞.

By the limits established above, there exists a positive integer m such that

(1− bm)d−m < ε, (1− am)c−m > 1− ε, and c−m − d−m > 1.

There also exists a positive integer n such that d−m < n < c−m. Therefore,

(1− bm)n < (1− bm)d−m < ε and (1− am)n > (1− am)c−m > 1− ε.

Also solved by Levent Batakci, Michel Bataille (France), Elton Bojaxhiu (Germany) & Enkel
Hysnelaj (Australia), Bruce Burdick, Michael Cohen, Dmitry Fleischman, Kyle Gatesman, Michael
Goldenberg & Mark Kaplan, Eugene Herman, Miguel Lerma, Reiner Martin (Germany), Raymond
Mortini (France), Michael Nathanson, Moubinool Omajee (France), Didier Pinchon (France),
Albert Stadler (Switzerland), Omar Sonebi (Morroco), and the proposer.

Two improper integrals October 2021

2129. Proposed by Vincent Coll and Daniel Conus, Lehigh University, Bethlehem, PA
and Lee Whitt, San Diego, CA.

Determine whether the following improper integrals are convergent or divergent.

(a)
∫ 1

0
exp

( ∞∑
k=0

x2k

)
dx

(b)
∫ 1

0
exp

( ∞∑
k=0

x3k

)
dx

Solution by Gerald A. Edgar, Denver, CO.
(a) The integral diverges. For 0 < x < 1 we have

log
1

1− x =
∞∑
n=1

1

n
xn =

∞∑
k=0

⎛
⎝2k+1−1∑

n=2k

1

n
xn

⎞
⎠

≤
∞∑
k=0

⎛
⎝2k+1−1∑

n=2k

1

2k
x2k

⎞
⎠ = ∞∑

k=0

(
2k

2k
x2k
)
=
∞∑
k=0

x2k .

Therefore,

exp

( ∞∑
k=0

x2k

)
≥ 1

1− x .

The integral (a) diverges by comparison with the divergent integral
∫ 1

0 dx/(1− x).
(b) The integral converges. We will need an estimate for a harmonic sum. The function
1/x is decreasing, so for k ≥ 1

3k−1∑
n=3k−1

1

n
>

∫ 3k

3k−1

dx

x
= log 3.
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Now, for 0 < x < 1 we have

log
1

1− x =
∞∑
n=1

1

n
xn =

∞∑
k=1

⎛
⎝ 3k−1∑
n=3k−1

1

n
xn

⎞
⎠

>

∞∑
k=1

⎛
⎝ 3k−1∑
n=3k−1

1

n

⎞
⎠ x3k >

∞∑
k=1

(log 3)x3k .

Let r = 1/ log 3, so that 0 < r < 1. Then

r log
1

1− x >
∞∑
k=1

x3k ,

log
1

(1− x)r + 1 >
∞∑
k=0

x3k ,

e

(1− x)r > exp

( ∞∑
k=0

x3k

)
.

The integral (b) converges by comparison with the convergent integral∫ 1

0

e

(1− x)r dx.

Editor’s Note. A more detailed analysis shows that

∫ 1

0
exp

( ∞∑
k=0

xα
k

)
dx

converges if α > e and diverges if 1 ≤ α ≤ e.
Also solved by Michael Bataille (France), Robert Calcaterra, Dmitry Fleischman, Eugene A.

Herman, Walther Janous (Austria), Albert Natian, Moubinool Omarjee (France), Didier Pinchon
(France), Albert Stadler (Switzerland), and the proposers. There was one incomplete or incorrect
solution.

When does the circumcenter lie on the incircle? October 2021

2130. Proposed by Florin Stanescu, Şerban Cioculescu School, Găeşti, Romania.

Given the acute�ABC, letD,E, and F be the feet of the altitudes from A,B, and C,
respectively. Choose P,R ∈ ←→AB, S, T ∈ ←→BC,Q,U ∈ ←→AC so that

D ∈ ←→PQ,E ∈ ←→RS, F ∈ ←→T U and
←→
PQ ‖ ←→EF,←→RS ‖ ←→DF,←→T U ‖ ←→DE.

Show that

PQ+ RS − T U
AB

+ RS + T U − PQ
BC

+ T U + PQ− RS
AC

= 2
√

2

if and only if the circumcenter of �ABC lies on the incircle of �ABC.
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Solution by the Fejéntaláltuka Szeged Problem Solving Group, University of Szeged,
Szeged, Hungary.

Let O and I be the circumcenter and the incenter of �ABC. Then Euler’s theorem
states that OI 2 = R(R − 2r), where R and r are the circumradius and the inradius of
the triangle, respectively. Now O lies on the incircle if and only if R(R − 2r) = r2,
which is equivalent to

(
r

R

)2 + 2 r

R
− 1 = 0. Therefore, r

R
= √2− 1 since r

R
> 0. Since

cosα + cosβ + cos γ = 1+ r

R
in any triangle, we can reduce the original condition

to cosα + cosβ + cos γ = √2 where α, β and γ are the angles of �ABC.
We have

DE2 (1)= CD2 + CE2 − 2CD · CE cos γ

(2)= (CA cos γ )2 + (BC cos γ )2 − 2(CA cos γ )(BC cos γ ) cos γ

= (CA2 + BC2 − 2CA · BC cos γ ) cos2 γ
(3)= AB2 cos2 γ,

where (1) and (3) are the result of the law of cosines applied to �CDE and �ABC,
respectively, and (2) follows from the fact thatCD andCE are altitudes. Since�ABC
is acute, cosα > 0, so

DE = AB cos γ, and similarly EF = BC cosα and FD = CA cosβ. (1)

Because ∠BFC and ∠BEC are right angles, E and F lie on the circle with diameter
BC, thus BCEF is a cyclic quadrilateral. Hence, m∠EFA = 180◦ − m∠BFE =
m∠ECB = γ and m∠AEF = 180◦ −m∠FEC = m∠CBF = β. We can similarly
see that m∠FDB = m∠CDE = α, m∠DEC = β and m∠BFD = γ . Since PQ ‖
EF , RS ‖ FD and T U ‖ DE we have

m∠RSB = m∠FDB = α = m∠CDE = m∠CTU,
m∠AQP = m∠AEF = β = m∠DEC = m∠T UC,
m∠BRS = m∠BFD = γ = m∠EFA = m∠QPA.

Therefore, the following triangles are all isosceles (because they all have two congru-
ent angles): �DQE, �EDS, �ERF , �FEU , �FTD, and �DFP . Therefore,

DQ = DE = ES,RE = EF = FU, and T F = FD = PD,
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which (by (1)) leads to

PQ = PD +DQ = FD +DE = CA cosβ + AB cos γ,

RS = RE + ES = EF +DE = BC cosα + AB cos γ,

T U = T F + FU = FD + EF = CA cosβ + BC cosα.

Substituting these into our original statement, we get that

PQ+ RS − T U
AB

+ RS + T U − PQ
BC

+ T U + PQ− RS
CA

= 2 (cos γ + cosα + cosβ) .

In the first paragraph, we showed that the right side of the last equation equals 2
√

2 if
and only if the circumcenter lies on the incircle, which is exactly what we wanted to
prove.

Also solved by Michel Bataille (France), Kyle Gatesman, Volkhard Schindler (Germany), Albert
Stadler (Switzerland), and the proposer.

Answers

Solutions to the Quickies from page 407.

A1123. We will need the fact that if f satisfies P2, then

f

(
n

n+ 1
A1 + 1

n+ 1
A2

)
= n

n+ 1
f (A1)+ 1

n+ 1
(A2). (1)

We proceed by induction. When n = 1 this is just condition P2. Let

X = n+ 1

n+ 2
A1 + 1

n+ 2
A2 and Y = 1

n+ 2
A1 + n+ 1

n+ 2
A2.

We have

X = n

n+ 1
A1 + 1

n+ 1
Y and Y = 1

n+ 1
X + n

n+ 1
A2,

so, by the induction hypothesis,

f (X) = n

n+ 1
f (A1)+ 1

n+ 1
f (Y ) and f (Y ) = 1

n+ 1
f (X)+ n

n+ 1
f (A2).

Eliminating f (Y ) gives the desired result.
We will now use induction to show that P2 ⇒ Pn for all n ≥ 2, the case n = 2 being

immediate. Let

G = 1

n+ 1

n+1∑
i=1

Ai and G′ = 1

n

n∑
i=1

Ai.

Hence,

G = n

n+ 1
G′ + 1

n+ 1
An+1.

Therefore,

f (G) = n

n+ 1
f (G′)+ 1

n+ 1
f (An+1) (by (1))
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= n

n+ 1

(
1

n

n∑
i=1

f (Ai)

)
+ 1

n+ 1
f (An+1) (by induction)

= 1

n+ 1

n+1∑
i=1

f (Ai),

as desired.
To show that Pn ⇒ P2, let M = (A1 + A2)/2. Then,

f

(
1

n

(
M +M +

n∑
i=3

Ai

))
= f

(
1

n

(
A1 + A2 +

n∑
i=3

Ai

))

1

n

(
2f (M)+

n∑
i=3

f (Ai)

)
= 1

n

(
f (A1)+ f (A2)+

n∑
i=3

f (Ai)

)
(by Pn),

so f (M) = (f (A1)+ f (A2)) /2 as we wished to show.

A1124. The answer is yes. Note that if 1/Fn < x ≤ 1/Fn−1 with n ≥ 3, then

0 < x − 1

Fn
≤ 1

Fn−1
− 1

Fn
≤ 2

Fn
− 1

Fn
= 1

Fn
.

For y ≤ 1, let g(y) denote the unique positive integer m such that

1

Fm
< y ≤ 1

Fm−1
.

The relation above shows that g(x − 1/Fn) > n. Now take x1 = 1, n1 = 3 and recur-
sively define

xk+1 = xk − 1

Fnk
and nk+1 = g(xk+1).

This gives

1 = 1

F3
+ 1

F4
+ 1

F6
+ 1

F9
+ 1

F11
+ 1

F21
+ 1

F23
+ . . . .

Note that the analogous result holds for any a such that

0 < a ≤
∞∑
n=1

1

Fn
= 3.35988 . . . .
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Solutions

Evaluate the definite integral June 2021

2121. Proposed by Seán M. Stewart, Bomaderry, Australia.

Evaluate ∫ 1
2

0

arctan x

x2 − x − 1
dx.

Solution by Lixing Han, University of Michigan-Flint, Flint, MI and Xinjia Tang,
Changzhou University, Changzhou, China.
Using the substitution

x =
1
2 − t

1+ 1
2 t
= 1− 2t

2+ t ,

we obtain

∫ 1
2

0

arctan x

x2 − x − 1
dx =

∫ 0

1
2

arctan
( 1

2−t
1+ 1

2 t

)
(

1−2t
2+t
)2 − 1−2t

2+t − 1
· −5

(2+ t)2 dt

=
∫ 1

2

0

arctan
(

1
2

)− arctan t

t2 − t − 1
dt

=
∫ 1

2

0

arctan
(

1
2

)
t2 − t − 1

dt −
∫ 1

2

0

arctan t

t2 − t − 1
dt.

Thus, we have∫ 1
2

0

arctan x

x2 − x − 1
dx = 1

2
arctan

(
1

2

)∫ 1
2

0

dt

t2 − t − 1

= 1

2
arctan

(
1

2

)
1√
5

ln

(∣∣∣∣∣2t −
√

5− 1

2t +√5− 1

∣∣∣∣∣
)∣∣∣∣

1/2

0

= − 1

2
√

5
arctan

(
1

2

)
ln

(√
5+ 1√
5− 1

)

= − 1√
5

arctan

(
1

2

)
ln

(√
5+ 1

2

)
.

Also solved by Brian Bradie, Hongwei Chen, Herevé Grandmontagne (France), Eugene A. Her-
man, Omran Kouba (Syria), Kee-Wai Lau (China), Albert Natian, Moobinool Omarjee (France),
Didier Pichon (France), Albert Stadler (Switzerland), Fejéntaláltuka Szöged (Hungary), and the
proposer. There were four incomplete or incorrect solutions.
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Find the maximum gcd June 2021

2122. Proposed by Ahmad Sabihi, Isfahan, Iran.

Let

G(m, k) = max{gcd((n+ 1)m + k, nm + k)|n ∈ N}.
Compute G(2, k) and G(3, k).

Solution by Michael Reid, University of Central Florida, Orlando, FL.
We show that for k ∈ Z, G(2, k) = |4k + 1|, and

G(3, k) =
{

27k2 + 1 if k is even,(
27k2 + 1

)
/4 if k is odd.

The polynomial identity

(2n+ 3)(n2 + k)− (2n− 1)((n+ 1)2 + k) = 4k + 1

shows that

gcd((n+ 1)2 + k, n2 + k) divides 4k + 1,

and thus is at most |4k + 1|. Hence, G(2, k) ≤ |4k + 1|.
Suppose k > 0, and let n = 2k ∈ N. We have

n2 + k = k(4k + 1) and (n+ 1)2 + k = (k + 1)(4k + 1),

both of which are divisible by 4k + 1. Thus

gcd((n+ 1)2 + k, n2 + k) = 4k + 1 = |4k + 1|,
so G(2, k) = |4k + 1| in this case.

For k = 0, we have gcd((n+ 1)2, n2) = 1 for all n ∈ N, soG(2, 0) = 1 = |4k + 1|
in this case.

Suppose k < 0, and consider n = −(2k + 1) ∈ N. Then

n2 + k = (k + 1)(4k + 1) and (n+ 1)2 + k = k(4k + 1)

are each divisible by 4k + 1. Thus

gcd((n+ 1)2 + k, n2 + k) = |4k + 1|,
so G(2, k) = |4k + 1| in this case as well.

Now we consider G(3, k). The polynomial identity

(6n2 − 9nk − 3n+ 9k + 1)((n+ 1)3 + k)
− (6n2 − 9nk + 15n− 18k + 10)(n3 + k) = 27k2 + 1

shows that

gcd((n+ 1)3 + k, n3 + k) divides 27k2 + 1. (1)
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For all n, (n+ 1)3 + k and n3 + k have opposite parity, so their greatest common divi-
sor is odd. If k is odd, then 27k2 + 1 = 4

(
(27k2 + 1)/4

)
is a product of two integers.

Since the greatest common divisor is odd, and divides this product,

gcd((n+ 1)3 + k, n3 + k) divides
27k2 + 1

4
. (2)

For k = 0, we have gcd((n+ 1)3, n3) = 1 for all n, so G(3, 0) = 27k2 + 1 = 1.
For nonzero k, take n = 3k(9k − 1)/2, which is a positive integer. We calculate

n3 + k = (27k2 + 1)

(
(729k3 − 243k2 + 8)k

8

)

and

(n+ 1)3 + k = (27k2 + 1)

(
729k4 − 243k3 + 162k2 − 28k + 8

8

)
.

If k is even, each factor above is an integer, which shows that

27k2 + 1 divides gcd((n+ 1)3 + k, n3 + k).
With (1), we have

gcd((n+ 1)3 + k, n3 + k) = 27k2 + 1,

so G(3, k) = 27k2 + 1 when k is even.
If k is odd, rewrite the above factorizations as

n3 + k =
(

27k2 + 1

4

)(
(729k3 − 243k2 + 8)k

2

)

and

(n+ 1)3 + k =
(

27k2 + 1

4

)(
729k4 − 243k3 + 162k2 − 28k + 8

2

)
,

again, all factors being integers. Therefore

27k2 + 1

4
divides gcd((n+ 1)3 + k, n3 + k).

With (2), we conclude that

gcd((n+ 1)3 + k, n3 + k) = 27k2 + 1

4
,

so G(3, k) = (27k2 + 1)/4 when k is odd.

Also solved by Hongwei Chen, Eagle Problem Solvers (Georgia Southern University), Dmitry
Fleischman, George Washington University Math Problem Solving Group, Eugene A. Her-
man, Walther Janous (Austria), Didier Pinchon (France), Albert Stadler (Switzerland), Enrique
Treviño, and the proposer. There were two incomplete or incorrect solutions.
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Find the expected winnings June 2021

2123. Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA.

An urn contains n balls. Each ball is labeled with exactly one number from the set

{a1, a2, . . . , an} , a1 > a2 > · · · > an

(so no two balls have the same number). Balls are randomly selected from the urn
and discarded. At each turn, if the number on the ball drawn was the largest num-
ber remaining in the urn, you win the dollar amount of that ball. Otherwise, you win
nothing. Find the expected value of your total winnings after n draws.

Solution by Enrique Treviño, Lake Forest College, Lake Forest, IL.
LetX be the random variable described. ThenX = ai1 + ai2 + · · · + aij with 1 = i1 <
i2 < · · · < ij ≤ n. Therefore, the expected value will be

E[X] =
n∑
k=1

ckak,

where ck is the probability that the summand ak appears inX. For ak to appear, the ball
labeled ak must be drawn after those labeled a1, a2, . . . , ak−1, but this only happens if
the permutation of {a1, . . . , ak} ends in ak. This occurs with probability 1/k. Therefore

E[X] = a1 + 1

2
a2 + 1

3
a3 + · · · + 1

n
an.

Also solved by Robert A. Agnew, Alan E. Berger, Brian Bradie, Elton Bojaxhiu (Germany)
& Enkel Hysnelaj (Australia), Paul Budney, Michael P. Cohen, Eagle Problem Solvers (Geor-
gia Southern University), John Fitch, Dmitry Fleischman, Fresno State Journal Problem Solving
Group, GWstat Problem Solving Group, George Washington University Problems Group, Victoria
Gudkova (student) (Russia), Stephen Herschkorn, Shing Hin Jimmy Pa (Canada), David Huck-
aby, Walther Janous (Austria), Omran Kouba (Syria), Ken Levasseur, Reiner Martin (Germany),
Kelly D. McLenithan, José Nieto (Venezuela), Didier Pinchon (France), Michael Reid, Edward
Schmeichel, Albert Stadler (Switzerland), Fejéntaláltuka Szöged, and the proposer. There were
two incomplete or incorrect solutions.

A sum over the partitions of n June 2021

2124. Proposed by Mircea Merca, University of Craiova, Craiova, Romania.

For a positive integer n, prove that

∑
λ1+λ2+···+λk=n
λ1�λ2�···�λk>0

(−1)n−λ1

(
λ1
λ2

)(
λ2
λ3

) · · · (λk0 )
1λ12λ2 · · · kλk =

1

n!
,

where the sum runs over all the partitions of n.

Solution by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela.
Put s1 = λ1 − λ2, s2 = λ2 − λ3,. . . , sk−1 = λk−1 − λk, sk = λk. Clearly, we have si ≥
0, s1 + s2 + · · · + sk = λ1, and s1 + 2s2 + 3s3 + · · · + ksk = n. Moreover, for fixed
λ1, if we vary k and λ2, λ3,. . . , λk satisfying the conditions λ1 ≥ λ2 ≥ · · · ≥ λk > 0
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and λ1 + λ2 + · · · + λk = n, we obtain all the sequences of si’s satisfying si ≥ 0,
s1 + s2 + · · · + sk = λ1 and s1 + 2s2 + 3s3 + · · · + ksk = n.

Now (
λ1
λ2

)(
λ2
λ3

) · · · (λk0 )
1λ12λ2 · · · kλk =

λ1!

s1!s2! · · · sk!(1!)s1(2!)s2 · · · (k!)sk
.

We note that

n!

s1!s2! · · · sk!(1!)s1(2!)s2 · · · (k!)sk

is the number of partitions of the set {1, 2, . . . , n} into si blocks of size i, for i =
1, 2, . . . , k. For fixed λ1, if we sum these expressions for all values of the si’s and
k such that si ≥ 0, s1 + s2 + · · · + sk = λ1 and s1 + 2s2 + 3s3 + · · · + ksk = n, we
obtain the number of partitions of the set {1, 2, . . . , n} into λ1 blocks, that is the Stirling
number of second kind

{
n

λ1

}
. Therefore

∑
λ1+λ2+···+λk=n
λ1≥λ2≥···≥λk>0

(−1)n−λ1

(
λ1
λ2

)(
λ2
λ3

) · · · (λk0 )
1λ12λ2 · · · kλk =

1

n!

n∑
λ1=1

(−1)n−λ1λ1!

{
n

λ1

}
. (1)

It is well known that
n∑

λ1=1

{
n

λ1

}
x(x − 1)(x − 2) · · · (x − λ1 + 1) = xn.

Substituting −x for x we obtain

n∑
λ1=1

(−1)n−λ1

{
n

λ1

}
x(x + 1)(x + 2) · · · (x + λ1 − 1) = xn.

For x = 1, we have

n∑
λ1=1

(−1)n−λ1

{
n

λ1

}
λ1! = 1,

hence the right-hand side of (1) is 1/n! and we are done.

Also solved by Albert Stadler (Switzerland) and the proposer.

A graph involving a partition of 100 into ten parts June 2021

2125. Proposed by Freddy Barrera, Colombia Aprendiendo, and Bernardo Recamán,
Universidad Sergio Arboleda, Bogotá, Colombia.

Given a collection of positive integers, not necessarily distinct, a graph is formed as
follows. The vertices are these integers and two vertices are connected if and only if
they have a common divisor greater than 1. Find an assignment of ten positive integers
totaling 100 that results in the graph shown below.
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Solution by Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA.
With the labeling above,

(a, b, c, d, e, f, g, h, i, j) = (1, 1, 7, 9, 10, 11, 11, 14, 15, 21)

is a solution. Note that each of e, h, i, and j must have at least two prime divi-
sors, since each is adjacent to two vertices that are not adjacent to each other. The
simplest option is e = pq, h = qr, i = rs, and j = ps with p, q, r , and s prime.
Assuming {p, q, r, s} = {2, 3, 5, 7}, the vertices e, h, i, and j must consist of two
of the three pairs (6, 35), (10, 21), and (14, 15). The possibility with the small-
est sum is {e, h, i, j} = {10, 14, 15, 21}. If we take a = b = 1 and f = g = 11,
this forces c + d = 16. Assuming that c and d are powers of distinct primes from
{2, 3, 5, 7}, we must have (c, d) = (7, 9) or (c, d) = (9, 7). The former forces
(e, h, i, j) = (10, 14, 15, 21), which yields the solution above. The latter gives a
solution with (e, h, i, j) = (10, 15, 14, 21).

A more detailed analysis shows that, in fact, these are the only solutions.

Also solved by Brian D. Beasley, Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia),
Dmitry Fleischman, George Washington University Problems Group, Kelly D. McLenithan &
Stephen C. Mortenson, Lane Nielsen, José Heber Nieto (Venezuela), Didier Pinchon (France),
Randy K. Schwartz, Albert Stadler (Switzerland), and the proposers.

Answers

Solutions to the Quickies from page 243.

A1121. More generally, we will evaluate

∞∑
n=0

anbn

cn
(
a2
n + b2

n

) ,
where an, bn, c, α, and β are real, |c| > 1, and

an + bni = (α + βi)n.
Note that

a2
n + b2

n = (an + bni)(an − bni) = (α + βi)n(α − βi)n = (α2 + β2)n,

and

anbn = 1

2
Im((an + bni)2) = 1

2
Im
(
(α + βi)2n) .
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April 2021

Solutions

Evaluating an improper integral

2116. Proposed by Fook Sung Wong, Temasek Polytechnic, Singapore. 

Evaluate ∫ ∞
0

ecos x cos (αx + sin x)

x2 + β2
dx,

where α and β are positive real numbers.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.

We claim the answer is
π

2β
exp(e−β − αβ).
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Consider the meromorphic function

F(z) = g(z)

z2 + β2
, where g(z) = exp(eiz + iαz).

If z = x + iy with x, y ∈ R and y ≥ 0, then

|g(z)| = exp
(
Re(eiz + iαz)) = exp

(
e−y cos(x)− αy) ≤ exp

(
e−y − αy) ≤ e.

For R > β, consider the closed contour �R consisting of the line segment [−R,R]
followed by the semicircle γR parametrized by θ 	→ Reiθ for θ ∈ [0, π]. The only
singularity that F has inside the domain bounded by �R is a simple pole at z = iβ
with residue

Res (F, iβ) = g(iβ)

2iβ
= exp(e−β − αβ)

2iβ
.

By the residue theorem we have∫
�R

F (z)dz = 2iπ Res (F, iβ) = π

β
exp(e−β − αβ).

But ∫
�R

F (z)dz =
∫ R

−R
F (x)dx +

∫
γR

F (z)dz

= 2
∫ R

0

ecos x cos(αx + sin x)

x2 + β2
dx + εR,

where

εR =
∫
γR

F (z)dz.

Since R > β, we have

|εR| ≤ πR sup
θ∈[0,π]

|F(Reiθ )| ≤ πe R

R2 − β2
.

Thus lim
R→∞

εR = 0. Therefore

2
∫ ∞

0

ecos x cos(αx + sin x)

x2 + β2
dx = π

β
exp(e−β − αβ),

as claimed.

Also solved by Khristo N. Boyadzhiev, Hongwei Chen, John Fitch, G. C. Greubel, Eugene A.
Herman, Rafe Jones, Kee-Wai Lau (Hong Kong), Kelly D. McLenithan, Raymond Mortini (France)
& Rudolf Rupp (Germany), Moubinool Omarjee (France), Didier Pinchon (France), Ahmad Sabihi
(Iran), Albert Stadler (Switzerland), Seán M. Stewart (Australia), and the proposer. There were
two incomplete or incorrect solutions.
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A factorial Diophantine equation April 2021

2117. Proposed by Ahmad Sabihi, Isfahan, Iran.

Find all positive integer solutions to the equation

(m+ 1)n = m!+ 1.

Solution by Michael Kardos (student), East Carolina University, Greenville, NC.
Note that for any solution withm ≥ 2, we havem even. This follows from the fact that
m! is even for m ≥ 2 and so m! + 1 = (m + 1)n is odd. Thus (m + 1) must be odd
and m even.

We can reduce the pool of possible solutions by showing that m ≤ 4. Clearly a
solution with m > 4 and m even implies 2 < m/2 < m, so

2
(m

2

)
m
∣∣m!⇒ m2| ((m+ 1)n − 1)⇒ m2

∣∣m n∑
k=1

(
n

k

)
mk−1.

Thus

m
∣∣ (n+m n∑

k=2

(
n

k

)
mk−2

)
,

so m divides n and hence n ≥ m.
We will now show that n ≥ m and m > 4 yields no solutions. In that case,

m!+ 1 < mm−1 + 1 < (m+ 1)mm−1 < (m+ 1)m ≤ (m+ 1)n.

Thus, there are no positive integer solutions withm > 4. Now we can find all solutions
using the previously gathered information about m. For each possible m we have the
following.

m = 1⇒ 2n = 2, so n = 1,

m = 2⇒ 3n = 3, so n = 1,

m = 4⇒ 5n = 25, so n = 2.

Also solved by John Christopher, Michael P. Cohen, Charles Curtis & Jacob Boswell, Eagle
Problem Solvers (Georgia Southern University), John Fitch, Khaled Halaoua (Syria), Walther
Janous (Austria), Rafe Jones, Koopa Tak Lun Koo (Hong Kong), Seungheon Lee (South Korea),
Graham Lord, Kelly D. McLenithan, Stephen Meskin, Raymond Mortini (France) & Rudolf
Rupp (Germany) & Amol Sasane (UK), Sonebi Omar (Morocco), Didier Pinchon (France), Henry
Ricardo, Celia Schacht, Albert Stadler (Switzerland), Wong Fook Sung (Singapore), and the pro-
poser. There were two incomplete or incorrect solutions.

Does the series converge or diverge? April 2021

2118. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France.

It is well known that the series
∞∑
k=1

sin k

k
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converges. Does the series

∞∑
k=1

e−�ln k� sin k

converge or diverge?

Solution by the Northwestern University Math Problem Solving Group, Northwestern
University, Evanston, IL.
Both series can be shown to be convergent using the following well-known result.

Dirichlet’s test: If an is a monotonic sequence of real numbers that tends to zero,

and bn is a sequence of complex numbers such that, for some M ,
∣∣∣ N∑
n=1

bn

∣∣∣ ≤ M for

every positive integer N , then the series
∞∑
n=1

anbn converges.

For this problem, we use ak = e−�ln k�, which tends monotonically to zero, and bk =
sin k, whose partial sums are

N∑
k=1

sin k =
N∑
k=1

1

2i
(eik − e−ik) = 1

2i

(
ei(N+1) − ei
ei − 1

− e
−i(N+1) − e−i
e−i − 1

)

= 1

2i

(
ei(N+1/2) − ei/2 + e−i(N+1/2) − e−i/2

ei/2 − e−i/2
)

= 1

2

((
ei/2 + e−i/2) /2− (ei(N+1/2) + e−i(N+1/2)

)
/2(

ei/2 − e−i/2) /(2i)
)

= 1

2 sin 1
2

(
cos 1

2 − cos (N + 1
2 )
)

hence

∣∣∣ N∑
k=1

sin k
∣∣∣ ≤ 1

sin 1
2

So, by Dirichlet’s test, the series converges.

Also solved by Hongwei Chen, Richard Daquila, Eagle Problem Solvers (Georgia Southern
University), John Fitch, Russell Gordon, Eugene A. Herman, Walther Janous (Austria), Mark
Kaplan & Michael Goldenberg, Raymond Mortini (France), Didier Pinchon (France), Omar Sonebi
(Morocco), Albert Stadler (Switzerland), Seán Stewart (Australia), and the proposer. There were
three incomplete or incorrect solutions.

Find the side length of the regular n-simplex April 2021

2119. Proposed by Viktors Berstis, Portland, OR.

A point in the plane is a distance of a, b, and c units from the vertices of an equilateral
triangle in the plane. Denote the side length of the equilateral triangle by s.

(a) Find a polynomial relation between a, b, c, and s.
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(b) Give a simple compass and straightedge construction of a segment of length s given
segments of lengths a, b, and c.

(c) Generalize part (a) to the case of a point at a distance of ai units, i = 1, . . . , n+ 1,
from the vertices of a regular n-dimensional simplex having sides of length s.

Solution by Didier Pinchon, Toulouse, France.
(a) Given s > 0, the points

A =
(

0,

√
3

3
s

)
, B =

(
− 1

2
s,−
√

3

6
s

)
, and C =

(
1

2
s,−
√

3

6
s

)

are the vertices of an equilateral triangle with side length s. For a point P = (x, y),
the relations PA2 = a2, PB2 = b2 and PC2 = c2 give the equations

E1 : x2 +
(
y −
√

3

3
s

)2

− a2 = 0,

E2 :

(
x + 1

2
s

)2

+
(
y +
√

3

6
s

)2

− b2 = 0,

E3 :

(
x − 1

2
s

)2

+
(
y +
√

3

6
s

)2

− c2 = 0.

From E2 − E3, we get x = (b2 − c2)/(2s), and substituting this value into E1 − E2,
we get y = √3(b2 + c2 − 2a2)/(6s). Finally, substituting these values into equation
E1, we obtain

s4 − (a2 + b2 + c2)s2 + a4 + b4 + c4 − a2b2 − a2c2 − b2c2 = 0.

(b) Note that s2 satisfies a second-degree polynomial with discriminant


 = (a2 + b2 + c2)2− 4(a4 + b4 + c4 − a2b2 − a2c2 − b2c2)

= 3(a + b + c)(a + b − c)(a + c − b)(b + c − a).
Given positive real numbers a, b and c,
 ≥ 0 if and only if c ≤ a + b, b ≤ a + c and
a ≤ b + c. Indeed, when two factors of 
 are negative, say for example a + c ≤ b,
b + c ≤ a, then c ≤ 0, which is impossible. Hence, 
 ≥ 0 if and only a, b, and c are
the lengths of the sides of a triangle. Note that the triangle is degenerate if and only if

 = 0. If a, b, and c are not all equal, then

a4 + b4 + c4 − a2b2 − a2c2 − b2c2 = 1

2

[
(a2 − b2)2 + (b2 − c2)2 + (c2 − a2)2

]
> 0.

Therefore, the equation in s2 has two different positive solutions, denoted by s1 and s2,
if 
 > 0 and a, b, and c are not all equal, and one positive solution otherwise.

The two solutions will now be constructed using a compass and straightedge. It
is straightforward to construct a triangle ABC with side lengths a, b and c. The two
circles of centers B and C and radius a intersect in two points D and E such that the
triangles BCD and BCE are equilateral, withD and A being on opposite sides of line
BC. Because ABC is not an equilateral triangle, point E is distinct from A.

We claim the lengths of the segments AD and AE are the solutions s1 and s2. The
images of the points B and A by the rotation of center D and angle −π/3 are C and
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F , and thus BA = CF = c. In a similar way, the images of A and B by the rotation
of center E and angle π/3 are C and G, and thus AB = c = CG.

When a = b = c, then the first part of the construction is possible, and the unique
solution is s = DA = a√3, and C is the center of equilateral triangle ADF . When

 = 0, A,B, and C are collinear, so A is equidistant from D and E and there is only
one solution.

(c) Editor’s Note. The solver uses the fact that if the distance between the ith and
j th vertices of an n-simplex is di,j , then the volume of the simplex is

V 2 = (−1)n+1

2n(n!)2

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 . . . 1
1 0 d2

1,2 d2
1,3 . . . d2

1,n+1
1 d2

1,2 0 d2
2,3 . . . d2

2,n+1
...

...
. . .

...

1 d2
1,n d2

2,n 0 d2
n,n+1

1 d2
1,n+1 d2

2,n+1 . . . d2
n,n+1 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

He applies this formula to the degenerate (n+ 1)-simplex whose vertices are the ver-
tices of the regular n-simplex along with the additional point and performs a series of
row and column operations to derive the result.

Here is an alternative derivation. Let the vertices of the regular n-simplex be

(s/
√

2, 0, 0, . . . , 0), (0, s/
√

2, 0, . . . , 0), . . . , (0, 0, . . . , s/
√

2)

in R
n+1. Note that these vertices lie in the hyperplane whose equation is

n+1∑
i=1

xi = s√
2
.

Let (x1, . . . , xn+1) be a point in this hyperplane. We have

a2
i = −

√
2sxi + s

2

2
+

n+1∑
i=1

x2
i . (1)

Expanding and summing these equations as i = 1, . . . , n+ 1, we obtain

n+1∑
i=1

a2
i = −

√
2s

n+1∑
i=1

xi + (n+ 1)
s2

2
+ (n+ 1)

n+1∑
i=1

x2
i
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= −√2s

(
s√
2

)
+ (n+ 1)

s2

2
+ (n+ 1)

n+1∑
i=1

x2
i

= (n− 1)
s2

2
+ (n+ 1)

n+1∑
i=1

x2
i .

Therefore

n+1∑
i=1

x2
i = −

n− 1

2(n+ 1)
s2 + 1

n+ 1

n+1∑
i=1

a2
i . (2)

Substituting into (1), we have

a2
i = −

√
2sxi + s

2

2
− n− 1

2(n+ 1)
s2 + 1

n+ 1

n+1∑
i=1

a2
i

= −√2sxi + 1

n+ 1
s2 + 1

n+ 1

n+1∑
i=1

a2
i .

Solving for xi , we find that

xi = 1√
2s

(
−a2

i +
1

n+ 1
s2 + 1

n+ 1

n+1∑
i=1

a2
i

)
.

Substituting into (2) and letting s = a0, we have

− n− 1

2(n+ 1)
a2

0 +
1

n+ 1

n+1∑
i=1

a2
i =

1

2a2
0

n+1∑
i=1

(
−a2

i +
1

n+ 1

n+1∑
i=0

a2
i

)2

2a2
0

(
−1

2
a2

0 +
1

n+ 1

n+1∑
i=0

a2
i

)
=

n+1∑
i=1

(
−a2

i +
1

n+ 1

n+1∑
i=0

a2
i

)2

.

Letting T =∑n+1
i=0 a

2
i /(n+ 1), we have

−a4
0 + 2a2

0T =
n+1∑
i=1

a4
i − 2T

n+1∑
i=1

a2
i + (n+ 1)T 2

0 =
n+1∑
i=0

a4
i − 2T

n+1∑
i=0

a2
i + (n+ 1)T 2

0 =
n+1∑
i=0

a4
i − 2T (n+ 1)T + (n+ 1)T 2

n+1∑
i=0

a4
i = (n+ 1)T 2 = 1

n+ 1

(
n+1∑
i=0

a2
i

)2

(n+ 1)
n+1∑
i=0

a4
i =

n+1∑
i=0

a4
i + 2

∑
0≤i<j≤n+1

a2
i a

2
j
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n

n+1∑
i=0

a4
i = 2

∑
0≤i<j≤n+1

a2
i a

2
j ,

which is the desired relation.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Albert Stadler
(Switzerland), and the proposer. There were two incomplete or incorrect solutions.

Find the normalizer April 2021

2120. Proposed by Gregory Dresden, Jackson Gazin (student), and Kathleen McNeill
(student), Washington & Lee University, Lexington, VA.

Recall that the normalizer of a subgroup H of G is defined as

NG(H) =
{
g ∈ G|ghg−1 ∈ H for all h ∈ H} .

DetermineNG(H), whenG = GL2(R), the group of all invertible 2× 2 matrices with
real entries, and

H = SO2(R) =
{(

cos θ − sin θ
sin θ cos θ

)∣∣∣∣ θ ∈ R

}
.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA.
More generally, for any n ≥ 1, let G = GLn(R) and H = SOn(R), the subgroup of
On(R), the group of orthogonal matrices, consisting of matrices whose determinant is
1. We will show that

NG(H) = {aU |a ∈ R− {0}, U ∈ On(R) } .
Suppose A = aU , where a �= 0 and U is orthogonal. Then for any M ∈ SOn(R),

AMA−1 = aUM 1

a
U−1 = UMU−1.

Since

det(UMU−1) = det(U) det(M)/ det(U) = 1,

and the product of orthogonal matrices is orthogonal, we see that AMA−1 ∈ SOn(R).
For the converse, we use a polar decomposition. For A ∈ NG(H), write A = PU ,

where P is positive-definite and U is orthogonal. For any M ∈ SOn(R), let N =
U−1MU . Then N ∈ SOn(R), so ANA−1 ∈ SOn(R). But

ANA−1 = P(UNU−1)P−1 = PMP−1,

so P ∈ NG(H). Therefore, it remains only to determine which positive-definite
matrices are in the normalizer. Now every positive-definite matrix can be written
as P = VDV −1, where D = diag(d1, . . . , dn) is a diagonal matrix with di > 0 and
V ∈ On(R). For any M ∈ SOn(R), let N = VMV −1. Then B = PNP−1 ∈ SOn(R)

and

B = VDMD−1V −1 ∈ SOn(R), so DMD−1 = V −1BV ∈ SOn(R).

Therefore, D ∈ NG(H).
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For k > 1, let Mk = [mij ], where

m11 = 0, m1k = −1, mk1 = 1, mkk = 0, mii = 1 (i �= 1, k), and mi,j = 0 otherwise.

Then R ∈ SOn(R) and the first column of DRD−1 consists of zeros except the kth
entry, which is dk/d1. Since DRD−1 is orthogonal, this column must have length 1,
which means that dk = d1 for all k > 1. Therefore D is a positive multiple of the
identity, and so A is a multiple of an orthogonal matrix.

Note: The same proof works for the complex version. In that case, G = GLn(C)
andH = SUn(C), where the latter is the group of n× n unitary matrices whose deter-
minant equals 1. Then NG(H) is the group of all nonzero complex multiples of n× n
unitary matrices.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Robert Calcaterra,
Eagle Problem Solvers (Georgia Southern University), John Fitch, Dmitry Fleischman, Mark
Kaplan & Michael Goldenberg, Koopa Tak Lun Koo (Hong Kong), Didier Pinchon (France),
Albert Stadler (Switzerland) and the proposers. There were two incomplete or incorrect solutions.

Answers

Solutions to the Quickies from page 158.

A1119. The aces divide the 48 other cards into 5 “urns”, with a, b, c, d, and e non-
aces in them, respectively. The position of the third ace is equal to a + b + c + 3, so
the expected value of its position is E[a + b+ c+ 3]. By linearity of expectation, this
is E[a] + E[b] + E[c] + 3. Because a non-ace is equally likely to be placed in any
of the five “urns”, E[a] = . . . = E[e]. Since E[a + b + c + d + e] = 48, we have
E[a] = . . . = E[e] = 48

5 .
Therefore the expected value is

3 · 48

5
+ 3 = 159

5
.

A1120. Let S, S1, S2, and S3 be the areas of �ABC,�XBC,�XCA, and �XAB,
respectively. Let h2 and h3 be the heights of�XCA and�XAB with AX as base. Let
θ be the angle between

←→
AX and

←→
BC. Then

S2 + S3 = 1

2
(h2 + h3) R1 = 1

2
a sin θR1 ≤ 1

2
aR1.

Similar arguments give

S3 + S1 ≤ 1

2
bR2 and S1 + S2 ≤ 1

2
cR3.

Therefore

1

2
aR1 + 1

2
bR2 + 1

2
cR3 ≥ (S2 + S3)+ (S3 + S1)+ (S1 + S2) = 2S = r(a + b + c)

and the result follows.
Equality holds if and only if the line through a vertex and X and the line containing

the side opposite the vertex are perpendicular. In other words, X must be the ortho-
center of the triangle, which must be acute in order for X to lie in its interior.

Note. Let O and R be the circumcenter and the circumradius for a given acute
triangle. Since R1 = R2 = R3 = R, we obtain Euler’s inequality R ≥ 2r .
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Solutions

A series involving central binomial coefficients December 2020

2111. Proposed by Enrique Treviño, Lake Forest College, Lake Forest, IL.

Evaluate
∞∑
n=0

(4n
2n

)
42n(2n+ 1)(2n+ 2)

.

Solution by Hongwei Chen, Christopher Newport University, Newport News, VA.
The value of the series is 4

3 (
√

2− 1). To this end, recall the generating function for the
central binomial coefficients

∞∑
n=0

(
2n

n

)
xn = 1√

1− 4x
, for |x| < 1

4 .

Replacing x by −x gives

∞∑
n=0

(−1)n
(

2n

n

)
xn = 1√

1+ 4x
, for |x| < 1

4 .

Adding these series gives

∞∑
n=0

(
4n

2n

)
x2n = 1

2

(
1√

1− 4x
+ 1√

1+ 4x

)
.

Replacing x by x/4 yields

∞∑
n=0

(4n
2n

)
42n

x2n = 1

2

(
1√

1− x +
1√

1+ x
)
, for |x| < 1.

Integrating this series on [0, x] with 0 < x < 1, we find

∞∑
n=0

(4n
2n

)
42n(2n+ 1)

x2n+1 = √1+ x −√1− x.

Integrating this series on [0, x] with 0 < x < 1 again, we find

∞∑
n=0

(4n
2n

)
42n(2n+ 1)(2n+ 2)

x2n+2 =
∫ x

0
(
√

1+ t −√1− t)dt

= 2

3

(
(1+ x)3/2 + (1− x)3/2)− 4

3
.

Applying Abel’s convergence theorem and letting x → 1, we conclude

∞∑
n=0

(4n
2n

)
42n(2n+ 1)(2n+ 2)

= 4

3
(
√

2− 1)

as claimed.



76 MATHEMATICS MAGAZINE

Also solved by Ulrich Abel & Vitaliy Kushnirevych (Germany), Farrukh Ataev (Uzbekistan),
Michel Bataille (France), Khristo Boyadzhiev, Paul Bracken, Brian Bradie, Cal Poly Pomona
Problem Solving Group, Robert Doucette, Gerald Edgar, Dmitry Fleischman, Mohit Hulse (India),
Dixon Jones & Marty Getz, Mark Kaplan & Michael Goldenberg, GWstat Problem Solving Group,
Omran Kouba (Syria), Sushanth Sathish Kumar, Elias Lampakis (Greece), Kee-Wai Lau (China),
James Magliano, Northwestern University Math Problem Solving Group, Moubinool Omarjee
(France), Shing Hin Jimmy Pa (Canada), Angel Plaza (Spain), Rob Pratt, Volkhard Schindler
(Germany), Edward Schmeichel, Randy Schwartz, Albert Stadler (Switzerland), Seán M. Stewart
(Australia), Ibrahim Suleiman (United Arab Emirates), Michael Vowe (Switzerland), and the
proposer. There were two incomplete or incorrect solutions.

A problem from commutative algebra December 2020

2112. Proposed by Souvik Dey, (graduate student), University of Kansas, Lawrence,
KS.

Let R be an integral domain and I and J be two ideals of R such that IJ is a non-zero
principal ideal. Prove that I and J are finitely-generated ideals.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA.
Let IJ = 〈x〉, where x is a nonzero element of R. Since x ∈ IJ , there exist

i1, . . . , in ∈ I and j1, . . . , jn ∈ J
such that

x = i1j1 + · · · injn.
We claim that

I = 〈i1, . . . , in〉 and J = 〈j1, . . . , jn〉.
In each of these two equations, it suffices to prove that the left side is contained in the
right. For any i ∈ I , there exist r1, . . . , rn ∈ R such that

ijk = rkx, k = 1, . . . , n.

Multiply the kth equation by ik and add the the resulting equations to obtain

ix =
n∑
k=1

rkikx

Since R is an integral domain,

i =
n∑
k=1

rkik,

and so I = 〈i1, . . . , in〉. Similarly, J = 〈j1, . . . , jn〉.
Also solved by Paul Budney, Noah Garson (Canada), Elias Lampakis (Greece), and the pro-

poser.

A condition for the nilpotency of a matrix December 2020

2113. Proposed by George Stoica, Saint John, NB, Canada.

LetA be an n× n complex matrix such that det(Ak + In) = 1 for k = 1, 2, . . . , 2n − 1.
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(a) Prove that An = On.
(b) Show that the result does not hold if 2n − 1 is replaced by any smaller positive

integer.

Solution by Michael Reid, University of Central Florida, Orlando, FL.
(a) First we have a lemma.

Lemma. Suppose z1, . . . , zm ∈ C are such that the power sums Sk = zk1 + · · · + zkm
vanish for k = 1, 2, . . . , m. Then each zj = 0.

Proof. For k = 1, 2, . . . , m, let σk denote the kth elementary symmetric function of
z1, . . . , zm. By Newton’s identities,

kσk = (−1)k−1Sk +
k−1∑
i=1

(−1)i−1σk−iSi = 0,

for k = 1, 2, . . . , m. Hence each σk = 0. Therefore,

(T + z1)(T + z2) · · · (T + zm) = T m + σ1T
m−1 + · · · + σm−1T + σm = T m.

By unique factorization of polynomials, each factor, T + zj , on the left is a constant
multiple of T , so each zj = 0. �

The matrix A is similar to an upper triangular matrix M (for example, take M to
be a Jordan canonical form of A). Let d1, . . . , dn be the diagonal entries of M . Then
Ak + In is similar toMk + In, which is an upper triangular matrix with diagonal entries
dk1 + 1, . . . , dkn + 1, so

det(Ak + In) = (dk1 + 1) · · · (dkn + 1).

For each subset S ⊆ {1, 2, . . . , n}, let bS =∏j∈S dj . Thus

1 = det(Ak + In) =
n∏
j=1

(dkj + 1) =
∑

S⊆{1,2,...,n}
bkS .

Let m = 2n − 1, and let S1, . . . ,Sm be the non-empty subsets of {1, 2, . . . , n}, and
put zj = bSj . Then, the equation above becomes zk1 + · · · + zkm = 0, which holds for
k = 1, 2, . . . , m. From the lemma, each zj = 0. In particular, for a singleton subset
{i}, we have di = b{i} = 0. HenceM is upper triangular, with all zeros on its diagonal,
so its characteristic polynomial is T n. Since A is similar to M , it has the same charac-
teristic polynomial, so by the Cayley–Hamilton theorem, An = 0n.

(b) Let m = 2n − 1, and let ζ ∈ C be a primitive mth root of 1. Let A be the diagonal
matrix with diagonal entries ζ, ζ 2, ζ 4, . . . , ζ 2n−1

. Then, A is non-singular, so it is not
nilpotent. For k ∈ N, Ak + In is the diagonal matrix whose diagonal is

ζ k + 1, ζ 2k + 1, ζ 4k + 1, . . . , ζ 2n−1k + 1.

Thus,

det(Ak + In) = (ζ k + 1)(ζ 2k + 1) · · · (ζ 2n−1k + 1).



78 MATHEMATICS MAGAZINE

If k is not divisible by m, then this product telescopes to give

det(Ak + In) =
n−1∏
j=0

ζ 2j+1k − 1

ζ 2j k − 1
= ζ 2nk − 1

ζ k − 1
= 1,

because ζ 2nk = ζmk+k = ζ k. Hence,

det(Ak + In) = 1

for k = 1, 2, . . . , 2n − 2.

Also solved by Lixing Han & Xinjia Tang, Koopa Tak Lan Koo (Hong Kong), Elias Lampakis
(Greece), Albert Stadler (Switzerland), and the proposer. There were two incomplete or incorrect
solutions.

Planar 2-distance sets having four points December 2020

2114. Proposed by Robert Haas, Cleveland Heights, OH.

Find all configurations of four points in the plane (up to similarity) such that the set of
distances between the points consists of exactly two lengths.

Solution by Robert L. Doucette, McNeese State University, Lake Charles, LA.
Suppose A,B,C,D are distinct points in the plane such that the list of six segment
distances, AB,AC,AD,BC,BD, and CD, has exactly two real values. For conve-
nience, we may suppose that one of these values is 1. We consider three cases.

Case 1. Exactly five of the six distances equal 1. Suppose AB = AC = AD =
BC = BD = 1, CD = 1. In this case, ABC and ABD must form equilateral
triangles. Since C = D, ADBC must form a rhombus with side length 1 and one
pair of opposite angles measuring 60◦. This yields a configuration in which the dis-
tance not equal to 1 is CD = √3.

Case 2. Exactly four of the six distances equal 1. There are two subcases to consider.
(i) Suppose first that the two segments with length not equal to 1 do not have an

endpoint in common. Say AC = BD = 1. Since ABCD is a rhombus with congruent
diagonals, it must be a square. This yields a configuration in which the distances not
equal to 1 are AC = BD = √2.

(ii) Suppose next that the two segments with length not equal to 1 do share an
endpoint. Say BD = CD = 1. In this case, ABC forms an equilateral triangle of side
length 1. The point D must lie on the perpendicular bisector of segment BC. EitherD
lies on the same side of

←→
BC as A or on the opposite side. In the former case, �BCD

is a 30◦-75◦-75◦ triangle, A is its circumcenter, and BD = CD =
√

2+√3.
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In the latter case, ABDC is a kite with opposite angles of measure 60◦ and 150◦, and

BD = CD =
√

2−√3.

Case 3. Exactly three of the six distances equal 1. Again we consider two subcases.
(i) Suppose that three of the segments of equal length have an endpoint in common.

We may assume that AB = AC = AD = 1 and BC = BD = CD = 1. In this case,
the points B,C and D lie on the circle with center A and radius 1 and form an equi-
lateral triangle. In other words, BCD forms an equilateral triangle with circumcenter
A. In this case, BC = BD = CD = √3.

(ii) Next suppose that no three of the segments of equal length share a common
endpoint. We may assume that AB = AC = BD = 1 and AD = BC = CD = x >
1. Since �ABC ∼= �BAD, ∠BAC ∼= ∠ABD. If C and D are on opposite sides of←→
AB, then ACBD is a parallelogram. But by the parallelogram law, AB2 + CD2 =
2AC2 + 2AD2, implying that 1+ x2 = 2+ 2x2, which is impossible. ThereforeC and
D lie on the same side of

←→
AB and ABDC is an isosceles trapezoid. Let m(∠ADC) =

α. Then m(∠BCD) = α (since �ADC ∼= �BCD), m(∠ABC) = m(∠BAD) = α
(alternating interior angles), m(∠ACB) = m(∠ADB) = α (base angles of isosceles
triangles), and m(∠CAD) = m(∠CBD) = 2α (base angles of isosceles triangles).
The sum of the measure of the interior angles of a quadrilateral is 360◦, so 10α = 360◦
and α = 36◦. This means that A,B,C, and D are four of the five vertices of a regular
pentagon. In this case, AD = BC = CD = (1+√5)/2.
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We have shown that there are six configurations of four points satisfying the require-
ments described in the problem statement: (1) a rhombus with one pair of opposite
angles measuring 60◦, (2) a square, (3) an isosceles triangle with vertex angle of 30◦
and its circumcenter, (4) a kite with a pair of opposite angles measuring 60◦ and 150◦,
(5) an equilateral triangle and its circumcenter, and (6) four of the five vertices of a
regular pentagon.

Also solved by Diya Bhatt & Riley Platz & Tony Luo (students), Viera Cernanova (Slovakia),
M. V. Channakeshava (India), Seungheon Lee (Korea), Eagle Problem Solvers, Michael Reid, Celia
Schacht, Albert Stadler (Switzerland), Tianyue Ruby Sun (student), Randy K. Schwartz, and the
proposer. There were six incomplete or incorrect solutions.

Two compass and straightedge constructions December 2020

2115. Proposed by H. A. ShahAli, Tehran, Iran.

Let A and B be two distinct points on a circle and let k be a positive rational number.

(a) Give a compass and straightedge construction of a point C on the circle such that
AC/BC = k.

(b) Give a compass and straightedge construction of a point C on the circle such that
AC · BC = k. As part of your solution, find the restrictions on k in terms of AB
and the radius of the circle necessary for such a C to exist.

Solution by Enrique Treviño, Lake Forest College, Lake Forest, IL.

(a) It is well known that we can construct a point D on segment AB such that
AD/BD = k. Let M be a point of intersection of the perpendicular bisector of
AB with the given circle. Then AM = BM . Let C be the second point of intersec-
tion of

←→
MD with the circle. Since AM = BM , then ∠ACM = ∠BCM . Therefore

D is on the angle bisector of ∠ACB and by the angle bisector theorem

AC

BC
= AD

BD
= k.

An alternative solution is to note that {X|AX/BX = k} is a circle or the perpen-
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dicular bisector of AB. This curve is readily constructible, and we then find its
intersection with the original circle.

(b) To solve this problem in full generality, we need a segment of length 1 to be given.
It is well known that given such a segment, λ ∈ Q

+, and a segment of length a, we
can use similar triangles to construct a segment of length λ/a.

Denote the center of the circle by O and let m∠AOB = 2α. Then x = 2r sinα.
For any point C on the circle, m∠ACB = α or m∠ACB = π − α. In either case
sin∠ACB = sinα. We will denote the area of �PQR by (PQR). We know

(ABC) = AC · BC · sinα

2
.

Let h be the height of �ABC with base AB, then

(ABC) = xh

2
.

Therefore

AC · BC = 2rh.

Let � be the perpendicular bisector of AB. Using the facts stated above, we can
construct a point D on � such that the distance from D to AB is k/(2r). Next, we
draw a line through D parallel to

←→
AB and let C be one of the points of intersection

of this line with the given circle. This point C satisfies AC · BC = 2rh = k.

The largest possible value of AC · BC occurs when C lies on the perpendicular
bisector of AB at a maximum distance from AB, namely when

AC = BC = r +
√
r2 − x

2

4
.

Therefore

k = AC · BC

≤
(
r +

√
r2 − x

2

4

)2

= r
(

2r +
√

4r2 − x2
)
.

Also solved by Michel Bataille (France), Ivko Dimitrić, Elias Lampakis (Greece), Celia Schacht,
Albert Stadler (Switzerland), and the proposer. There were three incomplete or incorrect solutions.
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Solutions

Invariance of a ratio of sums of cotangents October 2020

2101. Proposed by Michael Goldenberg, The Ingenuity Project, Baltimore Polytechnic
Institute, Baltimore MD and Mark Kaplan, Towson University, Towson, MD.

Recall that the Steiner inellipse of a triangle is the unique ellipse that is tangent to each
side of the triangle at the midpoints of those sides. Consider the Steiner inellipse ES of

ABC and another ellipse, EA, passing through the centroidG of
ABC and tangent
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to
←→
AB atB and to

←→
AC atC. IfES andEA meet atM andN , let ∠MAN = α. Construct

ellipses EB and EC , introduce their points of intersection with ES , and define angles β
and γ in an analogous way. Prove that

cotα + cotβ + cot γ

cotA+ cotB + cotC
= 11

3
√

5
.

Solution by Albert Stadler, Herrliberg, Switzerland.
We first consider the equilateral triangle with vertices

A = (16, 0), B = (−8, 8
√

3), and C = (−8,−8
√

3),

whose centroid is the origin. In this case, ES is the circle whose equation is x2 + y2 =
82 and EA is the circle whose equation is (x + 16)2 + y2 = 162. Solving this system
of equations we find

M = (−2, 2
√

15) and N = (−2,−2
√

15).

Let ∠(−→u ,−→v ) denote the angle between the vectors −→u and −→v . Then

A = ∠
(
(−24, 8

√
3), (−24,−8

√
3)
)

and α = ∠
(
(−18, 2

√
15), (−18,−2

√
15)
)
.

Rotating the vectors above 120◦ and 240◦ counter-clockwise gives

B = ∠
(
(0,−16

√
3), (24,−8

√
3)
)
,

β = ∠
(
(9− 3

√
5,−9

√
3−√15), (9+ 3

√
5,−9

√
3+√15)

)
,

C = ∠
(
(24, 8

√
3), (0, 16

√
3)
)
, and

γ = ∠
(
(9+ 3

√
5, 9
√

3−√15)), (9− 3
√

5, 9
√

3+√15)
)
.

Now let 
A′B ′C ′ be any non-degenerate triangle whose centroid is at the origin.
There is an invertible linear map f (x, y) = (ax + by, cx + dy) such that 
A′B ′C ′ =
f (
ABC). This linear mapping preserves the centroid, all midpoints, all tangencies,
and it maps lines to lines and circles to ellipses. It remains to analyze how this lin-
ear mapping transforms the six numbers cotA, cotB, cotC, cotα, cotβ, and cot γ to
cotA′, cotB ′, cotC ′, cotα′, cotβ ′, and cot γ ′.

We will use the fact if φ = ∠((u1, u2), (v1, v2)), then

cotφ = u1v1 + u2v2

u1v2 − u2v1

by the difference formula for cotangent.
Now

A′ = ∠
(
f (−24, 8

√
3), f (−24,−8

√
3)
)
,

B ′ = ∠
(
f (0,−16

√
3), f (24,−8

√
3)
)
, and

C ′ = ∠
(
f (24, 8

√
3), f (0, 16

√
3)
)
.
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This gives

cotA′ = 3a2 − b2 + 3c2 − d2

2
√

3(ad − bc)

cotB ′ = b2 −√3ab + d2 −√3cd√
3(ad − bc)

cotC ′ = b2 +√3ab + d2 +√3cd√
3(ad − bc) .

Therefore,

cotA′ + cotB ′ + cotC ′ =
√

3
(
a2 + b2 + c2 + d2

)
2(ad − bc) .

A similar calculation yields

cotα′ + cotβ ′ + cot γ ′ = 11
(
a2 + b2 + c2 + d2

)
2
√

15(ad − bc) .

Finally,

cotα′ + cotβ ′ + cot γ ′

cotA′ + cotB ′ + cotC ′
= 11

3
√

5

as desired.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia) and the proposers.
There were two incomplete or incorrect solutions.

Trigonometric identities for the heptagonal triangle October 2020

2102. Proposed by Donald Jay Moore, Wichita, KS.

Let α = π/7, β = 2π/7, and γ = 4π/7. Prove the following trigonometric identities.

cos2 α

cos2 β
+ cos2 β

cos2 γ
+ cos2 γ

cos2 α
= 10,

sin2 α

sin2 β
+ sin2 β

sin2 γ
+ sin2 γ

sin2 α
= 6,

tan2 α

tan2 β
+ tan2 β

tan2 γ
+ tan2 γ

tan2 α
= 83.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA.
Denote the trigonometric expressions by C,S,T , respectively. The expansion

sin(7t) = sin t
(
64 cos6 t − 80 cos4 t + 24 cos2 t − 1

)
yields the key polynomial as follows. When t = α or t = β or t = γ , then sin(7t) = 0
but sin t �= 0. Hence the cubic polynomial

p(x) = 64x3 − 80x2 + 24x − 1
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has the three zeros a = cos2 α, b = cos2 β, c = cos2 γ . Since

p(x) = 64(x − a)(x − b)(x − c),
we have values for the three elementary symmetric polynomials:

a + b + c = 5

4
, ab + bc + ca = 3

8
, abc = 1

64
.

We use the double angle formula for sine as follows:

sin2 t

sin2 2t
= sin2 t

4 sin2 t cos2 t
= 1

4 cos2 t
.

Hence, since sin2 2γ = sin2 α,

S = sin2 α

sin2 β
+ sin2 β

sin2 γ
+ sin2 γ

sin2 α
= 1

4a
+ 1

4b
+ 1

4c
= bc + ca + ab

4abc
= 3/8

4/64
= 6.

We use the double angle formula for cosine as follows:

cos2 t

cos2 2t
= cos2 t

(2 cos2 t − 1)2
.

Hence, since cos2 2γ = cos2 α,

C = cos2 α

cos2 β
+ cos2 β

cos2 γ
+ cos2 γ

cos2 α
= a

(2a − 1)2
+ b

(2b − 1)2
+ c

(2c − 1)2
.

Substituting x = (y + 1)/2 into the polynomial p(x) yields

q(y) = 8y3 + 4y2 − 4y − 1.

Since y = 2x − 1, the zeros of q(y) are a′ = 2a − 1, b′ = 2b − 1, c′ = 2c − 1 and
the elementary symmetric polynomial expressions are

a′ + b′ + c′ = −1

2
, a′b′ + b′c′ + c′a′ = −1

2
, a′b′c′ = 1

8
.

Hence,

C = a′ + 1

2a′2
+ b

′ + 1

2b′2
+ c

′ + 1

2c′2
= a′b′2c′2 + b′a′2c′2 + c′a′2b′2 + b′2c′2 + a′1c′2 + a′2b′2

2(a′b′c′)2

= (a′b′c′)(a′b′ + b′c′ + c′a′)+ (a′b′ + b′c′ + c′a′)2 − 2(a′b′c′)(a′ + b′ + c′)
2(a′b′c′)2

= −1/16+ 1/4+ 1/8

2/64
= 10.

For the third identity, we use both double angle formulas:

tan2 t

tan2 2t
= sin2 t cos2 2t

cos2 t sin2 2t
= (2 cos2 t − 1)2

4 cos4 t

Thus, since tan2 2γ = tan2 α,

T = tan2 α

tan2 β
+ tan2 β

tan2 γ
+ tan2 γ

tan2 α
=
(

2a − 1

2a

)2

+
(

2b − 1

2b

)2

+
(

2c − 1

2c

)2

.
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Substituting x = 1/(2(1− z)) into the polynomial p(x) and clearing fractions yields

r(z) = 8(z3 + 9z2 − z− 1).

Since z = (2x − 1)/(2x), the zeros of r(z) are

a′ = 2a − 1

2a
, b′ = 2b − 1

b
, c′ = 2c − 1

c

and the elementary symmetric polynomial expressions are

a′ + b′ + c′ = −9, a′b′ + b′c′ + c′a′ = −1, a′b′c′ = 1.

Hence,

T = a′2 + b′2 + c′2 = (a′ + b′ + c′)2 − 2(a′b′ + b′c′ + c′a′) = 92 − 2(−1) = 83.

Also solved by Michel Bataille (France), Anthony J. Bevelacqua, Brian Bradie, Robert Cal-
caterra, Hongwei Chen, John Christopher, Robert Doucette, Habib Y. Far, J. Chris Fisher, Dmitry
Fleischman, Michael Goldenberg & Mark Kaplan, Russell Gordon, Walther Janous (Austria), Kee-
Wai Lau (Hong Kong), James Magliano, Ivan Retamoso, Volkhard Schindler (Germany), Randy
Schwartz, Allen J.Schwenk, Albert Stadler (Switzerland), Seán M. Stewart (Australia), Enrique
Treviño, Michael Vowe (Switzerland), Edward White & Roberta White, Lienhard Wimmer (Ger-
many), and the proposer. There were two incomplete or incorrect solutions.

How many tickets to buy to guarantee three out of four? October 2020

2103. Proposed by Péter Kórus, University of Szeged, Szeged, Hungary.

In a soccer game there are three possible outcomes: a win for the home team (denoted
1), a draw (denoted X), or a win for the visiting team (denoted 2). If there are n games,
betting slips are printed for all 3n possible outcomes. For four games, what is the
minimum number of slips you must purchase to guarantee that at least three of the
outcomes are correct on at least one of your slips?

Solution by Northwestern University Math Problem Solving Group, Northwestern Uni-
versity, Evanston, IL.
The answer is nine.

First, we prove that it is impossible to guarantee at least three correct outcomes with
fewer than nine slips.

Let T be the set of all possible outcomes, i.e., all 4-tuples of 1, X, and 2. There are
34 = 81 such 4-tuples. In that set, we define the Hamming distance d as the number of
places in which two tuples differ. For example, d(1X21, 2X12) = 3 because 1X21 and
2X12 differ in three places, namely the first, third and fourth places. The Hamming
distance satisfies the usual axioms for a metric, and we can define balls in T in the
usual way, i.e., a ball with center c ∈ T and radius r ∈ R is

Br(c) = {t ∈ T | d(t, c) ≤ r}.
Given a tuple c ∈ T , the set of tuples that coincide with c in at least three places
consists of those that differ from c in no more than one place. In other words, this set
is B1(c). Note that B1(c) contains exactly 9 elements: the center c, the two tuples that
differ from c exactly in the first element, the two that differ in the second, the two that
differ in the third, and the two that differ in the fourth.
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In order to ensure that our slips c1, c2, . . . , cn contain at least three correct entries,
the balls B1(ci), i = 1, 2, . . . , n must cover T , i.e.,

T =
n⋃
i=1

B1(ci).

Since |B1(c)| = 9 and |T | = 81, we will need at least 81/9 = 9 slips.
Next, we will prove that nine slips suffice. That can be accomplished by exhibit-

ing nine 4-tuples c1, . . . , c9 such that Bi(c1), . . . , Bi(c9) cover T , i.e., such that every
element in T has a Hamming distance of at most 1 from at least one of the ci . The
following 4-tuples satisfy the condition:

1111 1XXX 1222 X1X2 XX21 X21X 2X12 212X 22X1

One (somewhat tedious) way to check it is to verify that each of the 81 elements in
T differ from at least one of these tuples in no more one place.

A slightly easier way to verify the assertion is to observe that these tuples differ
from each other in exactly three places, so the Hamming distance between any two
of them is 3. Because of the triangle inequality, it is impossible for balls of radius 1
centered on the ci to overlap. Therefore the total number of elements contained in the
union of these balls is 9 · 9 = 81, so the union must be all of T .

This completes the proof.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Eagle Problem
Solvers, Fresno State Problem Solving Group, Dan Hletko, Rob Pratt, Allen J. Schwenk, and
the proposer. There were seven incomplete or incorrect solutions.

Vector spaces as unions of proper subspaces October 2020

2104. Proposed by the Missouri State University Problem Solving Group, Missouri
State University, Springfield, MO.

It is well known that no vector space can be written as the union of two proper sub-
spaces. For whichm does there exist a vector space V that can be written as a union of
m proper subspaces with this collection of subspaces being minimal in the sense that
no union of a proper subcollection is equal to V ?

Solution by Paul Budney, Sunderland, MA.
Such a decomposition exists for any m > 2.

Let V = F
n
2, where F2 is the field with two elements. Let

Vi = { (x1, . . . , xn) ∈ V | xi = 0}
for 1 ≤ i ≤ n and let

W = {(0, 0, . . . , 0), (1, 1, . . . , 1)}.
Clearly W and the Vi are proper subspaces of V . Since (1, 1, . . . , 1) is the only vector
not in V1 ∪ V2 ∪ . . . ∪ Vn,

W ∪ V1 ∪ V2 ∪ . . . ∪ Vn = V.
Deleting W from this union excludes (1, 1, . . . , 1). Deleting Vi from this union
excludes (1, . . . , 1, 0, 1, . . . , 1), with 0 for the ith component and 1’s elsewhere.
Thus, there is no proper subcollection of these subspaces whose union is V . There are
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n+ 1 subspaces, and since n ≥ 2 is arbitrary, the desired decomposition exists for any
m > 2.

Also solved by Anthony Bevelacqua, Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia),
Robert Doucette, Eugene Herman, and the proposer. There was one incomplete or incorrect solu-
tion.

An asymptotic formula for a definite integral October 2020

2105. Proposed by Marian Tetiva, National College “Gheorghe Ro̧sca Codreanu”,
Bı̂rlad, Romania.

Let f : [0, 1]→ R be a function that is k times differentiable on [0, 1], with the kth
derivative integrable on [0, 1] and (left) continuous at 1. For integers i ≥ 1 and j ≥ 0
let

σ
(i)

j =
∑

j1+j2···+ji=j
1j12j2 · · · iji ,

where the sum is extended over all i-tuples (j1, . . . , ji) of nonnegative integers that
sum to j . Thus, for example, σ (i)0 = 1, and σ (i)1 = 1+ 2+ · · · + i = i(i + 1)/2 for all
i ≥ 1. Also, for 0 ≤ j ≤ k let

aj = σ (1)j f (1)+ σ (2)j−1f
′(1)+ · · · + σ (j)1 f (j−1)(1)+ σ (j+1)

0 f (j)(1).

Prove that ∫ 1

0
xnf (x)dx = a0

n
− a1

n2
+ · · · + (−1)k

ak

nk+1
+ o

(
1

nk+1

)
,

for n→∞. As usual, we denote by f (s) the sth derivative of f (with f (0) = f ), and
by o(xn) a sequence (yn) with the property that limn→∞ yn/xn = 0.

Solution by Michel Bataille, Rouen, France.
For x ∈ [0, 1], let f0(x) = f (x) and

fj (x) = d

dx

(
xfj−1(x)

)
, 1 ≤ j ≤ k.

An easy induction shows that for 0 ≤ j ≤ k, the function fj is a linear combination of
the functions f (x), xf ′(x), . . . , xjf (j)(x). It follows that f0, f1, . . . , fk−1 are differ-
entiable on [0, 1] and that fk is integrable on [0, 1] and continuous at 1.

Integrating by parts, we obtain the following recursion that holds for 1 ≤ j ≤ k − 1:∫ 1

0
xnfj−1(x) dx =

[
xn

n
· (xfj−1(x))

]1

0

− 1

n

∫ 1

0
xnfj (x) dx

= fj−1(1)

n
− 1

n

∫ 1

0
xnfj (x) dx.

With the help of this recursion, we are readily led to∫ 1

0
xnf (x) dx =

∫ 1

0
xnf0(x) dx
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=
k−1∑
j=0

(−1)j
fj (1)

nj+1
+ (−1)k

nk

∫ 1

0
xnfk(x) dx.

Now, if g : [0, 1]→ R is integrable on [0, 1] and continuous at 1, then

lim
n→∞ n ·

∫ 1

0
xng(x) dx = g(1)

(Paulo Ney de Souza, Jorge-Nuno Silva, Berkeley Problems in Mathematics, Springer,
2004, Problem 1.2.13). With g = fk, this yields∫ 1

0
xnfk(x) dx = fk(1)

n
+ o

(
1

n

)

and therefore∫ 1

0
xnf (x) dx =

k−1∑
j=0

(−1)j
fj (1)

nj+1
+ (−1)k

nk

(
fk(1)

n
+ o

(
1

n

))

=
k∑
j=0

(−1)j
fj (1)

nj+1
+ o

(
1

nk+1

)
.

Comparing this with the statement of the problem, it remains to prove that aj = fj (1)
for 0 ≤ j ≤ k. Clearly, it is sufficient to prove that for x ∈ [0, 1]

fj (x) =
j∑
i=0

σ
(i+1)
j−i x

if (i)(x). (Ej )

We use induction. Since f0(x) = f (x) = 1 · x0f (0)(x), (E0) holds. Before addressing
the induction step, we establish two results about the numbers σ (i)j . The first result is

σ
(i+1)
j =

j∑
r=0

(1+ i)rσ (i)j−r . (1)

Proof. When j1 + · · · + ji + ji+1 = j , then ji+1 can take the values 0, 1, . . . , j . It
follows that

σ
(i+1)
j =

∑
j1+···+ji+1=j

1j12j2 · · · iji (i + 1)ji+1

=
j∑
r=0

(1+ i)r
∑

j1+···+ji=j−r
1j12j2 · · · iji

=
j∑
r=0

(1+ i)rσ (i)j−r .

The second result is

σ
(i+1)
j+1 = σ (i)j+1 + (1+ i)σ (i+1)

j . (2)
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Proof. Applying (1),

σ
(i+1)
j+1 =

j+1∑
r=0

(1+ i)rσ (i)j+1−r

= σ (i)j+1 + (1+ i)
j+1∑
r=1

(1+ i)r−1σ
(i)

j−(r−1)

= σ (i)j+1 + (1+ i)
j∑
r=0

(1+ i)rσ (i)j−r

and applying (1) again we conclude that σ (i+1)
j+1 = σ (i)j+1 + (1+ i)σ (i+1)

j .
Now, assume that (Ej ) holds for some integer j such that 0 ≤ j ≤ k − 1. Then, we

calculate

fj+1(x) = d

dx

[
j∑
i=0

σ
(i+1)
j−i x

i+1f (i)(x)

]

=
j∑
i=0

σ
(i+1)
j−i (i + 1)xif (i)(x)+

j∑
i=0

σ
(i+1)
j−i x

i+1f (i+1)(x)

=
j∑
i=0

σ
(i+1)
j−i (i + 1)xif (i)(x)+

j+1∑
i=1

σ
(i)

j−i+1x
if (i)(x)

= σ (1)j f (x)+
j∑
i=1

(
[σ (i)j−i+1 + (i + 1)σ (i+1)

j−i ]xif (i)(x)
)
+ σ (j+1)

0 xj+1f (j+1)(x).

Using (2) and σ (1)j = σ (1)j+1 = 1 = σ (j+1)
0 = σ (j+2)

0 , we see that

fj+1(x) =
j+1∑
i=0

σ
(i+1)
j+1−ix

if (i)(x)

so that (Ej+1) holds. This completes the induction step and the proof.
Note. The number σ (i)j is the Stirling number of the second kind S(i + j, i) = {i+j

i

}
(see L. Comtet, Advanced Combinatorics, Reidel, 1974, Theorem D p. 207).

Also solved by Albert Stadler (Switzerland) and the proposer.
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Solutions

The number of isosceles triangles in various polytopes June 2020

2096. Proposed by H. A. ShahAli, Tehran, Iran.

Any three distinct vertices of a polytope P form a triangle. How many of these
triangles are isosceles if P is (a) a regular n-gon? (b) one of the Platonic solids? (c) an
n-dimensional cube?

Solution by Robert Calcaterra, University of Wisconsin-Platteville, Platteville, WI.
Let m denote the number of vertices of P . For a fixed vertex A of P , let F(P ) denote
the number of unordered triplets of distinct vertices A,B, and C of P for which AB =
AC, G(P ) is the number of such triplets for which AB = AC = BC, and I (P ) the
number of isosceles triangles that can be formed using the vertices of P . Note that
since all of the polytopes under consideration are uniform, F(P ) and G(P ) do not
depend on A. Since each equilateral triangle is counted in F(P ) for three different
choices of A,

I (P ) = m(F(P )−G(P ))+ m
3
G(P ) = mF(P )− 2

3
mG(P ).

(a) If P is a regular n-gon, then F(P ) = �(n− 1)/2�. Moreover, G(P ) = 1 if n is a
multiple of 3 and G(P ) = 0 if not. Therefore,

I (P ) =
{
n
⌊
n−1

2

⌋
if 3 � n

n
⌊
n−1

2

⌋− 2n
3 if 3|n

(b) Let P be a Platonic solid. If A and B are vertices of P , the minimum number of
edges of the solid that must be traversed to get from A to B will be called the span
fromA to B. For the Platonic solids, the spans for two pairs of vertices are the same
if and only if the Euclidean distances are the same.
• If P is a tetrahedron, every triplet of distinct vertices forms an isosceles (in

fact, equilateral) triangle. Therefore I (P ) = (4
3

) = 4.
• If P is a cube, then the numbers of vertices with spans 1, 2, and 3 from the

fixed vertex A are 3, 3, and 1, respectively. Therefore, F(P ) = (3
2

)+ (3
2

) = 6.
Moreover, 0 pairs of the vertices with span 1 from A have span 1 from each
other, and 3 pairs with span 2 from A have span 2 from each other. Thus
G(P ) = 3 and I (P ) = 8 · 6− 2

3 · 8 · 3 = 32. (This also follows from part (c)
below).

• If P is an octahedron, every triplet of distinct vertices forms an isosceles tri-
angle. Therefore I (P ) = (6

3

) = 20.
• If P is an icosahedron, then the numbers of vertices with spans 1, 2, and 3 from

the fixed vertexA are 5, 5, and 1, respectively. Therefore, F(P ) = (5
2

)+ (5
2

) =
20. Moreover, 5 pairs of the vertices with span 1 from A have span 1 from
each other, and 5 pairs with span 2 from A have span 2 from each other; thus
G(P ) = 10 and I (P ) = 12 · 20− 2

3 · 12 · 10 = 160.
• If P is a dodecahedron, then the numbers of vertices with spans 1, 2, 3, 4,

and 5 from A are 3, 6, 6, 3, and 1, respectively. So, F(P ) = (3
2

)+ (6
2

)+ (6
2

)+(3
2

) = 36. Moreover, 0 pairs of vertices with span 1 from A have span 1 from
each other, 3 pairs with span 2 from A have span 2 from each other, 6 pairs
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with span 3 from A have span 3 from each other, and 0 pairs with span 4 from
A have span 4 from each other; thus, G(P ) = 9 and I (P ) = 20 · 36− 2

3 · 20 ·
9 = 600.

(c) Let P be a cube in Rn. We may view the vertices of P as binary n-tuples, so that
the distance between two vertices is the square root of the number of components
at which they differ. The number of vertices of P at distance

√
k from A is

(
n

k

)
for

k = 0, 1, . . . , n. Recall that

n∑
k=0

(
n

k

)
= 2n and

n∑
k=0

(
n

k

)2

=
(

2n

n

)
.

Therefore,

F(P ) =
n−1∑
k=1

1

2

(
n

k

)((
n

k

)
− 1

)
= 1

2

(
n−1∑
k=1

(
n

k

)2

−
n−1∑
k=1

(
n

k

))

= 1

2

(((
2n

n

)
− 2

)
− (2n − 2)

)

= 1

2

((
2n

n

)
− 2n

)

For the vertices A,B, and C to form an equilateral triangle with sides of length√
k, three disjoint subsets, say X, Y , and Z, must be chosen from {1, 2 . . . , n} in

such a way that the components of A differ from those of B at precisely the posi-
tions in X ∪ Y , the components of A differ from those of C at precisely the posi-
tions in X ∪ Z, and the components of B differ from those of C at precisely the
positions in Y ∪ Z. This forces |X ∪ Y | = |X ∪ Z| = |Y ∪ Z| = k, which yields
|X| = |Y | = |Z| = � and k = 2�. There will be n− 3� positions at which the com-
ponents of A,B, and C all agree (the positions in the complement of X ∪ Y ∪ Z).
Note that each equilateral triangle will be generated twice using this procedure
because interchanging Y and Z will reverse the roles of B and C. Therefore (using
multinomial coefficients), we have

G(P ) = 1

2

�n/3�∑
�=1

(
n

n− 3�, �, �, �

)
and

I (P ) = 2n−1

((
2n

n

)
− 2n

)
− 2n

3

�n/3�∑
�=1

(
n

n− 3�, �, �, �

)

Also solved by Allen J. Schwenk, Albert Stadler (Switzerland), and the proposer. There were
two incomplete or incorrect solutions.

A series involving the floor, ceiling, and round functions June 2020

2097. Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technol-
ogy, Damascus, Syria.

For a real number x /∈ 1
2 + Z, denote the nearest integer to x by 〈x〉. For any real

number x, denote the largest integer smaller than or equal to x and the smallest integer
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larger than or equal to x by �x� and �x, respectively. For a positive integer n let

an = 2

〈√n〉 −
1

�√n� −
1

�√n .

(a) Prove that the series
∑∞

n=1 an is convergent and find its sum L.
(b) Prove that the set

{√
n(

n∑
k=1

ak − L) : n ≥ 1
}

is dense in [0, 1].

Solution by Hongwei Chen, Christopher Newport University, Newport News, VA.

(a) We show that the sum converges to zero. To see this, first, we can easily check the
following facts:

〈√n 〉 = k,for n ∈ [k(k − 1)+ 1, k(k + 1)],

�√n� = k,for n ∈ [k2, (k + 1)2),

�√n  = k + 1,for n ∈ (k2, (k + 1)2].

These imply that ak2 = 0 and

an = 2

k
− 1

k
− 1

k + 1
= 1

k(k + 1)
, for n ∈ (k2, k(k + 1)],

an = 2

k + 1
− 1

k
− 1

k + 1
= − 1

k(k + 1)
, for n ∈ (k(k + 1), (k + 1)2).

Therefore, for k2 ≤ n ≤ (k + 1)2, we have
∑k2

m=1 am = 0 and

0 ≤
n∑

m=1

am ≤ 1

k(k + 1)
· [k(k + 1)− k2] = 1

k + 1

As n→∞, we have k→∞ and so

∞∑
n=1

an = lim
n→∞

n∑
m=1

am = 0.

(b) Let x ∈ [0, 1]. We show that there exists a subsequence from the set
{√n ∑n

m=1 am}, which converges to x. Notice that there exist two integer sequences
pk and qk with 0 ≤ pk ≤ qk such that pk/qk → x, as k →∞. Let nk = q2

k + pk.
Then

q2
k ≤ nk ≤ q2

k + qk <
(
qk + 1

2

)2

.

This implies that

〈√nk 〉 = qk, �√nk� = qk, �√nk  = qk + 1.
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Therefore, as k→∞, we have

√
nk

nk∑
m=1

am = √nk · nk − q2
k

qk(qk + 1)
= pk

qk
·
√
nk

qk + 1
→ x.

This proves that the set {√n ∑n

m=1 am} is dense in [0, 1].

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Brian Bradie, Robert
Calcaterra, Dmitry Fleischman, Maxim Galushka (UK), GWstat Problem Solving Group, Eugene
A. Herman, Walter Janous (Austria), Donald E. Knuth, Sushanth Sathish Kumar, Elias Lampakis
(Greece), Shing Hin Jimmy Pa (Canada), Allen Schwenk, Albert Stadler (Switzerland), and the
proposer. There was one incorrect or incomplete solution.

A zigzag sequence of random variables June 2020

2098. Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA.

Let Z0 = 0, Z1 = 1, and recursively define random variables Z2, Z3, . . . , taking
values in [0, 1] as follows: For each positive integer k, Z2k is chosen uniformly in
[Z2k−2, Z2k−1], and Z2k+1 is chosen uniformly in [Z2k, Z2k−1].

Prove that, with probability 1, the limit Z∗ = limn→∞ Zn exists and find its distri-
bution.

Solution by Northwestern University Math Problem Solving Group, Northwestern Uni-
versity, Evanston, IL.
We will prove:

1. The limit Z∗ exists.
2. The limit Z∗ has probability density f (x) = 2x on [0, 1].

Proof of 1. We have that [Z0, Z1] ⊇ [Z2, Z1] ⊇ [Z2, Z3] ⊇ [Z4, Z3] ⊇ . . . is a
sequence of nested closed intervals. By the nested interval theorem, their intersec-
tion will be non-empty, and will consist of a unique point precisely if the sequence of
lengths of the nested intervals tends to zero. We prove that this happens with probabil-
ity 1.

Let In (n = 0, 1, 2, , . . . ) be the nth interval in the sequence, and Ln = length of
In, i.e., L2k = Z2k+1 − Z2k and L2k+1 = Z2k+1 − Z2k+2. Pick δ > 0. We will prove by
induction that the probability of Ln > δ is P(Ln > δ) ≤ (1− δ)n. Since P(Ln > 1) =
0 the result is trivially true for δ ≥ 1, so we may assume 1 > δ > 0.

Base case: For n = 0 the inequality P(L0 > δ) ≤ (1− δ)0 obviously holds because
L0 = 1, hence P(L0 > δ) = P(1 > δ) = 1 and (1− δ)0 = 1.

Induction step: Assume P(Ln > δ) ≤ (1− δ)n. Then

P(Ln+1 > δ) = P(Ln ≤ δ) · P(Ln+1 > δ | Ln ≤ δ)+ P(Ln > δ) · P(Ln+1 > δ | Ln > δ).

Note that the first term is zero because if Ln ≤ δ then Ln+1 > δ is impossible. On the
other hand, if Ln > δ then we only have Ln+1 > δ if the next endpoint Zn+2 is selected
at a distance less than Ln − δ from the right or left (depending on the parity of n)
endpoint of In. The probability is

P(Ln+1 > δ | Ln > δ) = Ln − δ
Ln

= 1− δ

Ln
≤ 1− δ.

Hence

P(Ln+1 > δ) ≤ (1− δ)n(1− δ) = (1− δ)n+1,
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and this completes the induction.
From here we get limn→∞ P(Ln+1 > δ) = 0 for every δ > 0, hence Ln → 0 as

n→∞ with probability 1.
Proof of 2. For each n ≥ 0 define the new random variable Un, chosen between Z2n

and Z2n+1 with probability density

fUn|Z2n=zn,Z2n+1=z2n+1(x) =
2(x − z2n)

(z2n+1 − z2n)2

on [z2n, z2n+1], where “Un|Z2n = z2n, Z2n+1 = z2n+1” means the random variable Un
given Z2n = z2n and Z2n+1 = z2n+1 (we ignore the case z2n+1 = z2n because its proba-
bility is zero).

Since Un is between Z2n and Z2n+1, its limit U ∗ will coincide with Z∗.
Next, we will prove by induction that for every n ≥ 0, the probability density of Un

is always the same, namely fUn(x) = 2x on [0, 1].

Base case: For n = 0 we have Z0 = 0, Z1 = 1, hence fU0(x) =
2(x − 0)

(1− 0)2
= 2x on

[0, 1].
Induction step: Assume fUn(x) = 2x. Next, note that Un+1 is defined like Un but

with starting points Z2 and Z3 in place of Z0 and Z1. So, Un+1 given Z2 = z2 and Z3 =
z3 is just Un mapped from [0, 1] to [z2, z3] with the transformation (z3 − z2)Un + z2.
By induction hypothesis we have fUn(x) = 2x, and its transformation to [z2, z3] will
have probability density

fUn+1|Z2=z2,Z3=z3(x) =
2(x − z2)

(z3 − z2)2

on [z2, z3].
The cumulative distribution function of Un+1 is FUn+1(x) = P(Un+1 ≤ x). By def-

inition Un+1 must be in the interval [Z2, Z3], while x may be in any of two different
intervals, namely [Un+1, Z3) or [Z3, 1]. So, the event Un+1 ≤ x can be expressed as
the union of Z2 ≤ Z3 ≤ x and Z2 ≤ Un+1 ≤ x < Z3. Since they are disjoint we have

P(Un+1 ≤ x) = P(Z2 ≤ Z3 ≤ x)+ P(Z2 ≤ Un+1 ≤ x < Z3) .

We have that X2 is random uniform on [0, 1], and X3 is random uniform on [Z2, 1],
so

fZ3|Z2=z2(x) =
1

1− z2
,

hence

P(Z2 ≤ Z3 ≤ x) =
∫ x

0

x − z2

1− z2
dz2 = x + (1− x) log(1− x) .

The second term can be computed as follows:

P(Z2 ≤ Un+1 ≤ x < Z3) =
∫ x

0

∫ 1

x

∫ x

z2

fUn+1|Z2=z2,Z3=z3(t)fZ3|Z2=z2(x) dt dz3 dz2

=
∫ x

0

∫ 1

x

∫ x

z2

2(t − z2)

(z3 − z2)2

1

1− z2
dt dz3 dz2

= (x − 1)(x + log(1− x)) ,
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hence

FU2n+1(x) = x + (1− x) log(1− x)+ (x − 1)(x + log(1− x)) = x2 .

Differentiating we get fU2n+1(x) = 2x on [0, 1], and this completes the induction.
Since the distribution of Un is the same for every n we have that the limit U ∗ will

have the same distribution too. And since U ∗ = Z∗, the same will hold for Z∗, hence
fZ∗(x) = 2x.

Also solved by Robert A. Agnew, Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia),
Robert Calcaterra, Shuyang Gao, John C. Kieffer, Omran Kouba (Syria), Kenneth Schilling, and
the proposer.

An almost linear functional equation June 2020

2099. Proposed by Russ Gordon, Whitman College, Walla Walla, WA and George Sto-
ica, Saint John, NB, Canada.

Let r and s be distinct nonzero rational numbers. Find all functions f : R→ R that
satisfy

f

(
x + y
r

)
= f (x)+ f (y)

s

for all real numbers x and y.

Solution by Eugene A. Herman, Grinnell College, Grinnell, IA.
Clearly the zero function is always a solution and, when s = 2, all constant functions
are solutions. We show that there are no others. First assume s �= 2. Substituting 0
for both x and y yields f (0) = 0. Substituting y = 0 and y = −x yield these two
identities:

f
(x
r

)
= f (x)

s
, f (−x) = −f (x) for all x ∈ R.

Given any x ∈ R, we use induction to show that f (nx) = nf (x) for all n ∈ N. The
base case is a tautology. If f (nx) = nf (x) for some n ∈ N, then

f ((n+ 1)x)

s
= f

(
(n+ 1)x

r

)
= f

(
nx + x
r

)
= f (nx)+ f (x)

s
= (n+ 1)f (x)

s

and so f ((n + 1)x) = (n + 1)f (x). It follows that f (x/n) = f (x)/n for all n ∈ N
and hence that f ((m/n)x) = (m/n)f (x) for all m, n ∈ N. Since f (−x) = −f (x),
this last statement is also true form negative. Choosem, n so that r = n/m. Therefore

f (x)

s
= f

(x
r

)
= f (x)

r

and so f (x) = 0.
Now assume s = 2, and let t = 2/r . Thus t �= 1 and

f

(
t

2
(x + y)

)
= f (x)+ f (y)

2
, for all x, y ∈ R.

Substituting y = x and y = −x yield

f (tx) = f (x), f (x)+ f (−x)
2

= f (0) for all x ∈ R.
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Thus f (−x/t) = f (−x), and so

f

(
t − 1

2
x

)
= f

(
t

2
(x − x/t)

)
= f (x)+ f (−x/t)

2
= f (x)+ f (−x)

2
= f (0).

Therefore f is a constant function.

Also solved by Michel Bataille (France), Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Aus-
tralia), Paul Budney, Robert Calcaterra, Walther Janous (Austria), Sushanth Sathish Kumar,
Omran Kouba (Syria), Elias Lampakis (Greece), Albert Natian, Kangrae Park (South Korea),
Kenneth Schilling, Jacob Siehler, Albert Stadler (Switzerland), Michael Vowe (Switzerland), and
the proposers.

Two congruent triangles on the sides of an arbitrary triangle June 2020

2100. Proposed by Yevgenya Movshovich and John E. Wetzel, University of Illinois,
Urbana, IL.

Given �ABC and an angle θ , two congruent triangles �ABP and �QAC are con-
structed as follows: AQ = AB,BP = AC, m∠ABP = m∠CAQ = θ , B and Q are on
opposite sides of

←→
AC , and C and P are on opposite sides of

←→
AB , as shown in the

figure. Let X, Y , and Z be the midpoints of segments AP,BC, and CQ, respectively.
Show that ∠XYZ is a right angle.

Solution by Sushanth Sathish Kumar (student), Portola High School, Irvine, CA.

Let M be the midpoint of segment AB. Note that YZ is a midline of triangle CBQ, and
so
←→
BQ is parallel to

←→
YZ . Thus, it suffices to show that

←→
XY is perpendicular to

←→
BQ.

Since MX and MY are midlines of triangles APB and ABC, we have that MX =
BP/2 = AC/2 = MY . Hence, triangle MXY is isosceles. Moreover, since

←→
MX||←→BP and←→

MY||←→AC , we have

m∠XMY = m∠XMA+m∠AMY = θ + 180◦ − α,
where we set α = m∠BAC. It follows that m∠MXY = m∠XYM = (α − θ)/2.

We wish to calculate m∠(←→XM,
←→
BQ), where m∠(�1, �2) denotes the measure of the

non-obtuse angle between �1 and �2. Note that

m∠(←→XM,
←→
BQ) = m∠PBQ = m∠PBA+m∠ABQ.

Since AB = AQ and m∠BAQ = α + θ , we find that m∠ABQ = 90◦ − (α + θ)/2.
Thus, m∠(←→XM,

←→
BQ) = 90◦ − (α − θ)/2. But since m∠(←→MX,

←→
XY ) = (α − θ)/2, we

find that m∠(←→BQ,
←→
XY ) = 90◦, and we are done.
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Solutions

A geometric inequality April 2020

2091. Proposed by Marian Tetiva, National College “Gheorghe Roşca Codreanu,”
Bârlad, Romania.

Let ABC be a triangle with sides of lengths a, b, c, altitudes ha, hb, hc, inradius r , and
circumradius R. Prove that the following inequality holds:

ha + hb + hc ≥ 9r + a
2 + b2 + c2 − ab − ac − bc

4R
,

with equality if and only if 	ABC is equilateral.

Solution by Robert Calcaterra, University of Wisconsin-Platteville, Platteville, WI.
Let K denote the area of 	ABC. We have

r = 2K

a + b + c ,

R = abc

4K
,

ha = 2K

a
,

hb = 2K

b
, and

hc = 2K

c
.

Note that

abc

K
(ha + hb + hc) = 2(ab + ac + bc),

and

abc

K

(
9r + a

2 + b2 + c2 − ab − ac − bc
4R

)

= 18abc

a + b + c + a
2 + b2 + c2 − ab − ac − bc.

Therefore, it will suffice to show that

2(ab + ac + bc) ≥ 18abc

a + b + c + a
2 + b2 + c2 − ab − ac − bc,

or equivalently,

f (a, b, c) = 2a2b+ 2ab2 + 2a2c+ 2ac2 + 2b2c+ 2bc2 − a3 − b3 − c3 − 9abc ≥ 0.

Without loss of generality, we may assume that c ≥ b ≥ a. Note that

f (a, b, c) = (a + b − c)(c − a)(c − b)+ (3c − a − b)(b − a)2.
Since a, b, and c are the side lengths of a triangle, a + b − c > 0. Also,

3c − a − b = c + c − a + c − b > 0
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as well. Hence f (a, b, c) > 0 if c > b or b > a, and consequently f (a, b, c) = 0 can
only occur when a = b = c. This concludes the proof.

Also solved by Arkady Alt, Farrukh Rakhimjanovich Ataev (Uzbekistan), Herb Bailey,
Michel Bataille (France), Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Scott H.
Brown, Habib Y. Far, Subhankar Gayen & Vivekananda Mission Mahavidyalaya & Haldia Purba
Medinipur (India), Finbarr Holland (Ireland), Walther Janous (Austria), Parviz Khalili, Koopa
Tak Lun Koo (Hong Kong), Omran Kouba (Syria), Sushanth Sathish Kumar. Elias Lampakis
(Greece), Kee-Wai Lau (China), Antoine Mhanna (Lebanon), Quan Minh Nguyen (Canada),
Sang-Hoon Park (Korea), Volkhard Schindler (Germany), Albert Stadler (Switzerland), Daniel
Văcaru (Romania), Michael Vowe (Switzerland), John Zacharias, and the proposer.

An integral involving the tail of a Maclaurin series April 2020

2092. Proposed by Seán M. Stewart, Bomaderry, Australia.

Let n be a non-negative integer. Evaluate∫ ∞
0

1

x2n+3

(
sin x −

n∑
k=0

(−1)kx2k+1

(2k + 1)!

)
dx.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.
The answer is

(−1)n+1 π

2(2n+ 2)!
.

We define

F2n(x) = (−1)n
(

cos x −
n∑
k=0

(−1)kx2k

(2k)!

)
, and

F2n+1(x) = (−1)n
(

sin x −
n∑
k=0

(−1)kx2k+1

(2k + 1)!

)

One easily sees that F ′m = Fm−1. Further,

Fm(x) = O(xm) as x →∞, and

Fm(x) = O(xm+2) as x → 0,

so the integral

Im =
∫ ∞

0

Fm(x)

xm+2
dx

is convergent. A straightforward integration by parts shows that

Im = −Fm(x)
(m+ 1)xm+1

∣∣∣∣
∞

x=0

+ 1

m+ 1

∫ ∞
0

Fm−1(x)

xm+1
dx

= 1

m+ 1
Im−1.

This implies that

Im = I0

(m+ 1)!
.
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Another integration by parts gives

I0 =
∫ ∞

0

cos x − 1

x2
dx

= 1− cos x

x

∣∣∣∣
∞

x=0

−
∫ ∞

0

sin x

x
dx

= −
∫ ∞

0

sin x

x
dx

= −π
2
.

Thus,

Im = − π

2(m+ 1)!
.

In particular,∫ ∞
0

1

x2n+3

(
sin x −

n∑
k=0

(−1)kx2k+1

(2k + 1)!

)
dx = (−1)nI2n+1

= (−1)n+1 π

2(2n+ 2)!
,

which is the desired conclusion.

Also solved by Michel Bataille (France), Paul Bracken, Brian Bradie, David M. Bradley, Robert
Calcaterra, William Chang, Robin Chapman (UK), Hongwei Chen, G.A. Edgar, Russell Gordon,
Lixing Han, Eugene A. Herman, Finbarr Holland (Ireland), Sushanth Sathish Kumar, Elias Lam-
pakis (Greece), Kee-Wai Lau (China), Quan Minh Nguyen (Canada), and the proposer. There
were three incomplete or incorrect solutions.

A permutation probability April 2020

2093. Proposed by Jacob Siehler, Gustavus Adolphus College, Saint Peter, MN.

Suppose π is a permutation of {1, 2, . . . , 2m}, where m is a positive integer. Consider
the (possibly empty) subsequence of π(m + 1), π(m + 2), . . . , π(2m) consisting of
only those values which exceed max{π(1), . . . , π(m)}. Let P(m) denote the probabil-
ity that this subsequence never decreases (note that the empty sequence has this prop-
erty), when π is a randomly chosen permutation of {1, . . . , 2m}. Evaluate lim

m→∞P(m).

Solution by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela.
The limit is

√
e/2. Let

k = max{π(1), . . . , π(m)}.
Clearlym ≤ k ≤ 2m. A permutation π with a given k satisfies the condition if and only
if k + 1, k + 2, . . . , 2m is a (possibly empty, if k = 2m) subsequence of π(m + 1),
π(m+ 2), . . . , π(2m). In the sequence π(1), . . . , π(2m) the number k may occupy any
of the first m positions. The numbers k + 1, k + 2, . . . , 2m may occupy any 2m− k
places among the last m places (i.e.,

(
m

m−k
)

possibilities), and the 2m− 1− (m− k) =
m+ k − 1 remaining elements may be distributed in (m+ k − 1)! ways. Therefore

P(m) = 1

(2m)!

2m∑
k=m

m

(
m

2m− k
)
(m+ k − 1)!.
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Putting j = k −m we have

P(m) = 1

(2m)!

m∑
j=0

m

(
m

j

)
(2m− j − 1)!.

Now

aj,m = 1

(2m)!
m

(
m

j

)
(2m− j − 1)!

= m(m− 1)(m− 2) · · · (m− j + 1)

2j !(2m− 1) · · · (2m− j) .

For fixed j , we have

lim
m→∞ aj,m = lim

m→∞
(1− 1

m
)(1− 2

m
) · · · (1− j−1

m
)

2j !(2− 1
m
) · · · (2− j

m
)

= 1

j ! 2j+1
.

Also

aj,m <
mj

2j !(2m−m)j =
1

2j !

and
∞∑
j=0

1

2j !
= e/2.

Hence by the dominated convergence theorem we have

lim
m→∞P(m) = lim

m→∞

m∑
j=0

aj,m

=
∞∑
j=0

lim
m→∞ aj,m

=
∞∑
j=0

1

j ! 2j+1

=
√
e

2
,

as claimed.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Robert Calcaterra,
Robin Chapman (UK), Kenneth Schilling, Edward Schmeichel, Albert Stadler (Switzerland), and
the proposer. There was one incomplete or incorrect solution.

An upper bound for a vector sum April 2020

2094. Proposed by George Stoica, Saint John, NB, Canada.

Find the smallest number f (n) such that for any set of unit vectors x1, . . . , xn in R
n,

there is a choice of ai ∈ {−1, 1} such that |a1x1 + · · · + anxn| ≤ f (n).
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Solution by Sushanth Sathish Kumar, student, Portola High School, Irvine, CA.
We claim that f (n) = √n. To see that this is minimal, consider the unit vectors xi =
(0, . . . , 1, . . . , 0), where the ith term is 1 and the rest are 0. Then,

a1x1 + · · · + anxn = (±1, . . . ,±1)

has magnitude
√
n regardless of choice of the ai’s.

We now show that f (n) = √n does indeed work. Randomly and independently
choose each ai to be 1 or −1, both with probability 1/2. We will prove that

E
[|a1x1 + · · · + anxn|2

] = n.
To see this, note that

E[|a1x1 + · · · + anxn|2] = E

⎡
⎣ n∑
i=1

n∑
j=1

aixi · ajxj
⎤
⎦

=
n∑
i=1

E
[
a2
i |xi |2

]+ 2
n∑
i=1

n∑
j=i+1

E[aixi · ajxj ],

by the dot product and linearity of expectation. Since a2
i = 1, and xi is a unit vector,

the first sum is just n. To compute the second sum, we note that

E[aixi · ajxj ] = E[aiaj |xi ||xj | cos θij ]

= E[aiaj cos θij ]

= 0,

where θij is the angle between vectors xi and xj . It follows that

E
[|a1x1 + · · · + anxn|2

] = n,
as claimed. Hence, there is a choice of a1, . . . , an for which

|a1x1 + · · · + anxn|2 ≤ n,
and we are done.

Also solved by Elton Bojaxhiu (Germany) & Enkel Hysnelaj (Australia), Robert Calcaterra,
William Chang, Lixing Han, Eugene Herman, Omran Kouba (Syria), Miguel A. Lerma, José Nieto
(Venezuela), Celia Schacht, Albert Stadler (Switzerland), Edward Schmeichel, and the proposer.
There was one incomplete or incorrect solution.

A floor function sum April 2020

2095. Proposed by Mircea Merca, University of Craiova, Romania.

Show that

n∑
k=1

k

⌊
n+ 1− k

d

⌋
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(n+ 1)(n− 1)(2n+ 3)/24� if d = 2⌈
(n+ 1)2(n− 2)/18

⌉
if d = 3

(n+ 1)(2n+ 1)(n− 3)/48� if d = 4
(n+ 1)n(n− 4)/30� if d = 5

.
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Solution by Russell Gordon, Whitman College, Walla Walla, WA.
We first observe that these four formulas can be combined into one formula by noting
that

n∑
k=1

k

⌊
n+ 1− k

d

⌋
=
⌈
(n+ 1)(n+ 1− d)(2n+ 5− d)

12d

⌉

is equivalent to the equation above for d = 2, 3, 4, 5. We will also show that the anal-
ogous formula holds when d = 1. It is easy to verify that the formulas are valid for
n = 1, 2, . . . , d for each of these values of d; we omit the simple arithmetic compu-
tations that generate 0’s and 1’s for these values of n and d. Hence, by induction, it is
sufficient to show that the equation for a given d is valid for n+ d when it is valid for
n. To verify this, we will use the fact that

�m+ x� = m+ �x� and m+ x� = m+ x�

for any positive integer m and positive number x. We then have

n+d∑
k=1

k

⌊
n+ d + 1− k

d

⌋

=
n∑
k=1

k

(
1+

⌊
n+ 1− k

d

⌋)
+ (n+ 1)

=
n+1∑
k=1

k +
n∑
k=1

k

⌊
n+ 1− k

d

⌋

= (n+ 1)(n+ 2)

2
+
⌈
(n+ 1)(n+ 1− d)(2n+ 5− d)

12d

⌉

=
⌈
(n+ 1)(n+ 2)

2
+ (n+ 1)(n+ 1− d)(2n+ 5− d)

12d

⌉

=
⌈
(n+ 1)

(
6dn+ 12d + 2n2 + (7− 3d)n+ (1− d)(5− d))

12d

⌉

=
⌈
(n+ 1)

(
2n2 + (7+ 3d)n+ (1+ d)(5+ d))

12d

⌉

=
⌈
(n+ 1)(n+ 1+ d)(2n+ 5+ d)

12d

⌉
,

as desired.

Remark. The analogous formulas do not hold for d ≥ 6. For example, when d = 6 the
two sides agree for all n, except when n ≡ 0 (mod 6). In that case, we must subtract
1 from the right-hand side to maintain equality.

Also solved by Robert Calcaterra, William Chang, Dmitry Fleischman, Walther Janous (Aus-
tria), Elias Lampakis (Greece), Jacob Petry, Albert Stadler (Switzerland), and the proposer.



SOLUTIONS

Note that this section includes the solutions to Problems 1241–1244, which would
normally have appeared in the January 2024 issue. The solution to Problem 1245 will
appear in a later issue.

An inequality for a nonincreasing sequence on (0, 1]

1241. Proposed by Reza Farhadian, Razi University, Kermanshah, Iran.
Consider a finite sequence 1 = a0 ≥ a1 ≥ · · · ≥ an+1 > 0 of real numbers. Prove the
following inequality:

n+1
√
a0 + a1 + · · · + an+1 <

n
√
a0 + a1 + · · · + an.

Solution by Shing Hin Jimmy Pa, China.
We introduce x = a0 + a1 + · · · + an, and apply the AM–GM inequality:

n+1
√

1 · (x + an+1)n <
1+ n(x + an+1)

n+ 1
.

We also observe that nan+1 + 1 ≤ x. Add nx to both sides and divide by n+ 1:

1+ n(x + an+1)

n+ 1
≤ x.

Thus,

n+1
√
(x + an+1)n < x,

which is equivalent to n+1
√
x + an+1 <

n
√
x, as desired.

Also solved by Michel Bataille, Rouen, France; Walther Janous, Ursulinengymnasium, Innsbruck, Austria;

Lau Kee-Wai, Hong Kong, China; JHSLPN Group, North Carolina School of Science and Mathematics, Durham,

NC; Naı̈m Mégarbané, Lycée Stanislas High School, Paris, France; Albert Stadler, Herrliberg, Switzerland;

and the proposer.
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Solution to a transcendental equation

1242. Proposed by Adam Glesser, California State University, Fullerton, CA.

Find all solutions to the following transcendantal equation (via proof, not by computer
calculation):

6

πe6
arcsin

(
x4 + 48

64x

)
exp

(
1+ x + 3

3
√
x − 1

)
= 1.

Solution by Robert Doucette, McNeese State University, Lake Charles, LA.

Let α(x) = (x4 + 48)/(64x), β(x) = 1 + x + 3/ 3
√
x − 1, and φ(x) =

arcsin(α(x)) exp(β(x)). Since φ(2) = (π/6)e6, the given equation can be rewritten as
φ(x) = φ(2). Since φ(x) > 0 only if x > 0, we need only consider positive numbers
as possible solutions. Since

α′(x) = 3

4

(
x2

16
− 1

x2

)
and β ′(x) = 1− 1

(x − 1)4/3
,

the function α is strictly decreasing on (0, 2) and strictly increasing on (2,∞), while
the function β is strictly decreasing on [0, 1) and on (1, 2) (note the pole at x = 1!) and
strictly increasing on (2,∞). Since α(x)→∞ as x → 0+ and α(1) < 1, there exists a
unique x0 ∈ (0, 1) such that α(x0) = 1. Also since α(2) = 1/2 and α(x)→∞ as x →
∞, there exists a unique x1 ∈ (2,∞) such that α(x1) = 1. The set [x0, 1) ∪ (1, x1] are
the positive numbers for which φ is defined.
For x ∈ [x0, 1), β(x) < β(0) = −2. This implies that φ(x) < (π/2)e−2 < φ(2), so
there are no solutions to the given equation in the interval [x0, 1).
Since both α and β are positive and strictly decreasing on the interval (1, 2), the
functions arcsin(α) and exp(β) are both positive and strictly decreasing on (1, 2). It
follows that φ is strictly decreasing on (1, 2) and that φ(x) > φ(2) for x ∈ (1, 2).
In a similar way we may show that φ is strictly increasing on (2, x1], so that φ(x) >
φ(2) for x ∈ (2, x1].
It follows that 2 is the unique solution to the given equation.

Also solved by Naı̈m Mégarbané, Lycée Stanislas High School, Paris, France; Albert Stadler, Switzerland;

and the proposer. Received one incomplete solution.

An integral inequality

1243. Proposed by Cezar Lupu, Yanqi Lak Bimsa and Tsinghua University, Beijing,
China.

Let f : [0, 1] → R be an integrable function such that
∫ 1

0
f (x) dx = 1 and∫ 1

0
x2f (x) dx = 1. Prove that

∫ 1

0
f 2(x) dx ≥ 6.
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Solution by Mark Sand, College of St. Mary, Omaha, NE.

Given such a function f (x), we know that for any real number r ,

1+ r =
∫ 1

0
(1+ r · x2)f (x) dx

≤
∫ 1

0

∣∣(1+ r · x2)f (x)
∣∣ dx

≤
(∫ 1

0
(1+ r · x2)2 dx

)1/2 (∫ 1

0
f 2(x) dx

)1/2

,

where we have used the Cauchy-Schwarz inequality in the last step. The integral

that includes the number r has the value
√

1+ 2
3r + 1

5r
2. Dividing by this and then

squaring and simplifying, we see that

∫ 1

0
f 2(x) dx ≥ 15(r + 1)2

3r2 + 10r + 15
.

Since the left side is fixed once f (x) is given, this inequality must be true for all values
of the fraction on the right, including the maximum value of the fraction. We note here
that the denominator is never zero, which can be seen by completing the square.
LettingG(r) = 15(r+1)2

3r2+10r+15
, we findG′(r) = 60(r2+6r+5)

(3r2+10r+15)2
, so the derivative is zero when

r is −1 or −5. The only term in the derivative that changes sign is (r2 + 6r + 5), and
we can easily see that G′(r) is positive on (−∞,−5) ∪ (−1,∞) and negative on
(−5,−1). This, along with lim

r→∞G(r) = 5, tells us that G(−5) = 6 is the maximum

value of the fraction we have been investigating.

Thus,
∫ 1

0
f 2(x) dx ≥ 6, as desired.

Also solved by Michel Bataille, Rouen, France; Russell Gordon, Whitman University; Tom Jager, Calvin

University; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; Kee-Wai Lau, Hong Kong, China;

Michael Lavigne, North Carolina School of Math and Science; Kelly McLenithan, Los Alamos, NM;

Albert Stadler, Herrliberg, Switzerland; and the proposer.

Distribution of fractional parts of uniform variables

1244. Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA.

Suppose (Xk)n1 is a sequence of n independent random variables uniformly distributed
over the interval [0, 1]. Prove that the fractional part of the random variable

∑n

k=1Xi
is uniformly distributed over [0, 1].

Solution by Eagle Problem Solvers, Georgia Southern University, Statesboro, GA.

If n = 1, then X1 is equal to its fractional part, and the statement is trivially true.
We claim that if X and Y are independent random variables uniformly distributed
over [0, 1], then the fractional component of the sum W = X + Y is also uniformly
distributed on [0, 1]. First, we express the fractional component of the sum as

�W� = (X + Y )1{X+Y<1} + (X + Y − 1)1{X+Y>1}.
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Then for w ∈ [0, 1],

Pr (�W� ≤ w) = Pr (((X + Y ≤ w) ∩ (X + Y < 1)) ∪ ((X + Y − 1 ≤ w) ∩ (X + Y > 1)))

= Pr ((X + Y ≤ w) ∩ (X + Y < 1))+ Pr (0 < X + Y − 1 ≤ w)

= 1

2
w2 +

(
1

2
− 1

2
(1− w)2

)

= 1

2
w2 + w − 1

2
w2

= w.
The probabilities are illustrated geometrically in the following diagram.

Therefore, the fractional part of W = X + Y is uniformly distributed over [0, 1], and
the general statement follows by induction with X =∑n

k=1Xk and Y = Xn+1.

Also solved by Michael P. Cohen, Fairfax, VA; Jan Grzesik, Torrance, CA; Shing Hin Jimmy Pa, China;

Albert Stadler, Herrliberg, Switzerland; and the proposer.
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SOLUTIONS

To our valued contributors: CMJ Solutions is in transition.
Charles N. Curtis, who has served as Solutions editor for nearly 10 years, is retiring

from this position. I am thankful for his valuable service on the CMJ board over these
many years. I’m certain that everyone associated with CMJ has been grateful for his
leadership and expertise.

I am pleased to announce that Katherine Thompson and Matyas Sustik are joining
the CMJ editorial board as our new Solutions editors. Both bring significant experience
with problem solving competitions, and I am looking forward to working with them.

Dr. Thompson is currently Assistant Professor of Mathematics at the U.S. Naval
Academy. She is a regular instructor and grader for the Art of Problem Solving and is
the former chair of the Question Writing Committee for MATHCOUNTS.

Dr. Sustik works in industry as a mathematician and software engineer. With an
active and successful high school math contest participation behind him (that included
the IMO) now he gives back by developing, grading, and evaluating mathematical
contest problems for AMC, AIME, and BAMO.

I currently expect CMJ Solutions to return in the March issue. It will take a couple
of issues for us to catch up and resume our typical schedule. I ask for your patience as
we complete this transition.

— Tamara Lakins, Editor
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1265. Proposed by Narendra Bhandari, Bajura District, Nepal.
Calculate the following sum:

∞∑
n=2

� n2 �∑
k=1

ζ(n)− ζ(n+ 1)

k
,

where [ x ] denotes the floor function of x and ζ denotes the Riemann zeta function.

SOLUTIONS

The centroid of a tetrahedron

1236. Proposed by Tran Quang Hung, Vietnam National University, Hanoi, Vietnam.
Let ABCD be a tetrahedron in 3-space, and let P , Q and R be three collinear points.
Assume that lines PA, PB, PC, and PD are not parallel to planes (BCD), (CDA),
(DAB), and (ABC), respectively. Line PA meets plane (BCD) at point A1. In the
plane (APR), assume that the two lines AR and A1Q intersect at A2. Point A3 lies
on line PA2 such that RA3 is parallel to line AA1. Define similarly the points B1, B2,
B3, C1, C2, C3,D1,D2, andD3. Prove that R is the centroid of tetrahedron A3B3C3D3

(see figure).

Solution by the proposer.

Proof. Let AB and BA denote signed lengths of segments. Apply the theorem of
Menelaus to 	APR with transversal A1A2Q to get

A1P

A1A
· A2A

A2R
· QR
QP
= 1. (1)

Let the Euclidean vector connecting an initial point X with a terminal point Y be
denoted by

−→
XY . Let x, y, z, t , not all zero, such that

x 
PA+ y 
PB + z 
PC + t 
PD = 
0. (2)
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If x + y + z+ t = 0, then equation (2) becomes

−(y + z+ t) 
PA+ y 
PB + z 
PC + t 
PD = 
0,
which implies

y 
AB + z 
AC + t 
AD = 
0.

This would mean that
{ 
AB, 
AC, 
AD} is linearly dependent, which is impossible since

A, B, C, and D are not coplanar. Therefore, we have x + y + z+ t �= 0.
Note that applying projections parallel to line AP onto plane (BCD), one has

A,P �→ A1, B �→ B, C �→ C, D �→ D. (3)

Since parallel projection is an affine transformation, it follows from (2) and (3),

y 
A1B + z 
A1C + t 
A1D = 
0. (4)

From (4), we may deduce y 
PB + z 
PC + t 
PD = (y + z + t) 
PA1. Combining with
(2), we obtain

−x 
PA = (y + z+ t) 
PA1,

or

x 
A1A = (x + y + z+ t) 
PA1.

From this,

A1P

A1A
= −x
x + y + z+ t . (5)

Let

QR

QP
= k. (6)

It follows from (1), (5), and (6),

A2R

A2A
= −kx
x + y + z+ t .

Since RA3 ‖ PA, applying the theorem of Thales yields


RA3 = RA3

PA
· 
PA = A2R

AA2

· 
PA = kx · 
PA
x + y + z+ t . (7)

Similarly, we have


RB3 = ky · 
PB
x + y + z+ t , 
RC3 = kz · 
PC

x + y + z+ t , 
RD3 = kt · 
PD
x + y + z+ t . (8)
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From (7) and (8), we get


RA3 + 
RB3 + 
RC3 + 
RD3 =
k
(
x 
PA+ y 
PB + z 
PC + t 
PD

)
x + y + z+ t = 
0,

which implies R is the centroid of A3B3C3D3. This completes the proof. �

No other solutions were received.

Two polygons

1237. Proposed by Tran Quang Hung, Vietnam National University, Hanoi, Vietnam.

Let A1A2. . .A2n and A′1A
′
2. . .A

′
2n (n ≥ 2) be two directly 2n-regular polygons. Prove

that
∑n

i=1A2iA
′2
2i =

∑n−1
i=0 A2i+1A

′2
2i+1 (see figure).

Solution by Albert Stadler, Herrliberg, Switzerland.

We may assume (without loss of generality) that the vertices of the two polygons are
given by

Ak = re πikn +iω, and A′k = 1+ r ′e πikn +iω′, for k = 1, 2, . . ., 2n.

Then
n∑
i=1

(
A2iA

′
2i

)2 −
n−1∑
i=0

(
A2i+1A

′
2i+1

)2

=
n∑
k=1

[(
A2kA

′
2k

)2 − (A2k−1A
′
2k−1

)2
]

=
n∑
k=1

[∣∣∣r ′e πi(2k)n +iω′ + 1− re πi(2k)n +iω
∣∣∣2

−
∣∣∣r ′e πi(2k−1)

n +iω′ + 1− re πi(2k−1)
n +iω

∣∣∣2]
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=
n∑
k=1

[
−re− 2πik

n −iω + re− πi(2k−1)
n −iω − re 2πik

n +iω

+re πi(2k−1)
n +iω + r ′e− 2πik

n −iω′

−r ′e− πi(2k−1)
n −iω′ + r ′e 2πik

n +iω′ − r ′e πi(2k−1)
n +iω′

]
= 0,

since
∑n

k=1 e
2πik
n = 0.

Also solved by Dmitry Fleischman, Santa Monica, CA; Eugene Herman, Grinnell C.; and the proposer.

Rotated squares

1238. Proposed by Jacob Siehler, Gustavus Adolphus College, St. Peter, MN.

Consider the intersection of a unit square with a copy of itself rotated through an angle
of θ about their mutual center. Note that in general, this region is an octagon. Evaluate
the average area of the intersection as θ ranges from 0 to π

2 .

Solution by Kyle Calderhead, Malone University, Canton, Ohio.

By extending lines from the mutual center to the midpoints of each side of each
square, as well as to the points of intersection of their sides, we can decompose the
octagonal intersection into sixteen right triangles—eight with a leg of length 1

2 and
adjacent angle of θ

2 , and eight more with a leg of length 1
2 and adjacent angle of π

4 − θ

2 .
In the figure above, one of each of these types of triangles has been highlighted.

Using right-triangle trigonometry, we see that the length of the other legs of these
triangles are 1

2 tan θ and 1
2 tan

(
π

4 − θ

2

)
, respectively. Hence the areas of each type of

triangle are 1
2 · 1

2 · 1
2 tan

(
θ

2

)
and 1

2 · 1
2 · 1

2 tan
(
π

4 − θ

2

)
, respectively. With eight of each,

we have a total area of

A = tan

(
θ

2

)
+ tan

(
π

4
− θ

2

)
.
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Note that this formula is consistent with the situation where the squares coincide, cor-
responding to θ being equal to either 0 or π

2 .

Before taking the average value, note that the integral
∫ π

2
0 tan

(
π

4 − θ

2

)
dθ can be

shown to be equivalent to the integral
∫ π

2
0 tan

(
θ

2

)
dθ by means of the substitution

u = π

2 − θ . This simplifies the average value calculation to

1

π/2

∫ π
2

0
2 tan

(
θ

2

)
dθ = 4

π

[
−2 ln

∣∣∣∣cos

(
θ

2

)∣∣∣∣
] π

2

0

= 4 ln 2

π
,

or approximately 0.8825.
Note: Using the same dissection technique, we can show that in the more gen-

eral case of two overlapping regular n-gons with unit area, the average area of their
intersection will be n

π
cot

(
π

n

)
ln
(
sec2

(
π

n

))
.

Also solved by Ricardo Alfaro, U. of Michigan - Flint; Andrew Bauman, U. of Arkansas at Little Rock;

Nate Belgard, The Barrie School; Brian Bradie, Christopher Newport U.; Rob Downes, Newark Academy;

Bill Dunn , Montgomery C.; Eagle Problem Solvers, Georgia Southern U.; Habib Far, Lone Star C. -

Montgomery; Dmitry Fleischman, Santa Monica, CA; Michael Goldenberg, Reiserstown, MD and Mark

Kaplan, U. of Maryland Global Campus (jointly); Aakash Gurung, Asahi Nago, and Xuan Pham (jointly);

Spencer Harris, Westmont C. (graduate); Eugene Herman, Grinnell C.; Stephen Herschkorn, Rutgers U.;

Liam Mauck and Clayton Coe, Cal Poly Pomona Problem Solving Group; Kelly McLenithan, Los Alamos,

NM; Peter Oman and Haohao Wang, Southeast Missouri St. U.; Leah Ramos (student), Seton Hall U.;

Volkhard Schindler, Berlin, Germany; Skidmore C. Problem Group; Albert Stadler, Herrliberg, Switzer-

land; and the proposer.

An explicit formula for a sequence from a recursion

1239. Proposed by Moubinool Omarjee, Lycée Henry IV, Paris, France.

Let u0 be a positive real number, and for every n ∈ N, define un+1 := u3
n−3un−

√
5

3u2
n+3
√

5un+4
.

Find a closed-form expression for un in terms of u0 and n.

Solution by the Stephen Locke, Florida Atlantic University.

Lemma 1. Let g(x) = x3

(x + 1)3 − x3
. Then, the kth iterate g(k) of g is given by

g(k)(x) = x3k

(x + 1)3k − x3k
.

Proof. We note that g(1) = g and assume that for some k, g(k)(x) = x3k

(x + 1)3k − x3k
.

Then,

g(k+1)(x) = g
(

x3k

(x + 1)3k − x3k

)

=
(

x3k

(x + 1)3k − x3k

)3
⎛
⎝
(

x3k

(x + 1)3k − x3k
+ 1

)3

−
(

x3k

(x + 1)3k − x3k

)3
⎞
⎠
−1
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= x3k+1
((
x3k +

(
(x + 1)3

k − x3k
))3 −

(
x3k
)3
)−1

= x3k+1
((
x + 1)3

k
)3 − x3k+1

)−1

,

establishing the inductive proof. �

Now, let f (w) = w3 − 3w −√5

3w2 + 3
√

5w + 4
, so that un+1 = f (un), and let τ = 1−√5

2
.

Note that f (τ +w) = τ + w3

3w2 + 3w + 1
= τ + w3

(w + 1)3 − w3
= τ + g(w). Hence,

for w = u0 − τ ,

un = f (n)(τ + w) = τ + g(n)(w) = τ + w3n

(w + 1)3n − w3n
,

providing a closed form for un in terms of u0 and n.

Also solved by Brian Bradie, Christopher Newport U.; Michael Goldenberg, Reistertown, MD and Mark

Kaplan, U. of Maryland Globan Campus (jointly); Albert Stadler, Herrliberg, Switzerland; and the proposer.

Fields for which the collection of additive subgroups and the collection
of multiplicative subgroups are isomorphic

1240. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado
Springs, CO.

Let S be a set. Recall that a partial order on S is a binary relation ≤ which is re-
flexive, anti-symmetric, and transitive. If S, T are sets and ≤, � are partial orders on
S and T , respectively, then we say that the partially ordered set (S,≤) and (T ,�)
are isomorphic if there is a bijection f : S → T such that for all s1, s2 ∈ S: s1 ≤ s2

iff f (s1) � f (s2). Now let F be a field, and let P+(F ) be the collection of additive
subgroups of F , partially ordered by set-theoretic inclusion, and let P×(F ) be the col-
lection of multiplicative subgroups of F× := F\{0}, partially ordered by inclusion.
Find all fields F for which P+(F ) and P×(F ) are isomorphic.

Solution by Anthony Bevelacqua, University of North Dakota, Grand Forks, North
Dakota.

Any subgroup H of F× corresponds to an additive subgroup A of F in such a
way that the subgroup lattices of H and A are isomorphic. Consequently the trivial
subgroup 〈1〉 of F× must correspond to the trivial subgroup 〈0〉 of F . Since a group is
finite if and only if it has finitely many subgroups, finite subgroups of F× correspond
to finite additive subgroups of F . Since a field of characteristic zero has a nontrivial
finite multiplicative subgroup (namely {1,−1}) and every nontrivial additive subgroup
of a field of characteristic zero is infinite, F must have characteristic p > 0. Thus Zp,
the field with p elements, is a subfield of F . We note that the additive subgroups of F
are precisely the Zp-subspaces of F .

Assume dimZp F > 1. Then F contains a subspace A of dimension two. A contains
exactly p + 1 proper, nontrivial subgroups, no one of which is contained in another.
NowA corresponds to a finite subgroupH of F× with exactly p + 1 proper, nontrivial
subgroups, no one of which is contained in another. Recall that J �→ |J | gives an
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isomorphism between the lattice of subgroups of a cyclic group of order n and the
lattice of positive divisors of n ordered by divisibility. Since H has p + 1 ≥ 3 proper,
nontrivial subgroups, no one of which is contained in another, |H | must be divisible
by (at least) three distinct primes q, r , and s. Now q is a proper divisor of qr and qr
is a proper divisor qrs, so H contains a pair of nested proper, nontrivial subgroups, a
contradiction.

Thus F = Zp. Since the additive group Zp has exactly two subgroups, Z×p has
exactly two subgroups. Therefore p − 1 = |Z×p | is a prime, and so p = 3. Hence Z3 is
the only field F for which P+(F ) and P×(F ) are isomorphic.

Also solved by the proposer.
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1260. Proposed by Nick Fiala, St. Cloud State University, St. Cloud, MN and Greg
Oman, University of Colorado, Colorado Springs, CO.

Recall that an associative ring R is a division ring provided R is a ring with identity
1 �= 0 and every nonzero element of R is invertible. Consider dropping the axiom that
every member of R has an additive inverse. Let’s call a division ring for which we
don’t assume additive inverses negative poor. Prove that if R is a finite negative poor
division ring with more than two elements, then every member of R has an additive
inverse.

SOLUTIONS

An inequality for the angles of a triangle

1231. Proposed by George Apostolopoulos, Messolongi, Greece.

Let ABC be a triangle. Show that
∑

α=A,B,C sin3(α) cos(α) ≤ 9
√

3
16 .

Solution by John Christopher, California State University, Sacramento.

Note that each angle of triangleABC lies in the interval (0, π). Using first semester
calculus, it is easily shown that in the interval (0, π), the function f (x) = sin3 x cos x

attains its maximum value when x = π/3. Since f (π/3) =
(√

3

2

)3

· 1

2
= 3
√

3

16
,

we have f (∠A)+ f (∠B)+ f (∠C) ≤ 3
√

3

16
+ 3
√

3

16
+ 3
√

3

16
= 9
√

3

16
. Equality is at-

tained when the triangle is equilateral and each angle is π/3.
Also solved by Ulrich Abel and Vitaliy Kushnirevych, Technische Hochschule Mittelhessen, Germany;

Michel Bataille, Rouen, France; Paul Bracken, U. of Texas, Edinburg; Brian Bradie, Christopher New-

port U.; Charles Burnette, Xavier U. of Louisiana; M. V. Channakeshava, Bengaluru, India; Ritabrato

Chaterjee (student), Western Michigan U.; Danko Dmitry (student), RUDN U., Moscow, Russia; Eagle

Problem Solvers, Georgia Southern U.; The Episcopal Academy Problem Solvers; Habib Far, Lone Star

C. - Montgomery; Meagan Fisher, Anna Phillips, Juan Martinez, and William French (students), U.

of Arkansas at Little Rock; Fresno State Journal Problem Solving Group; Shubham Goel, GGSIPU,

Uttar Pradesh, India; Michael Goldenberg, Reierstown, MD and Mark Kaplan, U. of Maryland Global

Campus (jointly); Russ Gordon, Whitman C.; Jacob Guerra, Lowell, MA; Eugene Herman, Grinnell C.;

Walther Janous, Ursulinengymnasium, Innsbruck, Austria; A. Bathi Kasturiararchi, Kent St. U. at Stark;

Hidefumi Katsuura, San Jose St. U.; Parviz Khalili, Newport News, VA; Joseph Klaips (student), North

Central C.; Panagiotis Krasopoulos, Athens, Greece; Wei-Kai Lai, U. of South Carolina Salkehatchie; Kee-

Wai Lau, Hong Kong, China; Shing Hin Jimmy Pa; Paolo Perfetti, Universitá degli studi di Tor Vergata

Roma; Chrysostom Petalas, Ioannina, Greece; Volkhard Schindler, Berlin, Germany; Joel Schlosberg,

Bayside, NY; Digby Smith, Waterton Lakes Mathematics Guild; Southeast Missouri State U. Math Club,

; Albert Stadler, Herrliberg, Switzerland; Michael Vowe, Therwil, Switzerland; and the proposer. One in-

complete solution was received.

The Catalan numbers

1232. Proposed by Jacob Guerra, Salem State University, Salem, MA.
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Define, for every nonnegative integer n, the nth Catalan number by Cn := 1
n+1

(2n
n

)
.

Consider the sequence of complex polynomials in z defined by zk := z2
k−1 + z for

every nonnegative integer k, where z0 := z. It is clear that zk has degree 2k and thus

has the representation zk =∑2k

n=1Mn,kz
n, where each Mn,k is a positive integer. Prove

that Mn,k = Cn−1 for 1 ≤ n ≤ k + 1.
Solution by Charles Burnette, Xavier University of Louisiana, New Orleans, LA.

We proceed by induction on k, noting that for the base case k = 0, we have M1,0 =
1 = C0. For the induction step, suppose that Mn,r = Cn−1 for 1 ≤ n ≤ r + 1, where r
is a nonnegative integer. Observe that

zr+1 =
(

2r∑
n=1

Mn,rz
n

)(
2r∑
n=1

Mn,rz
n

)
+ z =

2r+1∑
n=2

(
n−1∑
m=1

Mm,rMn−m,r

)
zn + z,

so that then M1,r+1 = 1 = C0. Furthermore, because the Catalan numbers satisfy the
recurrence Cn+1 =∑n

m=0 CmCn−m, we find that

Mn,r+1 =
n−1∑
m=1

Mm,rMn−m,r =
n−1∑
m=1

Cm−1Cn−m−1 =
n−2∑
m=0

CmCn−m−2 = Cn−1

for 1 ≤ n ≤ r + 2. Also solved by Ulrich Abel, Technische Hochschule Mittelhessen, Germany; Cal

Poly Pomona Problem Solving Group; Hongwei Chen, Christopher Newport U.; Eagle Problem Solvers,

Georgia Southern U.; Michael Goldenberg, Reisterstown, MD and Mark Kaplan, U. of Maryland Global

Campus (jointly); Eugene Herman, Grinnell C.; Walther Janous, Innsbruck, Austria; Panagiotis Krasopou-

los, Athens, Greece; Shing Hin Jimmy Pa; John Quintanilla, U. of North Texas; Ajay Srinivasan, U. of

Southern California; Albert Stadler, Herrliberg, Switzerland; Dan Swenson, Black Hills St. U.; and the pro-

poser. One incomplete solution was received.

Uniform random variables

1233. Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA.

Suppose that X and Y are independent, uniform random variables over [0, 1]. Define
UX, VX, and BX as follows: UX is uniform over [0, X], VX is uniform over [X, 1], and
BX ∈ {0, 1}, with P(BX = 1) = X, and P(BX) = 0 = 1 − X. Now define random
variables Z and WX as follows:

Z = Y −X1{Y ≥ X} + (1−X + Y )1{Y < X}, and

WX = BX · UX + (1− BX)VX.

Prove that both Z and WX are uniform over [0, 1]. Here, 1[S] is the indicator function
that is equal to 1 if S is true and 0 otherwise. Solution by John Quintanilla, University
of North Texas, Denton, Texas.

We proceed by induction on k. The statement clearly holds for k = 1:

z1 = z2
0 + z = z+ z2 = C0z+ C1z

2.
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We now assume that, for some k ≥ 1, Mn,k = Cn−1 for all 1 ≤ n ≤ k + 1, and we
define

zk+1 = z+
(
M1,kz+M2,kz

2 +M3,kz
3 + · · · +M2k,kz

2k
)2

Our goal is to show that Mn,k+1 = Cn−1 for n = 1, 2, . . . , k + 2.
For n = 1, the coefficientM1,k+1 of z in zk+1 is clearly 1, or C0. For 2 ≤ n ≤ k + 2,

the coefficientMn,k+1 of zn in zk+1 can be found by expanding the above square; every
product of the form Mj,kz

j ·Mn−j,kzn−j will contribute to the term Mn,k+1z
n. Since

n ≤ k + 2 ≤ 2k + 1 (since k ≥ 1), the values of j that will contribute to this term
will be j = 1, 2, . . . , n − 1. (Ordinarily, the z0 and zn terms would also contribute;
however, there is no z0 term in the expression being squared). Therefore,

Mn,k+1 =
n−1∑
j=1

Mj,kMn−j,k

=
n−1∑
j=1

Cj−1Cn−j−1 by induction hypothesis

=
n−2∑
j=0

CjCn−2−j after reindexing

= Cn−1,

where we used a well-known recursive relationship for the Catalan numbers in the last
step. �
Also solved by Robert Agnew, Palm Coast, FL; Charles Burnette, Xavier U. of Louisiana; Dmitry Fleis-

chman, Santa Monica, CA; Missouri St. U. Problem Solving Group; Northwestern U. Math Problem

Solving Group; Rob Pratt, Apex, NC; Ajay Srinivasan, U. of Southern California; Dan Swenson, Black

Hills St. U.; and the proposer.

The limit of a quotient of sequences defined by sums

1234. Proposed by Moubinool Omarjee, Lycée Henry IV, Paris, France.

For every positive integer n, set an := ∑n

k=1
1
k4 and bn := ∑n

k=1
1

(2k−1)4
. Compute

limn→∞( bnan − 15
16 ).

Solution by Russelle Guadalupe (student), University of the Philippines, Diliman, Que-
zon City, Philippines.

We note that for integers n ≥ 1,

2n∑
k=1

1

k4
=

n∑
k=1

1

(2k)4
+

n∑
k=1

1

(2k − 1)4
= an

16
+ bn, and

2n∑
k=1

1

k4
=

n∑
k=1

1

k4
+

2n∑
k=n+1

1

k4
= an +

n∑
k=1

1

(n+ k)4 .
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Thus, we have

n∑
k=1

1

(n+ k)4 = bn +
an

16
− an = bn − 15

16
an

and

lim
n→∞ n

3

(
bn

an
− 15

16

)
= lim

n→∞
n3

an

n∑
k=1

1

(n+ k)4 = lim
n→∞

1

an
· 1

n

n∑
k=1

1

(1+ k/n)4 .

Since it is well-known that an approaches π4

90 as n→∞ and

lim
n→∞

1

n

n∑
k=1

1

(1+ k/n)4

is the limit of a Riemann sum, which is given by the definite integral
∫ 2

1 x
−4 dx, we

obtain

lim
n→∞ n

3

(
bn

an
− 15

16

)
= 90

π4

∫ 2

1

dx

x4
= 30

π4

(
1− 1

8

)
= 105

4π4
.

Also solved by Robert Agnew, Palm Coast, FL; Michel Bataille, Rouen, France; Paul Bracken, U. of Texas,

Edinburg (2 solutions); Brian Bradie, Christopher Newport U. (2 solutions); Ritabrato Chaterjee, Western

Michigan U. (2 solutions); Hongwei Chen, Christopher Newport U. ; Giuseppe Fera, Vicenza, Italy; Dmitry

Fleischman, Santa Monica, CA; Michael Goldenberg, Reistertown, MD and Mark Kaplan, U. of Mary-

land Globan Campus (jointly); Russ Gordon, Whitman C.; Eugene Herman, Grinnell C.; Eugen Ionaşcu,

; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; Stephen Kaczkowski, South Carolina Gover-

nor’s S. for Science and Mathematics; A. Bathi Kasturiararchi, Kent St. U.; Yoodam Kim, Seoul National

U. of Science and Technology; Kee-Wai Lau, Hong Kong, China; Missouri St. U. Problem Solving Group;

Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain; Mark Sand, C. of Saint Mary; Kenneth

Schilling, U. of Michigan - Flint; Volkhard Schindler, Berlin, Germany; Ajay Srinivasan, U. of Southern

California; Albert Stadler, Herrliberg, Switzerland; Seán Stewart, King Abdullah U. of Science and Tech-

nology, Saudi Arabia; Southeast Missouri St. U. Math Club; Michael Vowe, Therwil, Switzerland; and the

proposer. Three incorrect solutions were received.

Non-finitely generated sets whose proper subsets closed under a given
function are all finitely generated

1235. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado
Springs, CO.

Let S be a set, and let f : S → S be a function. For s ∈ S, the orbit of s is defined by
O(s) := {f n(s) : n ≥ 0}, where f0 : S → S is the identity map and f n is the n-fold
composition of f with itself for n > 0. A subsetX ⊆ S is closed under f provided that
for all x ∈ X, also f (x) ∈ X. Finally, if X is closed under F , we say that X is finitely
generated if there is a finite F ⊆ X such that X = ⋃x∈F O(x). Find all structures
(S, f ) up to isomorphism where S is not finitely generated, but every proper subset of
S closed under f is finitely generated. Note that (S, f ) and (T , g) are isomorphic if
there is a bijection ϕ : S → T such that ϕ(f (s)) = g(ϕ(s)) for all s ∈ S. Solution by
Kenneth Schilling, University of Michigan-Flint.
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Let f : S → S be as described in the proposal.
First note that f : S → S is surjective, for if t ∈ S \ f (S), then S \ {t} is invariant,

and if S \ {t} were finitely generated, then so would be S.
Second, say s ∈ S is of finite order there exists k > 0 with f k(s) = s, and of infinite

order if no such k exists. We claim that there exists s ∈ S of infinite order. Suppose
to the contrary that every s ∈ S is of finite order. Then it is clear that every orbit is
finite. Furthermore, the orbits are disjoint, for if O(s) ∩O(t) �= ∅, then there exist
i, j, k such that f i(s) = f j (t) and f k(s) = s. Then s = f ik(s) = f i(k−1) ◦ f i(s) =
f i(k−1) ◦ f j (t), so s ∈ O(t), and by symmetry t ∈ O(s), so O(s) = O(t). Now S is
a disjoint union of finite orbits, so any union of infinitely many but not all orbits is a
proper closed but not finitely generated subset of S, contrary to hypothesis.

Let s0 ∈ S be of infinite order. For n > 0, let sn = f n(s). Choose s−1 so that
f (s−1) = s0, then choose s−2 so that f (s−2) = s−1, then choose s−3 so that f (s−3) =
s−2, and so on. The doubly infinite sequence s = {sn : n ∈ Z} is closed under f . For
n < 0, sn is of infinite order, for if f k(sn) = sn, then s0 = f −n(sn) = f k−n(s0), con-
trary to the fact that s0 is of infinite order. It follows that s is not finitely generated; for
n < 0, sn is not in the orbit of sm for m > n. Therefore s = S.

The structure (S, f ) is isomorphic to one of the following:

S = Z and f (z) = z+ 1, or for some positive integer m, S = {z ∈ Z : z ≤ m} and

f (z) =
{
z+ 1 for z < m

1 for z = m .

Also solved by Eugen Ionaşcu, Columbus St. U.; Dan Swenson, Black Hills St. U.; and the proposer.
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SOLUTIONS

An easy logarithmic inequality

1226. Proposed by George Apostolopoulos, Messolongi, Greece.

Let a, b, and c be positive real numbers. Prove that ln 27abc
(a+b+c)3 ≤ (a−b)2+(b−c)2+(c−a)2

3 .

Solution by Shing Hin Jimmy Pa.

ln

[
27abc

(a + b + c)3
]
= ln

[
abc(
a+b+c

3

)3

]

≤ ln

[
abc

(abc)3/3

]
(AM-GM Inequality)

= 0

≤ (a − b)
2 + (b − c)2 + (c − a)2

3
.

Also solved by F. R. Ataev, Westminster International U. in Tashkent; Michel Bataille, Rouen, France; So-

ham Bhadra (student), Patha Bhavan, India; Connor Chambers, Rohan Dalal, Jonathan Hong, Kassidy

Kryukov, Dylan Lorello (students), Tommy Goebeler, and Molly Konopka, The Episcopal Academy;

Carson Dorough, Cuesta C.; Habib Far, Lone Star C. - Montgomery; Dmitry Fleischman, Santa Monica,

CA; Philip Wagala Gwanyama, Northeastern Illinois U.; Eugene Herman, Grinnell C.; Donald Hooley,

Bluffton, OH; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; A. Bathi Kasturiarachi, Kent
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St. U. at Stark; Hidefumi Katsuura, San Jose St. U.; Panagiotis Krasopoulos, Athens, Greece; Wei-Kai

Lai, U. of S. Carolina Salkehatchie and JOhn Risher (graduate student), C. of Charleston; Mihat Mammadli;

Kelly McLenithan, Los Alamos, NM; Antoine Mhanna, Lebanon; Paolo Perfetti, Universitá degli studi

di Tor Vergata Roma; Benjamin Phillabaum; Henry Ricardo, Westchester Area Math Circle; Digby Smith,

Waterton Lakes Mathematics Guild; Southeast Missouri St. U. Math Club; Albert Stadler, Herrliberg,

Switzerland; Kwame Yeboah and Fatema Ruhi, Southeast Missouri St. U.; and the proposer.

Nonexistence of a pair of functions with intertwined inequalities

1227. Proposed by Albert Natian, Los Angeles Valley College, Valley Glen, CA.

Do there exist functions f : (0, 1)→ R and g : (0, 1)→ R such that for all x ∈ (0, 1),
the following two conditions are satisfied:

1. f (x) < g(x), and
2. if x < y, then g(x) < f (y)?

Either find examples of such f and g or prove that no such f and g exist.

Solution by Bruce Burdick, retired, Providence, RI.

Suppose functions f and g satisfy the given properties. Since x < y implies f (x) <
g(x) < f (y), we see that f is strictly increasing. Therefore, f can only have count-
ably many points of discontinuity in (0, 1). We choose x ∈ (0, 1) with f (x) =
limy→x f (y). By property 2, we must have

g(x) ≤ lim
y→x+

f (y) = f (x).

But that contradicts property 1. So, no such pair of functions can exist.

Also solved by Jesús Sistos Barron (student) and Eagle Problem Solvers, Georgia Southern U.; Bobby

Benim, U. of Colorado - Boulder; Soham Bhadra (student), Patha Bhavan, India; Michael Ecker (retired),

Penn. St. U.; Kaitlyn Gibson and Arthur Rosenthal, Salem St. U.; Lixing Han, U. of Michigan - Flint; Eu-

gene Herman, Grinnell C.; Eugen Ionaşcu, Columbus St. U.; Juniata C. Problem Solving Group Ioana

Mihaila and Ivan Ventura, Cal Poly Pomona; Charlie Mumma, Seattle, WA; Katherine Nogin, Clovis

North High School; Northwestern U. Math Problem Solving Group; Paolo Perfetti, Universitá degli

studi di Tor Vergata Roma; Lawrence Peterson, U. of N. Dakota; Mark Sand, C. of St. Mary; Stephen

Scheinberg, Corona del Mar; Joel Schlosberg, Bayside, NY; Omar Sonebi; Nora Thornber; and the pro-

poser.

Rings with few multiplicative maps are rare.

1228. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado
Springs, CO.

Let R be a ring, and let f : R → R be a function. Say that f is multiplicative if
f (xy) = f (x)f (y), f (0) = 0, and (if R has an identity) f (1) = 1. Find all commu-
tative rings R (not assumed to have an identity) with the following two properties:

1. There exists an element a ∈ R which is not nilpotent, and
2. every multiplicative map f : R→ R is either the identity map or the zero map.

Solution by Kevin Byrnes.

Claim: The only commutative ring R satisfying conditions 1 and 2 is R = F2.
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Proof. We will prove the claim by showing it is true when |R| = 2, and that no com-
mutative ring R with |R| ≥ 3 satisfies the conditions (observe, no ring of size 1 has a
non-nilpotent element). If |R| = 2 then the distinguished non-nilpotent element a ∈ R
serves as the identity element 1, and applying Cauchy’s Theorem to the additive group
of R forces R = F2. Trivially, the only multiplicative map f : F2 → F2 with f (0) = 0
and f (1) = 1 is f = id.

Now suppose |R| ≥ 3 and R has a distinguished non-nilpotent element a, we’ll
demonstrate the existence of a multiplicative function f : R → R that is neither 0
nor id.

Case 1: 1 ∈ R
Recall that if 1 ∈ R then R contains at least one maximal ideal M and M is also a
prime ideal (see Dummit and Foote Chapter 7, Prop. 11–13). Now define f : R→ R

by f (x) =
{

0, if x ∈ M
1, otherwise

. Observe that f (0) = 0, f (1) = 1 (as M cannot con-

tain 1). Furthermore, f is multiplicative since for any x, y ∈ R: if x or y ∈ M then
xy ∈ M so f (xy) = 0 = f (x)f (y); if neither x nor y ∈ M then xy �∈ M as M is
prime, so f (xy) = 1 = f (x)f (y). Finally, f must map some x ∈ R − {0, 1} to 0 or
1, so f �= id. Thus we have demonstrated the desired function f .

Case 2: 1 �∈ R
We will show that one of the two functions: g(x) = x2 or h(x) = ax is multiplicative,
maps 0 to 0, and is not 0 or id. Clearly g is multiplicative and g(0) = 0; if g �= id we
are done, so suppose that g = id, hence x2 = x ∀x ∈ R. In particular, a2 = a and thus
a2x = ax ∀x ∈ R, implying a(ax − x) = 0 ∀x ∈ R. Since 1 �∈ R we have ax̃ �= x̃ for
some x̃ ∈ R and thus ∃b ∈ R − {0} (specifically b = ax̃ − x̃) such that ab = 0. In this
case, for any x, y ∈ R: h(xy) = axy = a2xy = axay = h(x)h(y) since a2 = a and
R is commutative, so h is multiplicative. Clearly h(0) = 0, and h(b) = ab = 0 �= b,
so h �= id. �

But wait, there’s more! Even if condition 1 is dropped it is still possible to find
multiplicative functions �= 0 or id for commutative rings of size ≥ 3. Consider the
subring S = {0, 3, 6} of Z9. There we have xy = 0 ∀x, y ∈ S, hence any function f :
S → S with f (0) = 0 is multiplicative. In particular, f (0) = 0, f (3) = 6, f (6) = 3
is multiplicative (even stronger, it is a ring homomorphism).

Also solved by Ioana Mihaila and Ivan Ventura, Cal Poly Pomona; and the proposer.

A bound on the spectral radius of a matrix

1229. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Let A = (aij ) be an n × n matrix such that aii = 0 and aij = bicj for i �= j , where
bi > 0 and cj ≥ 0 for 1 ≤ i, j ≤ n. Prove that the spectral radius of A is strictly less
than 1 if and only if

∑n

i=1
bici
bi ci+1 < 1.

Solution by Lixing Han, University of Michigan - Flint.

Denote the spectral radius of matrix A by ρ(A). We will use the following well-known
result about nonnegative matrices.
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If A is an n × n nonnegative matrix and x ∈ Rn is a (entry-wise) positive vector,
then

min
1≤i≤n

(Ax)i

xi
≤ ρ(A) ≤ max

1≤i≤n
(Ax)i

xi
.

For the matrix A in the problem, consider A− I . where I is the n× n identity matrix.
Then

A− I = bcT − diag ([b1c1 + 1, . . ., bncn + 1]) ,

where b = [b1, . . ., bn]
T and c = [c1, . . ., cn]T are the column vectors and diag

([b1c1 + 1, . . ., bncn + 1]) is the diagonal matrix whose diagonal entries are b1c1 +
1, . . ., bncn + 1. Choose the positive vector

y =
[

b1

b1c1 + 1
, . . .,

bn

bncn + 1

]T
.

Then we have

(A− I )y =
(

n∑
i=1

bici

bici + 1
− 1

)
b.

If
∑n

i=1
bici
bi ci+1 < 1, then from (2) we have (A− I )y. Thus Ay < y. This implies

max
1≤i≤n

(Ay)i

yi
< 1.

Therefore by (1) we must have ρ(A) < 1.
On the other hand, if

∑n

i=1
bici
bi ci+1 ≥ 1, then from (2) we have (A− I )y ≥ 0. Thus

Ay ≥ y, which implies

min
1≤i≤n

(Ay)i

yi
≥ 1.

By (1) we obtain ρ(A) ≥ 1.
We thus conclude that ρ(A) < 1 if and only if

∑n

i=1
bici
bi ci+1 < 1.

Also solved by Michel Bataille, Rouen, France; Soham Bhadra (student), Patha Bhavan, India; and the pro-

poser.

Primitive Heronian triangles with equivalent rectangles

1230. Proposed by Jason Zimba, Amplify, New York, NY.

A Heronian triangle is a triangle with positive integer side lengths and positive integer
area. Denoting the side lengths of a Heronian triangle by a, b, and c, the triangle is
called primitive if gcd(a, b, c) = 1. We shall say that a primitive Heronian triangle has
an equivalent rectangle if there exists a rectangle with integer length and width that
shares the same perimeter and area as the triangle. Show that infinitely many primitive
Heronian triangles have equivalent rectangles.
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Solution by Kyle Calderhead, Malone University, Canton, OH.

We provide a constructive solution by parameterizing an infinite family of such
triangles.

Consider the triangles with sides

a = n3 + 2n2 + 2n+ 1,

b = n3 + 2n2 + 2n, and

c = 2n2 + 2n+ 1,

where n is a positive integer. This must be primitive, since a = b + 1.
This gives us a perimeter of P = 2n3 + 6n2 + 6n + 2. Calculating the area (us-

ing Heron’s formula, of course), it is straightforward to verify that it simplifies to
A = n(n+ 1)2(n2 + n+ 1). The equivalent rectangle has dimensions n(n+ 1)× (n+
1)(n2 + n+ 1). We can immediately see that the area is the same, and another straight-
forward calculation shows that the perimeter is the same as well.

We should note, however, that this parameterization does not cover all such
triangles—for example, those with sides (a, b, c) equal to (56, 53, 53) or (95, 87, 68).

Also solved by John Christopher, California St. U., Sacramento; Rohan Dalal (student) and Tommy Goe-

beler, The Episcopal Academy; Habib Far, Lone Star C. - Montgomery; Eugen Ionaşcu, Columbus St. U.;

Michael Vowe, Therwil, Switzerland; and the proposer.
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SOLUTIONS

(Note that this section includes solutions that would normally have appeared in the
January issue, together with all solutions slated for the March issue.)

Tiling a square with small squares and narrow rectangles

1216. Proposed by Oluwatobi Alabi, Government Science Secondary School Pyakasa
Abuja, Abuja, Nigeria.

For an integer n ≥ 3, find a closed form for the number of ways to tile an n × n
square with 1× 1 squares and (n− 1)× 1 rectangles (each of which may be placed
horizontally or vertically).
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Solution by Rob Pratt, Apex, NC.
Each tiling is uniquely determined by its placement of h horizontal and v vertical

rectangles. We consider nine cases.

• h = 0, v = 0: There is clearly 1 such tiling with no rectangles.
• h = 1, v = 1: If the horizontal rectangle H is in row 1 or n, there are 2 ways to

place H and n+ 1 ways to place the vertical rectangle V . If H is in one of the other
n − 2 rows, there are 2 ways to place H and 2 ways to place V . This case yields
4(n+ 1)+ 4(n− 2) = 8n− 4 tilings.

• h = 2, v = 2: There are 2 such tilings, with the horizontal rectangles in rows 1 and
n and the vertical rectangles in columns 1 and n.

• h = 0, v > 0: Each column has 3 choices for a vertical rectangle (upper, lower, or
empty), but v > 0 implies that not all columns are empty. This case yields 3n − 1
tilings.

• h > 0, v = 0: Same count as h = 0, v > 0.
• h = 1, v > 1: The horizontal rectangle H must be in row 1 or n, and for each row

there are 2 ways to placeH . If the remaining column contains a vertical rectangle V ,
there are 2 ways to place V and 2n−1 − 1 nonempty placements of vertical rectangles
in the n − 1 columns shared with H . If the remaining column does not contain a
vertical rectangle, there are 2n−1 − 1− (n− 1) placements of at least 2 vertical rect-
angles. This case yields 4[2(2n−1 − 1)+ (2n−1 − n)] = 4(3 · 2n−1 − n− 2) tilings.

• h > 1, v = 1: Same count as h = 1, v > 1.
• h ≥ 2, v > 2: There are 0 such tilings because the horizontal rectangles block at

least n− 2 columns.
• h > 2, v ≥ 2: Same count as h ≥ 2, v > 2.

Hence, the total number of tilings is

1+ (8n− 4)+ 2+ 2(3n − 1)+ 2[4(3 · 2n−1 − n− 2)] = 2 · 3n + 12 · 2n − 19.

Each tiling is uniquely determined by its placement of h horizontal and v vertical
rectangles. We consider nine cases.

• h = 0, v = 0: There is clearly 1 such tiling with no rectangles.
• h = 1, v = 1: If the horizontal rectangle H is in row 1 or n, there are 2 ways to

place H and n+ 1 ways to place the vertical rectangle V . If H is in one of the other
n − 2 rows, there are 2 ways to place H and 2 ways to place V . This case yields
4(n+ 1)+ 4(n− 2) = 8n− 4 tilings.

• h = 2, v = 2: There are 2 such tilings, with the horizontal rectangles in rows 1 and
n and the vertical rectangles in columns 1 and n.

• h = 0, v > 0: Each column has 3 choices for a vertical rectangle (upper, lower, or
empty), but v > 0 implies that not all columns are empty. This case yields 3n − 1
tilings.

• h > 0, v = 0: Same count as h = 0, v > 0.
• h = 1, v > 1: The horizontal rectangle H must be in row 1 or n, and for each row

there are 2 ways to placeH . If the remaining column contains a vertical rectangle V ,
there are 2 ways to place V and 2n−1 − 1 nonempty placements of vertical rectangles
in the n − 1 columns shared with H . If the remaining column does not contain a
vertical rectangle, there are 2n−1 − 1− (n− 1) placements of at least 2 vertical rect-
angles. This case yields 4[2(2n−1 − 1)+ (2n−1 − n)] = 4(3 · 2n−1 − n− 2) tilings.

VOL. 54, NO. 2, MARCH 2023 THE COLLEGE MATHEMATICS JOURNAL 149



• h > 1, v = 1: Same count as h = 1, v > 1.
• h ≥ 2, v > 2: There are 0 such tilings because the horizontal rectangles block at

least n− 2 columns.
• h > 2, v ≥ 2: Same count as h ≥ 2, v > 2.

Hence, the total number of tilings is

1+ (8n− 4)+ 2+ 2(3n − 1)+ 2[4(3 · 2n−1 − n− 2)] = 2 · 3n + 12 · 2n − 19.

Also solved by Kyle Calderhead, Malone U.; Vincent and Owen Zhang high school students from

MathILy summer program; Ethan Curb, Peyton Matheson, Aiden Milligan, Cameron Moening, Vir-

ginia Rhett Smith and Ell Torek, high school students at The Citadel; Eagle Problem Solvers,

Georgia Southern U.; Dmitri Fleishman, Santa Monica, CA; Walther Janous, Ursulinengymnasium,

Innsbruck, Austria; Lawrence Peterson, U. of N. Dakota; and the proposer. Two incorrect solutions

were received.

Fibonacci numbers from the solution to an integral equation

1217. Proposed by Eugen Ionascu, Columbus State University, Columbus, GA.

Prove the following:

1. There exists a unique function f : R→ R which satisfies the following equation
for every x ∈ R:

f (−x) = 1+
∫ x

0
cos(t)f (x − t)dt.

Moreover, express f explicitly in terms of elementary functions.

2. For every nonnegative integer k, f k(0) = (−1)�
k+1

2 	Fk, where F0 = 0, F1 =
1, Fk+2 = Fk + Fk+1, and �x	 denote the greatest integer less than or equal to
a real number x.

Solution by Russ Gordon, Whitman College, Walla Walla, WA.

Using some simple substitutions, it is easy to verify that

g(−x) = 1+
∫ x

0
g(t) cos(x − t) dt

and

g(x) = 1−
∫ x

0
g(−t) cos(x − t) dt.

It then follows that

u(x) ≡ g(x)+ g(−x) = 2+
∫ x

0
v(t) cos(x − t) dt;

v(x) ≡ g(x)− g(−x) = −
∫ x

0
u(t) cos(x − t) dt.
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Taking Laplace transforms (with the obvious notation and noting the convolution op-
erator), we find that

U(s) = 2

s
+ s

s2 + 1
V (s)

and

V (s) = − s

s2 + 1
U(s).

Letting α = φ and β = −1/φ (the two solutions to the equation x2 = x + 1), where
phi represents the golden mean, we find that

U(s) = 2

s
· s

4 + 3s2 + 1− s2

s4 + 3s2 + 1
= 2

s
− 2s(

s2 + α2
) (
s2 + β2

)
= 2

s
+ 2√

5

(
s

s2 + α2
− s

s2 + β2

)
,

where we have used the simple facts αβ = −1, α + β = 1, and α − β = √5. Taking
the inverse Laplace transform, it follows that

u(x) = 2+ 2√
5
(cos(αx)− cos(βx)) .

The function V (s) satisfies

V (s) = − s

s2 + 1
· 2

s
·
(
s2 + 1

)2

s4 + 3s2 + 1
= −2 · s2 + 1(

s2 + α2
) (
s2 + β2

)
= − 2√

5

(
α

s2 + α2
− β

s2 + β2

)
,

and thus

v(x) = − 2√
5
(sin(αx)− sin(βx)) .

Combining these results gives

g(x) = u(x)+ v(x)
2

= 1+ 1√
5
(cos(αx)− cos(βx)− sin(αx)+ sin(βx)) .

Using simple derivative properties of the sine and cosine functions, along with the
Binet formula for the Fibonacci numbers, we see that

g(2k−1)(0) = (−1)k · α
2k−1 − β2k−1

√
5

= (−1)kf2k−1

and

g(2k)(0) = (−1)k · α
2k − β2k

√
5
= (−1)kf2k

for each positive integer k. This completes the solution.
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Also solved by Michel Bataille, Rouen, France; Brian Bradie, Christopher Newport U.; Bruce Burdick (re-

tired), Providence, RI; Hongwei Chen, Christopher Newport U.; Russ Gordon (additional solution), Whitman

C.; Eugene Herman, Grinnell C.; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; Kee-Wai Lau,

Hong Kong, China; Albert Natian, Los Angeles Valley C.; and the proposer.

Pell numbers and Pell-Lucas numbers

1218. Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran
Canaria, Spain.

The Pell and Pell-Lucas numbers, {Pn : n ∈ N} and {Qn : n ∈ N}, respectively, are
defined recursively as follows: P0 = 0, P1 = 1,Q0 = Q1 = 2, and (for each sequence)
un+1 = 2un + un−1 for n ≥ 1. Next, let n ∈ N, and letAn(x) andBn(x) be polynomials
of degre n with real coefficients such that for 0 ≤ i ≤ n, we have An(i) = Pi and
Bn(i) = Qi . Find An(n+ 1) and Bn(n+ 1) in terms of Pn+1 and Qn+1, respectively.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

Solution: For each i = 0, 1, 2, . . . , n, let xi = i and define

Ln,i(x) =
n∏

j=0,j �=i

x − j
i − j =

(−1)n−i

i!(n− i)!
n∏

j=0,j �=i
(x − j).

Note Ln,i(x) is the Lagrange interpolating polynomial associated with the node xi = i
which satisfies

Ln,i(j) =
{

0, j �= i
1, j = i and Ln,i(n+ 1) = (−1)n−i

(
n+ 1

i

)
.

The Lagrange form for the interpolating polynomials An(x) and Bn(x) is then

An(x) =
n∑
i=0

Ln,i(x)Pi and Bn(x) =
n∑
i=0

Ln,i(x)Qi;

consequently,

An(n+ 1) = (−1)n
n∑
i=0

(−1)i
(
n+ 1

i

)
Pi = Pn+1 + (−1)n

n+1∑
i=0

(−1)i
(
n+ 1

i

)
Pi

and

Bn(n+ 1) = (−1)n
n∑
i=0

(−1)i
(
n+ 1

i

)
Qi = Qn+1 + (−1)n

n+1∑
i=0

(−1)i
(
n+ 1

i

)
Qi.

Now, the Binet forms for Pi and Qi are

Pi = (1+√2)i − (1−√2)i

2
√

2
and Qi = (1+

√
2)i + (1−√2)i,
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so, by the binomial theorem,

n+1∑
i=0

(−1)i
(
n+ 1

i

)
Pi = (−√2)n+1 − (√2)n+1

2
√

2

= (
√

2)n

2
((−1)n+1 − 1) =

{
0, n odd
−(√2)n, n even

and

n+1∑
i=0

(−1)i
(
n+ 1

i

)
Qi = (−

√
2)n+1 + (√2)n+1

= (√2)n+1(1+ (−1)n+1) =
{

2(
√

2)n+1, n odd
0, n even

.

Finally,

An(n+ 1) = Pn+1 −
{

0, n odd
(
√

2)n, n even

and

Bn(n+ 1) = Qn+1 −
{

2(
√

2)n+1, n odd
0, n even

.

Also solved by Michel Bataille, Rouen, France; Eugene Herman, Grinnell C.; Northwestern U. Math

Problem Solving Group; Albert Stadler, Herrliberg, Switzerland; and the proposer. One incorrect solution

was received.

A criterion for a commutative ring to be a field

1219. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado
Springs, CO.

Let R be a commutative ring with identity 1 �= 0. Recall that if I and J are ideals of
R, then the product of I and J is defined as follows:

IJ := {i1j1 + · · · + injn : ik ∈ I, jk ∈ J, n ∈ Z+}.
Prove that R is a field if and only if for every ideal I and J of R, we have IJ ∈ {I, J }.
Solution by Missouri State Problem Solving Group.

Sufficiency follows directly since if R is a field, then the only ideals of R are 0
and R. For necessity, let x, y ∈ R. Then the assumption implies that either (xy) =
(x)(y) = (x) or (xy) = (x)(y) = (y), where (z) denotes the ideal of R generated by
z ∈ R. Now if xy = 0, then either (x) = (0) or (y) = (0), that is either x = 0 or y = 0,
so R is an integral domain. Let a be a nonzero element of R. Then we have (a2) =
(a)2 = (a)(a) ∈ {(a), (a)}, that is, (a2) = (a). Since R is a domain, then a2 = ua for
some unit u ∈ R, and by cancelation we get a = u. So all nonzero elements are units
and hence R is a field.
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Also solved by Anthony Bevelacqua, U. of N. Dakota; Paul Budney, Sunderland, MA; Bill Dunn, Mont-

gomery C.; Eugene Herman, Grinnell C.; Scheilla Raffaelli, Indiana U. East; Diego Vurgait; and the

proposer.

Cofactors of cofactors

1220. Proposed by Jeff Stuart, Pacific Lutheran University, Tacoma, WA.

Let A be an n× n real or complex matrix with n ≥ 2. Let co(A) denote the matrix of
cofactors of A, that is, for each i and j , (co(A))ij is the product of (−1)i+j and the
determinant of the matrix obtained by deleting the ith row and j th column of A. Prove
the following:

1. If n = 2, then co(co(A)) = A for every A.

2. If n > 2, show that there is a unique singular A such that co(co(A)) = A.

3. If n > 2, find a condition on det(A) that is satisfied exactly when A is invertible
and co(co(A)) = A.

Solution by Mark Wildon, Royal Holloway, Egham, UK.

Say that a ring R with unit element 1 �= 0 is small if no proper nontrivial subring of
R has an identity.

The subring of R generated by 1 is {m1 : m ∈ Z}. Clearly it contains the identity of
R. Therefore, if R is small, R is generated as an abelian group by 1. Hence R has Z-
rank 1 as an abelian group and so either R = Z or R = Z/NZ for some N ∈ N with
N ≥ 2. Since m2 = m for m ∈ Z if and only if m = 0 or m = 1, the only possible
identity in a subring of Z is 1. Hence, Z is small. If N is composite, with N = AB
where gcd(A,B) = 1 then, by the Chinese Remainder Theorem,

Z

NZ
∼= Z

AZ
× Z

BZ

and {(x, 1) : x ∈ Z/AZ} is a proper subring with identity of the right-hand side. (In
this case the identity is not the identity of Z/NZ.) Hence, Z/NZ is small only if N
is a power of a prime. In this case Z/NZ is small, since m2 ≡ m mod pa if and only
if m(m− 1) ≡ 0 mod pa , and since m and m− 1 are coprime integers, either pa | m
which implies that m ≡ 0 mod pa , or pa | m− 1, which implies that m ≡ 1 mod pa .
We conclude that the small rings are precisely Z and Z/paZ for p a prime and a ≥ 1.

Also solved by Michel Bataille, Rouen, France; Missouri State Problem Solving Group, ; Albert

Stadler, Herrliberg, Switzerland; and the proposer. One incorrect solution was received.

Area of a polar graph

1221. Proposed by Gregory Dresden, Washington and Lee University, Lexington, VA.

Shown below (from left to right) are the graphs of r = sin 4θ/3 and r = sin 6θ/5,
where every other adjacent region (starting from the outside) is shaded black. Find the
total shaded area for any such graph r = sin(k + 1)θ/k, where k > 0 is an odd integer
and θ ranges from 0 to 2kπ .
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Solution by Guiseppe Fera, Vincenza, Italy.

We prove that the total shaded area is π

2 , regardless of k.
The symmetry center of the 2(k + 1)-petalled rose

r = sin

[(
k + 1

k

)
θ

]

is the pole of a polar coordinate system, and the polar axis passes through one of the
common points to two black shaded regions on the border of the curve.

First, we evaluate the total shaded area of a petal. Consider the petal symmetric to
the line θ = π

2(k+1) . Looking at the solutions of

x = r cos θ > 0

y = r sin θ = 0

we get k − 1 intersection point (other than the pole) between the polar axis and
the curve, for θ = mπ , with m = 1, 2, . . ., k − 1. Their cartesian coordinates are(
sin mπ

k

)
m=1,2,...,k−1

. The identity sin mπ

k
= sin (k−m)π

k
for m = 1, 2, . . ., k−1

2 shows that
every intersection is double. Indeed, these intersection points (and the pole) are the
start-points of the black shaded regions inside the petal. The slope of the tangent line
to the curve at such points is less than π

2 for m = 1, 2, . . ., k−1
2 and greater than π

2 for
m = k+1

2 ,
k+3

2 , . . ., k − 1. Since the petal contains k+1
2 shaded regions, symmetric with

respect to the line θ = π

2(k+1) , the shaded half area of the petal is

S = 1

2

∫ π
2(k+1)

0
r2 dθ + 1

2

k−1
2∑

m=1

[∫ mπ+ π
2(k+1)

mπ

r2 dθ −
∫ (

k−1
2 +m

)
π+ π

2(k+1)(
k−1

2 +m
)
π

r2 dθ

]
.

Set n = k−1
2 +m. The integration is elementary and gives

S = π − k sin
(
π

k

)
8(k + 1)

+
k−1

2∑
m=1

s,
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where

s = k

8(k + 1)

[
sin

(
2mπ

k

)
− sin

(
(2m+ 1)π

k

)

−
(

sin

(
2nπ

k

)
− sin

(
(2n+ 1)π

k

))]
.

Reintroducing n and simplifying, we get

S = π − k sin
(
π

k

)
8(k + 1)

+ k

8(k + 1)

k−1
2∑

m=1

[
sin
(

2m− 1)
π

k

)
− sin

(
(2m+ 1)

π

k

)]
.

Using a prosthaphaeresis identity, we have

S = π − k sin
(
π

k

)
8(k + 1)

+ k

8(k + 1)

[
−2 sin

(π
k

)] k−1
2∑

m=1

cos

(
2mπ

k

)
.

Using the exponential representation of the cosine,

cos

(
2mπ

k

)
= exp

(
2mπi
k

)+ exp
(−2mπi

k

)
2

,

the sum becomes a geometric series, so the value of the sum is

1

2

[
exp

(
πi(k+1)

k

)− exp
(

2πi
k

)
exp

(
2πi
k

)− 1
+ exp

(−πi(k+1)
k

)− exp
(−2πi

k

)
exp

(−2πi
k

)− 1

]
.

Simplifying, this is − 1
2 so that

S = π − k sin
(
π

k

)
8(k + 1)

+ k sin
(
π

k

)
8(k + 1)

= π

8(k + 1)
.

Finally, since the rose has 2(k + 1) petals, the total shaded area is 4(k + 1)S = π

2 .

Also solved by J. A. Grzesik, Allwave Corp.; Paul Stockmeyer, C. of William & Mary; and the proposer.

Properties of a general parabola

1222. Proposed by Kent Holing, Trondheim, Norway.

Consider the parabola f (x, y) = Ax2 + 2Bxy + Cy2 + 2Dx + 2Ey + F = 0 with
real coefficients, B �= 0 and A,C > 0.

1. Show that the parabola is nondegenerate if and only if β = BE − CD �= 0.
2. Show that in the degenerate case, the parabola can be given by the formula
f (x, y) = Ax + By +D ±√α1 = 0 for α1 = D2 − AF or (equivalently) by
f (x, y) = Bx + Cy + E ±√α2 = 0 for α2 = E2 − CF and α1,2 ≥ 0.

3. When β �= 0, show that (A+ C)(BxT + CyT )+ BD + CE = 0 for the coordi-
nates xT and yT of the vertex T .
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4. Using 3., show that xT = − α2
2β + At for t = β

2C(A+C)2 .

5. Show that the coordinates of the focus F of the parabola are xF = xT + Ct and
yF = yT − Bt .

Solution by Michel Bataille, Rouen, France.

Let P be the given parabola. The discriminant of the second degree part Ax2 +
2Bxy + Cy2 must vanish, hence, B2 = AC, an equality that will be used freely in
what follows. The equation of the parabola is equivalent to

(Bx + Cy)2 + 2CDx + 2CEy + CF = 0

or

(Ax + By)2 + 2DAx + 2EAy + AF = 0.

The equation Bx + Cy = 0 (or equivalently Ax + By = 0) gives the direction of the
diameters of P .

1. P is nondegenerate if and only if every diameter intersects the parabola in a
unique point. Let d, with equation Bx + Cy + k = 0, be a diameter. From (1),
a point (x, y) is in d ∩ P if and only the two equations Bx + Cy + k = 0 and
2CDx + 2CEy + CF + k2 = 0 are satisfied. This system has a unique solu-
tion if and only if 2CD ·C − 2CE ·B �= 0, that is, if and only ifBE −CD �= 0.

2. If P degenerates into two parallel lines, then its equation can be written
as (Ax + By + p)(Ax + By + q) = 0. Comparing with (1) leads to pq =
AF,p + q = 2D (note that DB = EA because CD = BE) and p, q are so-
lutions of the quadratic X2 − 2DX + FA = 0. Thus, α1 = D2 − FA ≥ 0 and
{p, q} = {D +√α1,D −√α1}. In a similar way, comparing (1) with (Bx +
Cy + p′)(Bx + Cy + q ′) = 0 gives α2 ≥ 0 and {p′, q ′} = {E + √α2, E −√
α2}. The required results follow.

3. The vector
(
∂f

∂x
(xT , yT ),

∂f

∂y
(xT , yT )

)
is orthogonal to the tangent at the vertex

T , hence, is collinear to the direction vector (C,−B) of the diameters. It follows
that B ∂f

∂x
(xT , yT )+ C ∂f

∂y
(xT , yT ) = 0.

Since ∂f

∂x
(x, y) = 2B(Bx +Cy)+ 2CD and ∂f

∂y
(x, y) = 2C(Bx +Cy)+ 2CE,

an easy calculation yields (A+ C)(BxT + CyT )+ BD + CE = 0.

4. Let λ = BD+CE
A+C so that BxT + CyT + λ = 0. Since the equation of P can be

written as

(Bx + Cy + λ)2 + 2x(CD − λB)+ 2Cy(E − λ)+ FC − λ2 = 0,

expressing that T is on P we obtain 2(CD − λB)xT − 2(E − λ)(λ+ BxT )+
FC − λ2 = 0 so that

−2βxT = 2λE − FC − λ2 = α2 − (λ− E)2.

Since an easy calculation gives (λ− E)2 = Aβ2

C(A+C)2 , we get xT = − α2
2β + At .

VOL. 54, NO. 2, MARCH 2023 THE COLLEGE MATHEMATICS JOURNAL 157



5. Let δ be the line C(x − xT )− B(y − yT )+ C(A+ C)t = 0. The parabola with
directrix δ and focus F = (xT + Ct, yT − Bt) is the locus of all the points
P(x, y) such that (d(P, δ))2 = PF 2. Thus, to answer the question, it is suffi-
cient to show that the equation f (x, y) = 0 is equivalent to

[C(x − xT )− B(y − yT )+ C(A+ C)t]2

C(A+ C)
= (x − xT − Ct)2 + (y − yT + Bt)2

But (2) writes as ((B(y − yT ) − C(x − xT ))2 − 2C(A + C)t ((B(y − yT ) −
C(x − xT )) = (B2 +C2)((x − xT )2 + (y − yT )2)+ 2C(A+C)t ((B(y − yT )−
C(x − xT )), that is, (Bx + Cy + λ)2 + 4C(A+ C)t[By − Cx + CxT + B

C
(λ+

BxT )] = 0, hence, we have to show that

4C(A+ C)t
(
By − Cx + (A+ C)xT + λB

C

)

= 2x(CD − λB)+ 2Cy(E − λ)+ FC − λ2

for all x, y. Simple calculations give CD − λB = −2C2(A + C)t, E − λ =
2(A + C)tB and a slightly longer one gives FC − λ2 = 4C(A + C)t((A +
C)xT + λB

C

)
so we are done.

Also solved by Hongwei Chen, Christopher Newport U.; Eugene Herman, Grinnell C.; Walther Janous,

Ursulinengymnasium, Innsbruck, Austria; and the proposer.

Which rectangular numbers are squares - again?

1223. Don Redmond, Southern Illinois University, Carbondale, IL.

Let h be a positive integer and define the nth rectangular number of order h, denoted
by Rh(n), as Rh(n) = n(n+ h). Determine all positive integer values of h for which
the equation Rh(n) = m2 has a solution for some positive integers n and m.

Solution by Kathleen Lewis, University of the Gambia, Brikama, Republic of the Gam-
bia.

All positive integers except 1, 2, and 4 are possible values for h. First notice why
these three values are excluded. When h = 1, n(n+ h) = n(n+ 1) = n2 + n, which
lies between n2 and (n+ 1)2, so it cannot be a perfect square. The same problem occurs
when h = 2 and n(n+ 2) = n2 + 2n. When h = 4, the integers n and n+ h have the
same parity, so n(n + h) also has the same parity as n2. That means that n(n + 4)
cannot be equal to (n+ 1)2. But it’s too small to be (n+ 2)2. Therefore, 4 is also an
impossible choice for h.

To see that all other values of h are possible, consider the cases h = 2k + 1, h =
4k + 2 and h = 4k + 4, with k ∈ N. All positive integers other than 1, 2 and 4 fall into
one of these cases.

• If h = 2k + 1, let n = k2. Then n(n+ h) = (k2)(k2 + 2k + 1) = [k(k + 1)]2.
• If h = 4k + 2, let n = 2k2. Then n(n+ h) = 2k2(2k2 + 4k + 2) = 4k2(k2 + 2k +

1) = [2k(k + 1)]2.
• If h = 4k + 4, let n = k2. Then n(n+ h) = k2(k2 + 4k + 4) = [k(k + 2)]2.
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Editor’s note: Bataille pointed out that this problem appeared as number 871 in the
March 2008 issue and provided two new solutions. Stone and Hawkins, provided an
algorithm for producing, for a given h, all pairs (n,m) such that Rh(n) = m. Indeed,
writingm = n+ j , with 1 ≤ j < h

2 , and setting n = j2

h−2j produces a solution for each
such n that is a positive integer.

Also solved by Michel Bataille, Rouen, France; Anthony Bevelacqua, U. of N. Dakota; Kyle Calder-

head, Malone U.; John Christopher, California St. U., Sacramento; Eagle Problem Solvers, Georgia South-

ern U.; Habib Far, Lone Star C. - Montgomery; Dmitry Fleischman, Santa Monica, CA; Donald Hooley,

Bluffton, Ohio; Tom Jager, Calvin U.; Graham Lord, Princeton, NJ; Matthew McMullen, Otterbein U.;

Northwestern U. Math Problem Solving Group; Mark Sand, C. of Saint Mary; David Stone and

John Hawkins, Georgia Southern U. (retired); Michael Vowe, Therwil, Switzerland; Owen Zhang, (student)

MathILy summer math program; and the proposer. Two incomplete solutions were received.

A criterion for a group to be cyclic

1224. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Let G be a finite group, and suppose that for any subgroups H and K of G, we have
|H ∩K| = gcd(|H |, |K|). Prove that G is cyclic.

Solution by Anthony Bevelacqua, University of North Dakota.

Suppose a, b ∈ G have order d. Then

|〈a〉 ∩ 〈b〉| = gcd(|〈a〉|, |〈b〉|) = d
and so 〈a〉 = 〈b〉. Since a cyclic group of order d has exactly φ(d) generators, we see
that G has exactly φ(d) elements of order d.

Let N be the order of G, and let Nd be the number of elements of order d in G. By
the last paragraph we have either Nd = 0 or Nd = φ(d). Thus,

N =
∑
d|N

Nd ≤
∑
d|N

φ(d)

Since N =∑d|N φ(d) for any positive integer N and Nd ≤ φ(d) for each d, we must
have Nd = φ(d) for each d|N . In particular, G must contain an element of order N ,
and so G is cyclic.

Also solved by Paul Budney, Sunderland, MA; Aran Bybee and Sam Lowery; Kevin Byrnes, Glen Mills,

PA; Michael Goldenberg, Baltimore Polytechnic Inst. and Mark Kaplan, U. of Maryland Global Campus;

Eugene Herman, Grinnell C.; Tom Jager, Calvin U.; Joel Scholosberg, Bayside, NY; Ed Enochs, U. of

Kentucky (retired) and David Stone, Georgia Southern U. (retired); and the proposer.

A reduced ring with all subrings chained is a field

1225. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado
Springs, CO.

All rings R throughout are commutative with 1 �= 0 and all subrings S of R are unital
(that is, 1 ∈ S). Recall that a ring R is chained provided that for any ideals I and J of
R, either I ⊆ J or J ⊆ I .
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1. Give an example of a ring R which is not a field with the property that every
subring of R is chained.

2. Suppose now that R is reduced, that is, R has no nonzero nilpotents. Prove that
if every subring of R is chained, then R is a field.

Solution by Anthony Bevelacqua, University of North Dakota.

Z4, the ring of integers modulo 4, is not a field, but it is chained as the only ideals in
Z4 are 0Z4 ⊆ 2Z4 ⊆ Z4.

We note that the following rings are not chained: Z (consider 2Z and 3Z), k[t] the
ring of polynomials over a field k (consider tk[t] and (t + 1)k[t]), and S ⊕ T the direct
sum of rings S and T (consider S ⊕ 0 and 0⊕ T ). As special cases of the last example,
Zm, the ring of integers modulom, ifm = st for relatively prime s, t > 1 and k[t]/(g)
if g ∈ k[t] is the product of relatively prime polynomials of positive degree are not
chained.

Now suppose R is reduced and every subring of R is chained. Z = 1Z is a subring
of R isomorphic to either Z or Zm for some m ≥ 2. Since Z is chained we must
Z ∼= Zpe for some prime p and some e ≥ 1, and since Z is reduced we must have
e = 1. We can suppose Zp is a subring of R.

Zp[a] is a subring of R for any a ∈ R. Since the ring of polynomials over Zp is not
chained, a must be algebraic over Zp. Thus Zp[a] ∼= Zp[t]/(g) for some monic g ∈
k[t] of positive degree. Since Zp[a] is chained we have g = πe for a monic irreducible
π ∈ k[t] and some e ≥ 1, and since Zp[a] is reduced we have e = 1. Thus, Zp[a] ∼=
k[t]/(π) is a field. Since every nonzero a ∈ R is invertible, R is a field.

Also solved by Eugene Herman, Grinnell C.; Tom Jager, Calvin U.; and the proposer.
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SOLUTIONS

The limit of a difference of harmonic sums

1211. Proposed by Needet Batir, Nevs, ehir Haci Bektas, Veli University, Nevs, ehir, 
Turkey.
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Evaluate the following limit, where below, H0 = 0 and for n > 0, Hn denotes the nth
haromic number

∑n

k=1
1
k
:

lim
n→∞

(
(Hn)

2 −
n∑
k=1

Hn−k
k

)
.

Solution by Henry Ricardo, Westchester Area Math Circle, Purchase, NY.

First we establish that

n∑
k=1

Hn−k
k
= H 2

n −H(2)
n ,

where H(2)
n =

∑n

k=1 1/k2.

The formula is clearly true for n = 1. Now suppose that the formula holds for
some integer N > 1. Then, noting that Hm+1 = Hm + 1/(m+ 1) and H(2)

m+1 = H(2)
m +

1/(m+ 1)2,

N+1∑
k=1

HN+1−k
k
=

N∑
k=1

HN−k+1

k
+ H0

N + 1

=
N∑
k=1

HN−k
k
+

N∑
k=1

1

k(N − k + 1)

= H 2
N −H(2)

N +
1

N + 1

N∑
k=1

(
1

k
+ 1

N − k + 1

)

= H 2
N −H(2)

N +
2HN

N + 1

=
(
HN+1 − 1

N + 1

)2

−
(
H
(2)
N+1 −

1

(N + 1)2

)
+ 2HN

N + 1

= H 2
N+1 −H(2)

N+1 −
2
(
HN + 1

N+1

)
N + 1

+ 2

(N + 1)2
+ 2HN

N + 1

= H 2
N+1 −H(2)

N+1.

Therefore,

H 2
n −

n∑
k=1

Hn−k
k
= H 2

n − (H 2
n −H(2)

n ) = H(2)
n → ζ(2) = π2

6
as n→∞.

Also solved by Robert Agnew, Palm Coast, FL; Paul Bracken, U. of Texas at Austin; Brian Bradie,Christopher

Newport U.; Bruce Burdick, Providence, RI; Hongwei Chen, Christopher Newport U.; Russ Gordon, Whit-

man C.; G. C. Greubel, Newport News, VA; Jacob Guerra, Salem St. U.; GWStat Problem Solving Group;

Stephen Kaczkowski, South Carolina Governor’s School for Science and Mathematics; Kee-Wai Lau, Hong

Kong, China; Shing Hin Jimmy Pa; Henry Ricardo, Westchester Area Math Circle, Purchase, NY (2 additional
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solutions); Abhishek Sinha, Tata Institute of Fundamental Research, Mumbai, India; Albert Stadler, Her-

rliberg, Switzerland; Seán Stewart, King Abdullah U. of Science and Technology; Michael Vowe, Therwil,

Switzerland; Mark Wildon, Royal Holloway, Egham, UK; and the proposer.

Two trig sum identities

1212. Proposed by Paul Bracken, University of Texas, Edinburg, TX.

Let n be an odd natural number and let θ ∈ R be such that cos(nθ) 
= 0. Prove the
following:

n−1∑
k=0

sin θ

sin2 θ − cos2( kπ
n
)
= − n sin(nθ)

cos θ cos(nθ)
, and (1)

n−1∑
k=0

(−1)k+1 cos( kπ
n
)

sin2 θ − cos2( kπ
n
)
= n sin( nπ2 )

cos θ cos(nθ)
. (2)

Solution by Michel Bataille, Rouen, France.

We will apply the following formula: if n ∈ N and x, y, x − y are not a multiple of
π , then

n−1∑
k=0

1

sin( x−kπ
n
) sin( y−kπ

n
)
= n sin(x − y)

sin(x) sin(y) sin( x−y
n
)

(3)

(see a proof at the end).
Proof of (1). (1) is obvious if sin(θ) = 0 so we suppose sin(θ) 
= 0 in what follows.
We notice that

sin2 θ − cos2(
kπ

n
) = 1− cos(2θ)

2
− 1+ cos( 2kπ

n
)

2
= − cos(

kπ

n
+ θ) cos(

kπ

n
− θ),

(4)
hence sin2 θ − cos2( kπ

n
) = − sin( x−kπ

n
) sin( y−kπ

n
) with x = n(π2 − θ), y = n(π2 + θ).

Formula (3) yields

n−1∑
k=0

1

sin2 θ − cos2( kπ
n
)
= − n sin(−2nθ)

sin(n(π2 − θ)) sin(n(π2 + θ)) sin(−2θ)
= − n sin(nθ)

sin θ cos θ cos(nθ)

(note that, n being odd, sin(n(π2 ± θ)) = (−1)(n−1)/2 cos(nθ).) The identity (1) fol-
lows.

Proof of (2). First, we consider (3) with x = y + nπ2 and obtain

n−1∑
k=0

1

cos( y−kπ
n
) sin( y−kπ

n
)
= n sin(nπ2 )

(−1)(n−1)/2 sin(y) cos(y)

or

n−1∑
k=0

1

cos(π2 − 2y
n
+ 2kπ

n
)
= n sin(nπ2 )

(−1)(n−1)/2 sin(2y)
. (5)
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Now, using 2 cos( kπ
n
) cos(θ) = cos( kπ

n
+ θ) + cos( kπ

n
− θ) and (4), we see that we

have to prove

S = 2n sin(nπ2 )

cos(nθ)
,

where S =
n−1∑
k=0
(−1)k

(
1

cos( kπn +θ)
+ 1

cos( kπn −θ)

)
. Setting n = 2m+ 1, we have

S =
m∑
j=0

(
1

cos( 2jπ
n
+ θ) +

1

cos( 2jπ
n
− θ)

)
−

m−1∑
j=0

(
1

cos( (2j+1)π
n
+ θ) +

1

cos( (2j+1)π
n
− θ)

)

and

1

− cos( (2j+1)π
n
+ θ) +

1

− cos( (2j+1)π
n
− θ) =

1

cos( 2(m+j+1)π
n

+ θ) +
1

cos( 2(m+j+1)π
n

− θ)
so that

S =
n−1∑
k=0

(
1

cos( 2kπ
n
+ θ) +

1

cos( 2kπ
n
− θ)

)
.

With the help of (5), we obtain

n−1∑
k=0

1

cos( 2kπ
n
+ θ) =

n sin(nπ2 )

(−1)(n−1)/2 sin(nπ2 − nθ)
= n sin(nπ2 )

cos(nθ)

and therefore

S = n sin(nπ2 )

cos(nθ)
+ n sin(nπ2 )

cos(n(−θ)) =
2n sin(nπ2 )

cos(nθ)
,

as desired.

Proof of (3). From sin(x−y)
sin x·sin y = 2i

e2iy−1
− 2i

e2ix−1
(easily checked) and the decomposition

into partial fractions

1

zn − 1
= 1

n

n−1∑
k=0

wk

z− wk
= 1

n

n−1∑
k=0

1

zwk − 1

where w = e− 2πi
n we deduce that

sin(x − y)
sin x · sin y

= 1

n

n−1∑
k=0

(
2i

e
2i(y−kπ)

n − 1
− 2i

e
2i(x−kπ)

n − 1

)
= 1

n

n−1∑
k=0

sin
(
x−kπ
n
− y−kπ

n

)
sin
(
x−kπ
n

) · sin
(
y−kπ
n

)
and therefore

n−1∑
k=0

1

sin
(
x−kπ
n

) · sin
(
y−kπ
n

) = n sin(x − y)
sin x · sin y · sin

(
x−y
n

)
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Also solved by Brian Bradie, Christopher Newport U.; Hongwei Chen, Christopher Newport U.; Shing Hin

Jimmy Pak; Albert Stadler, Herrliberg, Switzerland; Michael Vowe, Therwil, Switzerland; and the proposer.

One incomplete solution was received.

The limit of a product of powers of sums

1213. Proposed by Rafael Jakimczuk, Universidad National de Lujá, Buenos Aires,
Argentina.

Let (an) be a sequence of positive integers, and for every positive integer n, define
Pn := (1+ 1

a1n
)a1 · (1+ 1

a2n
)a2 · · · (1+ 1

ann
)an . Find limn→∞ Pn.

Solution by Ulrich Abel, Technische Hochschule, Mittelhessen, Germany.

Let n and a1, a2, a3, . . . be positive integers. The Bernoulli inequality (1+ x)n ≥
1 + nx (x ≥ −1) implies that

(
1+ 1

akn

)ak ≥ 1 + 1/n. On the other hand, the well-

known inequality (1+ x/n)n ≤ ex (x ≥ 0) implies that
(

1+ 1
akn

)ak ≤ e1/n. Conse-

quently,

(
1+ 1

n

)n
≤

n∏
k=1

(
1+ 1

akn

)ak
≤ e,

which implies

lim
n→∞

n∏
k=1

(
1+ 1

akn

)ak
= e.

Several solvers pointed out that this problem, by a different proposer, appeared as
problem 12256 in The American Mathematical Monthly.

Also solved by Robert Agnew, Palm Coast, FL; Michel Bataille, Rouen, France; Paul Bracken, U. of

Texas, Edinburg; Brian Bradie,Christopher Newport U.; Hongwei Chen, Christopher Newport U.; Dmitri

Fleischman, Santa Monica, CA; Michael Goldenberg, Baltimore Polytechnic Inst. and Mark Kaplan, U.

of Maryland Global Campus; Lixing Han, U. of Michigan - Flint; Jim Hartman, C. of Wooster; Eugene Her-

man, Grinnell C.; Walther Janous, Innsbruck, Austria; Stephen Kaczkowski, S. Carolina Governor’s School

for Science and Mathematics; Kee-Wai Lau, Hong Kong, China; Kelly McLenithan, Los Alamos, NM; Al-

bert Natian, Los Angeles Valley C.; Edward Omey, KULeuven @ Campus Brussels; Shing Hin Jimmy Pak;

Mark Sand, C. of Saint Mary; Randy Schwartz (emeritus), Schoolcraft C.; Abhishek Sinha, Tata Inst. of

Fundamental Research, Mumbai, India; Albert Stadler, Herrliberg, Switzerland; Michael Vowe, Therwil,

Switzerland; and the proposer. One incorrect solution was received.

A closed form expression for a sequence

1214. Proposed by Luis Moreno, SUNY Broome Community College, Binghampton,
NY.

The following sequence can be found in the text Intermediate Analysis by John Olm-
sted: (1, 2, 2 1

2 , 3, 3 1
3 , 3 2

3 , 4, 4 1
4 , 4 2

4 , 4 3
4 , 5, . . .). Now let n be a positive integer. Find a

closed-form expression for an, the nth term of the above sequence.

Solution by Habib Far, Lone Star College – Montgomery, Conroe, Texas.

VOL. 53, NO. 5, NOVEMBER 2022 THE COLLEGE MATHEMATICS JOURNAL 405



We realize that an = k + 1 when n = Tk + 1, where T + k = k(k + 1)

2
is the trian-

gular number for some positive integer k. If Tk+1 < n ≤ Tk+1, then

an = k + 1+ n− Tk − 1

k + 1
.

Let n = Tj + 1, for some positive integer j . Solve j (j + 1) = 2(n − 1) yields

j = −1+√8n− 7

2
. Let k = �j� =

⌊
−1+√8n− 7

2

⌋
, where �x� is the greatest

integer function. Thus

an = k + 1+ n− Tk − 1

k + 1
.

Also solved by Ulrich Abel, Technische Hochschule, Mittelhessen, Germany; Robert Agnew, Palm Coast,

FL; Ashland U Problem Solving Group; Michel Bataille, Rouen, France; Brian Beasley, Presbyterian

C.; Hudson Bouw, Braxton Green, Dillon King (students), Taylor U.; Brian Bradie, Christopher New-

port U.; Case Western Reserve U. Problem Solving Group; Hongwei Chen, Christopher Newport U.;

John Christopher, California St. U.; Gregory Dresden, Washington & Lee U.; Skye Fisher, (student) U.

of Arkansas at Little Rock; Dmitry Fleischman, Santa Monica, CA; Natacha Fontes-Merz, Westminster C.;

Dominique Frost (student) U. of Arkansas at Little Rock; Rohan Dalal, (student) and Tommy Goebeler, The

Episcopal Academy; Lixing Han, U. of Michigan - Flint and Xinjia Tang, Changzhou U., Changzhou, China;

Walther Janous, Innsbruck, Austria; Kelly McLenithan, Los Alamos, NM; Northwestern U Math Prob-

lem Solving Group; Lawrence Peterson, U. of North Dakota; Bill Reil, Philadelphia, PA; Mark Sand, C.

of St. Mary; Tyler Sanders, (student) U. of Arkansas at Little Rock; Randy Schwartz (emeritus), Schoolcraft

C.; Doug Serfass, (student) U. of Arkansas at Little Rock; Vishwest Ravi Shrimali; Albert Stadler, Her-

rliberg, Switzerland; Seán Stewart, King Abdullah U. of Science and Technology; Robert Vallin, Lamar U.;

Michael Vowe, Therwil, Switzerland; Edward White and Roberta White, Frostburg, MD; and the proposer.

Rings for which no proper subring has an identity

1215. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado
Springs, CO.

Let R be a ring (assumed only to be associative but not to contain an identity unless
stated). Recall that a subring of R is a nonempty subset of R closed under addition,
negatives, and multiplication. Find all rings R with identity 1 
= 0 with the property
that no proper, nontrivial subring of R has an identity (which need NOT be the identity
of R).

Solution by Mark Wildon, Royal Holloway, Egham, UK.

Say that a ring R with unit element 1 
= 0 is small if no proper nontrivial subring of
R has an identity.

The subring of R generated by 1 is {m1 : m ∈ Z}. Clearly it contains the identity of
R. Therefore if R is small, R is generated as an abelian group by 1. Hence R has Z-
rank 1 as an abelian group and so either R = Z or R = Z/NZ for some N ∈ N with
N ≥ 2. Since m2 = m for m ∈ Z if and only if m = 0 or m = 1, the only possible
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identity in a subring of Z is 1. Hence Z is small. If N is composite, with N = AB
where gcd(A,B) = 1 then, by the Chinese Remainder Theorem,

Z

NZ

∼= Z

AZ
× Z

BZ

and {(x, 1) : x ∈ Z/AZ} is a proper subring with identity of the right-hand side. (In
this case the identity is not the identity of Z/NZ.) Hence Z/NZ is small only if N
is a power of a prime. In this case Z/NZ is small, since m2 ≡ m mod pa if and only
if m(m− 1) ≡ 0 mod pa , and since m and m− 1 are coprime integers, either pa | m
which implies that m ≡ 0 mod pa , or pa | m− 1, which implies that m ≡ 1 mod pa .
We conclude that the small rings are precisely Z and Z/paZ for p a prime and a ≥ 1.

Also solved by Anthony Bevelacqua, U. of N. Dakota; Paul Budney, Sunderland, MA; Francisco Perdomo

and Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain; and the proposer.
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SOLUTIONS

Harmonic, Fibonacci, and triangular numbers

1206. Proposed by Seán M. Stewart, Bomaderry, NSW, Australia.

Let Hn :=∑n

k=1
1
k

denote the nth harmonic number, let Fn denote the nth Fibonacci
number, where F0 := 0, F1 := 1, and Fn := Fn−1 + Fn−2 for n ≥ 2. Further, let Tn be
the nth triangular number defined by T0 := 0 and Tn := n + Tn−1 for n ≥ 1, and let
ϕ := 1+√5

2 be the golden ratio. Prove the following:

∞∑
n=1

TnHnFn

2n
= 52 log(2)+ 232√

5
log(ϕ)+ 73.

Solution by Hongwei Chen, Christopher Newport University, Newport News, Virginia.

Recall the generating function of the harmonic numbers:

∞∑
n=1

Hnx
n = − log(1− x)

1− x .

Let

f (x) := −x log(1− x)
1− x .

Differentiating

∞∑
n=1

Hnx
n+1 = f (x)

twice leads to

∞∑
n=1

n(n+ 1)Hnx
n−1 = f ′′(x). (1)
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Using this fact and Tn = n(n+ 1)/2 we find the generating function of {TnHn}∞n=1:

∞∑
n=1

TnHnx
n = 1

2
xf ′′(x) := g(x).

Direct computation gives

g(x) = x

2

(
2

(1− x)2 +
3x

(1− x)3 −
2 log(1− x)
(1− x)2 − 2x log(1− x)

(1− x)3
)
.

Using the well-known Binet formula

Fn = 1√
5

(
φn −

(
− 1

φ

)n)
,

and with some simplifications, we have

∞∑
n=1

TnHnFn

2n
= 1√

5

(
g

(
φ

2

)
− g

(
− 1

2φ

))

= 73− 130− 58
√

5

5
log

(
1+ 1

2φ

)
− 130+ 58

√
5

5
log

(
1− φ

2

)
(1)

Notice that

log

(
1+ 1

2φ

)
+ log

(
1− φ

2

)
= log

(
1+ 1

2φ

)(
1− φ

2

)
= log

(
1

4

)
= −2 log(2)

and

log

(
1+ 1

2φ

)
− log

(
1− φ

2

)
= log

(
1+ 1/2φ

1− φ/2
)
= log(φ4) = 4 log(φ).

From (1) we consequently find

∞∑
n=1

TnHnFn

2n
= 73+ 52 log(2)+ 232√

5
log(φ),

as desired.

Also solved by Narendra Bhandari, Bajura, Nepal; Brian Bradie,Christopher Newport U.; Bruce Burdick,

Providence, RI; Nandan Sai Dasireddy, Hyderabad, Telangana, India; Russ Gordon, Whitman C.; Eugene

Herman, Grinnell C.; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; Volkhard Schindler,

Berlin, Germany; Albert Stadler, Herrliberg, Switzerland; Enrique Treviño, Lake Forest C.; and the pro-

poser.

A sum of a product of sums

1207. Ovidiu Furdui and Alina Sı̂ntămărian, Technical University of Cluj-Napoca,
Cluj-Napoca, Romania.
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Establish the following:

∞∑
n=1

(2n− 1)

( ∞∑
k=n

1

k2

)( ∞∑
k=n

1

k3

)
= ζ(2)+ ζ(3),

where for a positive integer k, we have ζ(k) =∑∞n=1
1
nk

.

Solution by Brian Bradie, Christopher Newport University, Newport News, Virginia.

First, write( ∞∑
k=n

1

k2

)( ∞∑
k=n

1

k3

)
=
∞∑
j=n

1

j 2

∞∑
�=j

1

�3
+
∞∑
j=n

1

j 3

∞∑
�=j+1

1

�2
.

Next,

∞∑
n=1

(2n− 1)
∞∑
j=n

1

j 2

∞∑
�=j

1

�3
=
∞∑
j=1

1

j 2

j∑
n=1

(2n− 1)
∞∑
�=j

1

�3
=
∞∑
j=1

∞∑
�=j

1

�3

=
∞∑
�=1

1

�3

�∑
j=1

1 =
∞∑
�=1

1

�2
= ζ(2),

and

∞∑
n=1

(2n− 1)
∞∑
j=n

1

j 3

∞∑
�=j+1

1

�2
=
∞∑
j=1

1

j 3

j∑
n=1

(2n− 1)
∞∑

�=j+1

1

�2
=
∞∑
j=1

1

j

∞∑
�=j+1

1

�2

=
∞∑
�=2

1

�2

�−1∑
j=1

1

j
=
∞∑
�=2

H� − 1
�

�2
=
∞∑
�=1

H�

�2
−
∞∑
�=1

1

�3

= 2ζ(3)− ζ(3) = ζ(3),
where Hn =∑n

j=1
1
j

denotes the nth harmonic number, and we have used the well-
known identity

∞∑
�=1

H�

�2
= 2ζ(3).

Finally,

∞∑
n=1

(2n− 1)

( ∞∑
k=n

1

k2

)( ∞∑
k=n

1

k3

)
= ζ(2)+ ζ(3).

Also solved by Narendra Bhandari, Bajura, Nepal; Paul Bracken, U. of Texas, Edinburgh; Bruce Burdick,

Providence, RI; Hongwei Chen, Christopher Newport U.; Eugene Herman, Grinnell C.; Walther Janous,

Ursulinengymnasium, Innsbruck, Austria; Kee-Wai Lau, Hong Kong, China; Shing Hin Jimmy Pak; Seán

Stewart, King Abdullay U. of Sci. and Tech., Thuwal, Saudi Arabia; and the proposer.
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An integral of logarithms

1208. Proposed by Marián S̆tofka, Slovak University of Technology, Bratislava, Slo-
vakia.

Prove that

∫ 1

0

ln(1− x) ln(1+ x)
x

dx = −5

8
ζ(3),

where as above, for a positive integer k, we have ζ(k) =∑∞n=1
1
nk

.

Solution by Didier Pinchon, Toulouse, France.

Let I be the integral to evaluate. Using identity

ln(1− x) ln(1+ x) = 1

4

[
(ln(1− x)+ ln(1+ x))2 − (ln(1− x)− ln(1+ x))2]

= 1

4

[
ln2(1− x2)− ln2

(
1− x
1+ x

)]
,

it follows that I = (I1 − I2)/4, with

I1 =
∫ 1

0

ln2(1− x2)

x
dx, I2 =

∫ 1

0

ln2
(

1−x
1+x
)

x
dx.

The substitutions x = √u in I1 and x = (1− u)/(1+ u) in I2 give

I1 = 1

2

∫ 1

0

∫ 1

0

ln2(u)

1− u du, I2 = 2
∫ 1

0

∫ 1

0

ln2(u)

1− u2
du.

The dominated convergence theorem allows to permute the series expansion of 1/(1−
u) (resp. 1/(1− u2) ) with the integration in I1 (resp. I2), and therefore

I1 = 1

2

∑
n≥0

∫ 1

0
ln2(u) un du, I2 = 2

∑
n≥0

∫ 1

0
ln2(u) u2n du.

For any nonnegative integer k, two successive integrations by parts provide the result∫ 1

0
ln2(u) un du = 2

(n+ 1)3
,

and it follows that

I1 =
∑
n≥0

1

(n+ 1)3
= ζ(3),

I2 = 4
∑
n≥0

1

(2n+ 1)3
= 4

[∑
n≥0

1

(n+ 1)3
−
∑
n≥0

1

(2n+ 2)3

]
= 7

2
ζ(3).

In conclusion, I = 1
4 (I1 − I2) = − 5

8 ζ(3).
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Several solvers pointed out that this problem, by a different proposer, appeared as
problem 12256 in The American Mathematical Monthly.

Also solved by F. R. Ataev, Uzbekistan; Khristo Boyadzhiev, Ohio Northern U.; Brian Bradie,Christopher

Newport U.; Bruce Burdick, Providence, RI; Hongwei Chen, Christopher Newport U.; Kyle Gatesman

(student), Johns Hopkins U.; Subhankar Gayen, West Bengal, India; Walther Janous, Ursulinengymnasium,

Innsbruck, Austria; Moubinool Omarjee, Lycée Henri IV, Paris, France; Henry Ricardo, Westchester Area

Math Circle; Albert Stadler, Herrliberg, Switzerland; Seán Stewart, King Abdullay U. of Sci. and Tech.,

Thuwal, Saudi Arabia; Michael Vowe, Therwil, Switzerland; and the proposer. One incomplete solution was

received.

The rank of a matrix

1209. Proposed by George Stoica, Saint John, New Brunswick, Canada.

For non-negative integers i and j , define

aij :=

⎧⎪⎨
⎪⎩
i(i − 1) · · · (i − j + 1) if 1 ≤ j ≤ i,
1 if i = 0 and j ≥ 0, or j = 0 and i ≥ 0, and
0 if j > i ≥ 1.

Now let m be a positive integer. Prove that every m × m submatrix of the infinite
matrix (a2i,j ) with 0 ≤ j ≤ m − 1 and i ≥ 0 has rank m and, in addition, that∑m

i=0(−1)i
(
m

i

)
a2k+2i,j = 0 for 0 ≤ j ≤ m− 1 and any k ∈ N.

Solution by the proposer.

Introduce the polynomials

f0(x) = 1, f1(x) = x, f2(x) = x(x − 1), . . . , fj (x) = x(x − 1) · · · (x − j + 1).

Then a2i,j = fj (2i). Since for any j

xj = fj (x)+
j−1∑
n=0

cnfn(x)

for some constants cn, it is clear that any matrix of the form(
fj (xi)

)
with 0 ≤ j, i ≤ m− 1, and where all xi are distinct,

can be transformed into a Vandermonde matrix by elementary row operations, so its
determinant must be different from zero.

For the second statement, start by observing that the identity

m∑
i=0

(−1)i
(
m

i

)
f (i) = 0

must be valid whenever f (x) is a polynomial of degree at most m− 1. Indeed, let us
define �(f (x)) = f (x)− f (x + 1), and note that

m∑
i=0

(−1)i
(
m

i

)
f (i) = �m(f (x))(0).
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The difference operator decreases the degree of the polynomial, and the equation can
be proved inductively, using Pascal’s identity.

As we saw above, the function i → a2i,j is a polynomial of degree j . Hence

m∑
i=0

(−1)i
(
m

i

)
a2k+2i,j = 0 for 0 ≤ j ≤ m− 1.

This completes the solution.

No other solutions were received.

The existence of a countable commutative integral domain with a
sum-free collection of ideals

1210. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado
Springs, CO.

Let R be a commutative ring with identity, and let I and J be ideals of R. Recall that
the sum of I and J is the ideal defined by I + J := {i + j : i ∈ I, j ∈ J }. Prove or
disprove: there exists a countable commutative integral domain D with identity and a
collection S of 2ℵ0 ideals of D such that for all I �= J in S , we have I + J /∈ S .

Solution by Anthony Bevelacqua, University of North Dakota.

Let D = Z[x1, x2, . . .] be the polynomial ring in countably many indeterminates
with coefficients in Z. Since D is the countable union of the countable Z[x1, . . . , xn]
for each n ∈ N, D is a countable commutative integral domain with identity.

For any A ⊆ N let IA be the ideal of D generated by {xi | i ∈ A}. For all A,B ⊆ N

we have (i) IA = IB if and only if A = B and (ii) IA + IB = IA∪B . Thus it suffices to
find a collection S of 2ℵ0 subsets of N such that for allA �= B in S we haveA ∪ B /∈ S.

It’s well-known (see below for sketch of proof) that for any countable set X there
exists a collection T of 2ℵ0 subsets of X such that each U ∈ T is infinite and for
all U �= V in T we have U ∩ V is finite. Since each element of T is an infinite set,
U ∩ V /∈ T . So there exists T a family of 2ℵ0 subsets of N such that for all U �= V in
T we have U ∩ V /∈ T . Now S = {N− U |U ∈ T } has the desired properties: S is a
family of 2ℵ0 subsets of N such that for all A �= B in S we have A ∪ B /∈ S.

Thus D = Z[x1, x2, . . .] is a countable commutative integral domain with identity
containing a collection S = {IA |A ∈ S} of 2ℵ0 ideals such that for all I �= J in S we
have I + J /∈ S .

Sketch of a standard proof of above claim: Without loss of generality we can sup-
poseX = Q. There are 2ℵ0 real irrational numbers. For each real irrational r let (un)∞n=1
be a sequence of rational numbers converging to r , and let Ur = {un | n ∈ N}. Each Ur
is infinite and Ur ∩ Us is finite for any distinct real irrationals r and s.

Also solved by Northwestern U. Math Problem Solving Group; and the proposer.

Correction: In the featured solution to problem 1195 in the January 2022 issue, two
numerators were missing in the second line. The second line as provided by the solver
should have been

∞∑
n=1

∞∑
k=n+2

hn

(n+ 1)k2
=
∞∑
n=1

∞∑
k=1

hn

(n+ 1)(n+ k + 1)2
.

The editor apologizes for the error.
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SOLUTIONS

Polynomials of degree n tangent to a circle at n− 1 points

1196. Proposed by Ferenc Beleznay, Mathleaks, Budapest, Hungary, and Daniel
Hwang, Wuhan Britain-China School, Wuhan, China.

Prove or disprove: for every positive integer n, there exists a polynomial of degree
n+ 1 with real coefficients whose graph is tangent to some circle at n points.

Solution by Mark Wildon, Royal Holloway, Egham, UK.

Such polynomials exist. Shifting n, we shall prove that for each n ∈ N with n ≥ 3
there exists a polynomial Pn of degree n with coefficients in the integers such that the
graph of Pn(x) is tangent to the unit circle at exactly n− 1 points in the open interval
(−1, 1). For n = 2 we may simply take P2(x) = 1, which is tangent to the unit circle
at 0 and has degree 0.

To define the Pn for n ≥ 3, we need the Chebyshev polynomials of the second kind.
Recall that, in the usual notation, Um is the unique polynomial with real coefficients of
degreem such that (sin θ)Um(cos θ) = sin(m+ 1)θ . For instance U0(x) = 1, U1(x) =
2x, and since sin 3θ = − sin3 θ + 3 sin θ cos2 θ = sin θ(− sin2 θ + 3 cos2 θ) = sin θ(−1+
4 cos2 θ) we have U2(x) = 4x2 − 1. In fact each Un has integer coefficients. For each
n ∈ N with n ≥ 4, define

Pn(x) = x2Un−2(x)− 2xUn−3 + Un−4.

As shown in [1, Theorem 5], the defining property ofUm and the relation 2 cos θ sin rθ =
sin(r + 1)θ + sin(r − 1)θ imply that if n ≥ 4 then

(sin θ)Pn(cos θ)

= (cos2 θ sin θ)Un−2(cos θ)− 2(cos θ sin θ)Un−3(cos θ)+ (sin θ)Un−4(cos θ)

= cos2 θ sin(n− 1)θ − 2 cos θ sin(n− 2)θ + sin(n− 3)θ

= (1− sin2 θ) sin(n− 1)θ − sin(n− 1)θ − sin(n− 3)θ + sin(n− 3)θ

= − sin2 θ sin(n− 1)θ.

Hence, Pn(cos θ) = − sin θ sin(n − 1)θ for each such n. Setting P3(x) = 2x3 − 2x
we have P3(cos θ) = 2 cos3 θ − 2 cos θ = 2(cos2 θ − 1) cos θ = −2 sin2 θ cos θ =
− sin θ sin 2θ . Therefore,

Pn(cos θ) = − sin θ sin(n− 1)θ if n ≥ 3. (�)

Since each Um has integer coefficients, so does each Pn.
Observe that, by (�),

(cos θ)2 + Pn(cos θ)2 = cos2 θ + sin2 θ sin2(n− 1)θ ≤ cos2 θ + sin2 θ = 1.

Hence, the graph of Pn(x) for −1 ≤ x ≤ 1 lies inside the closed unit disc. Moreover,
we have (cos θ)2 + Pn(cos θ)2 = 1 if and only if sin2(n− 1)θ = 1, so if and only if
θ = (2k−1)π

n−1 for some k ∈ N. Thus if x = cos (2k−1)π
n−1 and x ∈ (−1, 1), the graph of

Pn(x) is tangent to the unit circle.
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To get distinct values of cos θ , we may assume that θ ∈ [0, π]. If n = 2m is even
then there are 2m − 1 distinct tangent points, obtained by taking k = 1, . . . , m −
1, m,m+ 1, . . . 2m− 1 to get x-coordinates

cos
π

2m− 1
, . . . , cos

(2m− 3)π

2m− 1
, cos

(2m− 1)π

2m− 1
= −1,− cos

2π

2m− 1
,

. . . ,− cos
(2m− 2)π

2m− 1
.

If n = 2m + 1 is odd, then there are 2m distinct tangent points, obtained by taking
k = 1, . . . , m− 1, m to get x coordinates

cos
π

2m
, . . . , cos

(2m− 3)π

2m
, cos

(2m− 1)π

2m

and then k = m+ 1, . . . , 2m to get x coordinates

− cos
π

2m
, . . . ,− cos

(2m− 3)π

2m
,− cos

(2m− 1)π

2m
.

This completes the proof.

Remark. We remark that since Pn(1) = Pn(cos 0) = 0 and Pn(−1) = Pn(cosπ) = 0
by (�), the graph of Pn(x)meets the graph of the unit circle at x = ±1; of course since
the unit circle has a vertical asymptote at these points, the graph is not tangent. Thus,
Pn is tangent to the unit circle at n− 1 points and has two further intersection points.
Since tangent points have multiplicity (at least) 2, this meets the bound in Bezout’s
Theorem, that the intersection multiplicity between the algebraic curves y = Pn(x)
and x2 + y2 = 1 of degrees n and 2, respectively, is 2n, and shows that each tangent
point has degree exactly 2.

References

[1] Janjić, M. (2008). On a class of polynomials with integer coefficients. J. Integer Seq. 11(5): Article 08.5.2, 9.

Also solved by the proposer. We received one incomplete solution.
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Matrices with presistently unequal rows

1197. Proposed by Valery Karachik and Leonid Menikhes, South Ural State University,
Chelyabinsk, Russia

Let A be an arbitrary n×m matrix that has no equal rows. Find a necessary sufficient
condition relating n and m so that there exists a column of A, after removal of which,
all rows remain different.

Solution by Eugene Herman, Grinnell College, Grinnell, Iowa.

The given property holds in a trivial sense when n = 1 orm = 1. In both cases, after
a column has been removed there do not exist two rows that are equal. Otherwise, the
necessary and sufficient condition is 2 ≤ n ≤ m. Suppose first that m + 1 = n ≥ 2.
Let A = [aij ], where aij = 0 when j ≥ i and aij = 1 when j < i. If column j of A
is removed then rows j and j + 1 are equal; hence the given property fails to hold.
If n ≥ m+ 2, construct the first m+ 1 rows of A as before and fill in the rest of the
matrix so all rows are different.

Suppose 2 ≤ n ≤ m and suppose the given property does not hold. Thus, for each
j ∈ {1, 2, . . . , m}, there exists a pair of rows Pj = {r, s} such that r and s are unequal
but become equal when the j th entry is removed from each. We create an undirected
graph as follows. Each vertex corresponds to a row, and so the number of vertices is
n. The edges correspond to the sets Pj ; specifically, (r, s) is an edge if and only if
{r, s} = Pj for some j . Hence the number of edges is m. No vertex is joined to it-
self by an edge and no two vertices are joined by more than one edge. We show that
the graph contains no cycles. Suppose (r1, . . . , rk) is a cycle; that is, r1, . . . , rk are
distinct vertices and (r1, r2), . . . , (rk−1, rk), (rk, r1) are edges. The edges correspond
to different columns, which we may assume are columns 1 through k (by permut-
ing columns, if necessary). Let r1 = (a1, a2, . . . , am). Thus, r2 = (b1, a2, a3, . . . , am)

where b1 �= a1 and r3 = (b1, b2, a3, . . . , am) where b2 �= a2, and so on until rk =
(b1, b2, . . . , bk−1, ak, . . . , an)where bk−1 �= ak−1. Then (rk, r1) cannot be an edge since
rk and r1 differ in in k − 1 entries and k − 1 > 1. Our graph is therefore a tree. In a
tree, the number of vertices is always larger than the number of edges, and so m < n.
This contradiction establishes our necessary and sufficient condition.

Also solved by the proposer.
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The cardinality of a set of maximal ideals

1198. Proposed by Alan Loper, The Ohio State University, Newark OH, and Greg
Oman, The University of Colorado, Colorado Springs, CO.

Let n be a nonnegative integer, and consider the ring R := Q[X0, . . . , Xn] of polyno-
mials (via usual polynomial addition and multiplication) in the (commuting) variables
X0, . . . Xn with coefficients in Q. It is well known that R is a Noetherian ring, and so
every ideal of R is finitely generated. Since R is countable, and there are but countably
many finite subsets of a countable set, we deduce that R has but countably many ide-
als and thus, in particular, countably many maximal ideals. Next, let X0, X1, X2, . . .

be a countably infinite collection of indeterminates. Observe that (to within iso-
morphism) Q[X0] ⊆ Q[X0, X1] ⊆ Q[X0, X1, X2] ⊆ · · · . Let Q[X0, X1, X2, . . .] be
the union of the this increasing chain. How many maximal ideals does the ring
Q[X0, X1, X2, . . .] have? (More precisely, what is the cardinality of the set of maxi-
mal ideals of Q[X0, X1, X2, . . .]?)

Solution by Kenneth Schilling, University of Michigan-Flint, Flint, Michigan.

Since Q [X0, X1, X2....] has countably many elements, it has at most 2ℵ0 maximal
ideals. We shall exhibit 2ℵ0 maximal ideals, proving that this is the exact cardinality.

Let p0(t) = t and p1(t) = t − 1. For each infinite sequence α : N→ {0, 1}, let Iα
be the ideal of Q [X0, X1, X2....] generated by the set of polynomials

{pα(k)(Xk) : k = 1, 2, 3, ...}.
Since pα(k)(α(k)) = 0, for any q (X1, X2, ..., Xn) ∈ Iα,

q (α(0), α(1), ..., α(n)) = 0.

It follows that Iα is a proper ideal of Q [X0, X1, X2....], and so is contained in a maxi-
mal ideal Mα.

Now consider any pair α, β of distinct infinite sequences from {0, 1}. For some k,
{α(k), β(k)} = {0, 1}, so {pα(k)(Xk), pβ(k)(Xk)} = {Xk,Xk − 1}. Therefore the ideal
generated by Iα ∪ Iβ is the whole ring Q [X0, X1, X2....]. It follows that the union
Mα ∪Mβ of maximal ideals must also generate the whole ring, and so, in particular,
Mα �= Mβ .

We conclude that the set of ideals Mα over all infinite sequences α : N→ {0, 1} is
of cardinality 2ℵ0 , and the proof is complete.

Also solved by Paul Budney, Sunderland, MA; and the proposer. We received one incomplete solution.
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An oscillating function with prescribed zeros

1199. Proposed by Corey Shanbrom, Sacramento State University, Sacramento, CA.

Find a smooth, oscillating function whose periods form a bi-infinite geometric se-
quence. More precisely, given a positive λ �= 1, find a smooth function f on an open
half-line whose root set R is given by

R =
{
· · · − 1

λ3
− 1

λ2
− 1

λ
.− 1

λ2
− 1

λ
,−1

λ
, 0,

1, 1+ λ, 1+ λ+ λ2, 1+ λ+ λ2 + λ3, · · · } .
Editor’s note: The problem statement in the March 2021 issue omitted one of the zeros.
The functions defined in the submitted solutions included this value in their root set.

Solution by Albert Natian, Los Angeles Valley College, Valley Glen, California..

Answer: f (x) = sin
(
π ln[(λ−1)x+1]

ln λ

)
defined on

(
[1− λ]−1 ,∞) if λ > 1 and defined

on
(−∞, [1− λ]−1

)
if λ < 1.

Justification It’s clear that sin θ = 0 ⇐⇒ θ = nπ, n ∈ Z. So

f (x) = 0 ⇐⇒ sin

(
π ln [(λ− 1) x + 1]

ln λ

)
= 0

⇐⇒ π ln [(λ− 1) x + 1]

ln λ
= nπ, n ∈ Z

⇐⇒ ln [(λ− 1) x + 1] = n ln λ, n ∈ Z

⇐⇒ ln [(λ− 1) x + 1] = ln λn, n ∈ Z

⇐⇒ (λ− 1) x + 1 = λn, n ∈ Z

⇐⇒ x = λn − 1

λ− 1
if n ≥ 0, x = −1

λ
·
(

1
λ

)−n − 1(
1
λ

)− 1
if n < 0, n ∈ Z

⇐⇒ x =
n−1∑
j=0

λj if n ≥ 0, x = −
−n∑
j=1

(
1

λ

)j
if n < 0, n ∈ Z.

Also solved by Albert Stadler, Herrliberg, Switzerland; and the proposer.
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A recurrence satisfied by a sequence with a given generating function

1200. Proposed by Russ Gordon, Whitman College, Walla Walla, Washington, and
George Stoica, St. John, New Brunswick, Canada

Let c be an arbitrary real number. Prove that the sequence (an)n≥0 defined by

∞∑
n=0

anx
n = 1

1− cx + cx2 − x3

satisfies an(an − 1) = an+1an−1 for all n ≥ 1.

Solution 1 by Michel Bataille, Rouen, France.

Since 1 − cx + cx2 − x3 = (1 − x)(1 + (1 − c)x + x2), the sequence (an) is the
unique sequence satisfying

(1+ (1− c)x + x2) ·
∞∑
n=0

anx
n = 1

1− x =
∞∑
n=0

xn.

Multiplying out on the left, we obtain a0 = 1, a1 + (1− c)a0 = 1 and for n ≥ 2

an + an−1(1− c)+ an−2 = 1. (1)

Now, we prove that an(an − 1) = an+1an−1 for all n ≥ 1 by induction.
Since a1(a1 − 1) = c(c− 1) and (using (1)), a2a0 = a2 = 1− a1(1− c)− a0 = c(c−
1), the relation holds for n = 1.
Assume that an(an − 1) = an+1an−1 for some integer n ≥ 1. Then, we have

anan+2 = an(1− an − (1− c)an+1) (using (1))

= an(1− an)− anan+1(1− c)
= −an+1an−1 − anan+1(1− c) (by assumption)

= −an+1(an−1 + an(1− c))
= −an+1(1− an+1) (using (1)),

hence an+1(an+1 − 1) = anan+2. This completes the induction step and the proof.

Solution 2 by Kee-Wai Lau, Hong Kong, China.

Denote the recurrence relation an (an − 1) = an+1an−1 by *.

• If c = −1, then

∞∑
n=0

anx
n = 1

4(1− x) +
1

4(1+ x) +
1

2(1+ x)2 ,

so that an = 1
4 [1+ (−1)n(2n+ 3)], and * holds.

• If c = 3, then

∞∑
n=0

anx
n = 1

(1− x)3 ,

so that an = (n+1)(n+2)
2 , and * again holds.
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In what follows, we assume that c �= −1, 3. Let α = c−1+√(c−3)(c+1)
2 , so that

α �= −1, 0, 1. We have c = 1+ α + α2

α
, and

1

1− cx + cx2 − x3
= α

(1− x)(α − x)(1− αx)

= α

(1− α)2
(

1

(1+ α)(α − x) +
α2

(1+ α)(1− αx) −
1

1− x
)
.

Hence

an = α

(1− α)2
(

1

(1+ α)αn+1
+ αn+2

1+ α − 1

)
=
(
1− αn+1

) (
1− αn+2

)
(1+ α) (1− α)2 αn ,

and it is easy to check that * holds in this case as well.

Solution 3 by Graham Lord, Princeton, New Jersey.

That a0 = 1 is immediate from the substitution x = 0 in the equation. The lat-
ter’s first and second derivatives at 0 show a1 = c and a2 = c(c − 1), respectively.
Note, c − 1 = a2+a0−1

a1
and a1(a1 − 1) = a2a0. For convenience, set a−1 = 0, so

a0(a0 − 1) = a1a−1.

The equation’s RHS denominator, 1− cx + cx2 − x3 factors into (1 − x) and (1 −
(c − 1)x + x2). So multiplication of the equation through by the latter factor gives:
1+∑∞n=1(an − (c − 1)an−1 + an−2)x

n = 1
1−x = 1+ x + x2 + ... .

Hence for all n ≥ 1, as the coefficients of xn on both sides of this last equation
are equal: (an − (c − 1)an−1 + an−2) = 1. Equivalently: c − 1 = an+an−2−1

an−1
. That is,

for any n ≥ 1 the ratio, an+an−2−1
an−1

is constant, independent of n, and equal to c − 1.

In particular: an+an−2−1
an−1

= an+1+an−1−1
an

. The latter simplified is the sought after identity
an(an − 1) = an+1an−1.

Also solved by Ulrich Abel and Vitaliy Kushnirevych, Technische Hochschule, Mittelhessen, Germany;

Paul Bracken, U. of Texas, Edinburg; Brian Bradie, Christopher Newport U.; Kyle Calderhead, Malone

U.; Hongwei Chen, Christopher Newport U.; FAU Problem Solving Group, Florida Atlantic U.; Geuseppe

Fera, Vicenza, Italy; Dmitry Fleischman, Santa Monica, CA; Michael Goldenberg, Baltimore Polytechnic

Inst. and Mark Kaplan, U. of Maryland Global Campus (jointly); G. C. Greubel, Newport News, VA; GWstat

Problem Solving Group, The George Washington U.; Eugene Herman, Grinnell C.; Walther Janous, Ursu-

linengymnasium, Innsbruck, Austria; Omran Kouba, Higher Inst. for Applied Sci. and Tech., Damascus, Syria.

Northwestern U. Math Problem Solving Group; Carlos Shine, São Paulo, Brazil; Albert Stadler,

Herrliberg, Switzerland; Enrique Treviño, Lake Forest C.; Michael Vowe, Therwil, Switzerland; and the pro-

poser.
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It was brought to our attention that CMJ problem 1208 has already appeared as prob-
lem 12256 in the May 2021 issue of the Monthly (by a different proposer). Accord-
ingly, we will not be featuring a solution to this problem. We apologize for the error.

SOLUTIONS

An equilateral triangle in an isosceles triangle

1191. Proposed by Herb Bailey, Rose-Hulman Institute of Technology, Terre Haute,
IN.

An isosceles triangle has incenter I , circumcenterO, side length S, and base lengthW .
Show that there is a unique value of S

W
so that there exists a point P on one of the two

sides of length S such that triangle IOP is equilateral. Find this value. Solution by the

Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and Savannah,
GA.

The unique value is

S

W
= 1+√3+ 2

√
7/3

2
≈ 1.7303506.

Position the isosceles triangleABC withA = (0, a),B = (W/2, 0) andC = (−W/2, 0).

Then a2 = S2 − W2

4 and a =
√

4S2−W2

2 . The circumcenter O lies at the intersection of
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the perpendicular bisectors of AB and BC. The midpoint of AB is (W/4, a/2) and
the slope of AB is −2a

W
, so the perpendicular bisector of AB has slope W

2a and equation

y = a

2
+ W

2a

(
x − W

4

)
.

Since the perpendicular bisector of BC is the y-axis, then the circumcenter O has
y-coordinate

yO = a

2
− W

2

8a
= 4a2 −W 2

8a
= 2S2 −W 2

2
√

4S2 −W 2
.

Since the y-axis bisects ∠A, then the incenter I also lies on the y-axis; its y-coordinate
is given by

yI = Wa

2S +W =
W
√

4S2 −W 2

2(2S +W) .

Thus, the distance between I and O is given by

IO = yO − yI = 2S2 −W 2

2
√

4S2 −W 2
− W
√

4S2 −W 2

2(2S +W) =
S(S −W)√
4S2 −W 2

.

If a point P is equidistant from O and I , then its y-coordinate must be given by

yP = yO + yI
2

= 2S2 −W 2

4
√

4S2 −W 2
+ W
√

4S2 −W 2

4(2S +W)

= 2S2 −W 2 +W(2S −W)
4
√

4S2 −W 2

= S2 + SW −W 2

2
√

4S2 −W 2
.

If P also lies on AB, then its x-coordinate must be given by

xP = W

2

(
1− yP

a

)

= W

2

(
1− S

2 + SW −W 2

4S2 −W 2

)

= SW(3S −W)
2(4S2 −W 2)

.

Thus, the square of the distance between O and P is

OP 2 =
(
IO

2

)2

+ x2
P
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= S2(S −W)2
4(4S2 −W 2)

+ S
2W 2(3S −W)2
4(4S2 −W 2)2

= S3
(
S3 − 2S2W + 3SW 2 −W 3

)
(
4S2 −W 2

)2 .

If triangle IOP is equilateral, then IO2 = OP 2; that is,

S2 (S −W)2
4S2 −W 2

= S3
(
S3 − 2S2W + 3SW 2 −W 3

)
(
4S2 −W 2

)2

(S −W)2 (4S2 −W 2
) = S4 − 2S3W + 3S2W 2 − SW 3

3S4 − 6S3W + 3SW 3 −W 4 = 0.

Dividing by W 4 �= 0 and letting x = S/W gives the equation

3x4 − 6x3 + 3x − 1 = 0.

Substituting x = z+ 1/2 and multiplying by 16, we get

48z4 − 72z2 − 1 = 0,

so that

z2 = 72± 16
√

21

96
= 3

4
±
√

21

6
= 3± 2

√
7/3

4
,

z = ±
√

3± 2
√

7/3

2
,

and

x = 1±√3± 2
√

7/3

2
.

Since x = S

W
is a positive real number, there is a unique solution:

S

W
= 1+√3+ 2

√
7/3

2
≈ 1.7303506.

Also solved by Michel Bataille, Rouen, France; James Duemmel, Bellingham, WA; Jeffrey Groah, Lone

Star C. - Montgomery; Eugene Herman, Grinnell C.; Elias Lampakis, Kiparissia, Greece; Volkhard

Schindler, Berlin, Germany; Randy Schwartz, Schoolcraft C. (retired); Albert Stadler, Herrliberg,

Switzerland; Enrique Treviño, Lakeforest C.; Michael Vowe, Therwil, Switzerland; and the proposer.
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Ubiquitous zero divisors without nontrivial nilpotent elements implies
infinite

1192. Proposed by Greg Oman, University of Colorado at Colorado Springs, Colorado
Springs, CO.

Let R be a commutative ring (not assumed to have an identity). Recall that an element
x ∈ R is a zero divisor if there is some nonzero y ∈ R such that xy = 0; x is nilpotent
if xn = 0 for some positive integer n (note that we do not require a zero divisor to be
nonzero).

(a) Prove or disprove: there exists a finite commutative ring R for which

1. every element of R is a zero divisor, and
2. the only nilpotent element of R is 0.

(b) Does your answer change if “finite” is replaced with “infinite”?
Solution by Northwestern University Math Problem Solving Group.

1. The answer is negative, i.e., there is no finite commutative ring satisfying 1 and
2. If R = {0} (the trivial ring), then 0 is not a zero divisor, sit fails to satisfy 1.
Hence, we may assume that R is non-trivial, and the proof proceeds as follows.

Let S = {x1, x2, ..., xn} be a maximal set (n maximum) of distinct non-zero
elements of R with the property xixj = 0 for every i �= j . Denote s = x1 + x2 +
· · · + xn its sum. Then
(a) We h ave s �= 0 because otherwise x1 = −x2 − · · · − xn, hence x2

1 =−x2x1 − · · · − xnx1 = 0, contradicting the assumption that 0 is the only
nilpotent element.

(b) Since all elements of R are zero divisors, there must be a non-zero r such
that 0 = rs = rx1 + rx2 + · · · + rxn. Hence, for each i = 1, ..., n, we have

rxi = −
n∑
j=1
j �=i

→ (rxi)
2 = r (rxi) xi = −r

n∑
j=1
j �=i

rxjxi = 0→ rxi = 0.

This implies that the set S ′ = {r, x1, x2, ..., xn} also has the property that ev-
ery pair of distinct elements in it has product zero, but S ′ has n + 1 elements,
contradicting the maximality of S.

2. For infinite rings, the answer is affirmative. An example is the ring R of infinite
sequences of integers with finitely many non-zero elements (and term-wise ad-
dition and multiplication). This ring satisfies the required properties, as shown
below.

• Property 1: If {an}n∈N is in R, then there will be some (in fact infinitely
many) m ∈ N such that am = 0. Given a fixed m such that am = 0, let
bm = 1 and bn = 0 for n �= m. Then we have that {bn}n∈N is not zero, but
anbn = 0 for every n, so that {an}n∈N is a zero divisor.

• If k ≥ 1, then, for each n, akn = 0 if and only if an = 0. Hence the zero
element of R, consisting of the sequence with all terms zero, is the only
nilpotent element in R.

Also solved by Egle Bettio and Liceo Benedetti-Tommaseo, Venezia, Italy; Anthony Bevelacqua, U. of

N. Dakota; Paul Budney, Sunderland, MA; Elias Lampakis, Kiparissia, Greece; and the proposer.
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A function that is a polynomial over the rationals in each slot separately
need not be a polynomial over Q2

1193. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Let f : Q×Q→ Q be a function such that y → f (a, y) is a polynomial over Q for
every a ∈ Q and x → f (x, b) is a polynomial over Q for every b ∈ Q. Is it true that
f (x, y) is a polynomial in (x, y) ∈ Q

2?

Solution by Paul Budney, Sunderland, Massachusetts.

Such functions exist which cannot be defined by a polynomial in Q[x, y]. Let r1, r2, ...

be a faithfully-indexed sequence of the rationals. Define f : Q2 → Q by

f (x, y) =
∞∑
k=1

k∏
i=1

(x − ri) (y − ri) .

For each (x, y) = (rm, rn) ∈ Q
2, this series has only finitely many non-zero terms, so

it converes on Q
2. For any rational x = rn, if n > 1,

f (rn, y) =
n−1∑
k=1

k∏
i=1

(rn − ri) (y − ri) ∈ Q[y],

a polynomial of degree n − 1. If n = 1, f (r1, y). Similarly, for n > 1, f (x, rn) ∈
Q[x], a polynomial of degree n − 1. Also, f (x, r1) = 0. Now, if f is defined by a
polynomial f (x, y) ∈ Q[x, y], we can choose a positive integer n > deg[f (x, y)] =
d > 0. But then f (rn+1, y) is a polynomial of degree n and also a polynomial of
degree at most d < n. This is impossible since non-constant polynomials have only
finitely many zeros. Thus f (x, y) can’t be defined by a polynomial in Q[x, y].

Also solved by Gerald Edgar, Denver, CO; Albert Natian, Los Angeles Valley C.; Kenneth Schilling, U.

of Michigan - Flint; and the proposer. One incomplete solution and one incorrect solution were received.

A two-variable inequality over the integers

1194. Proposed by Andrew Simoson, King University, Bristol, TN.

Let a and b be positive integers with a ≥ b. Prove the following:
(a) b

a+b + a+b
b
>
√

5, and

(b) either a

a+b + a+b
a
>
√

5 or a

b
+ b

a
>
√

5.

Solution by Charlie Mumma, Seattle, Washington.

For convenience, set c = (√5 − 1)/2, d = (√5 + 1)/2, and f (x) = x + 1/x. Ob-
serve that f is strictly decreasing on (0, 1), strictly increasing on (1,∞), and f (c) =
f (d) = √5. Since a ≥ b, (a + b)/b ≥ 2 > d, which proves (a) [f ((a + b)/b) >
f (d)]. Next notice that when a/b + b/a ≤ √5, c ≤ b/a ≤ 1. Hence (a + b)/a =
1 + b/a ≥ 1 + c = d. If a = b, a/(a + b) + (a + b)/a = 5/2 >

√
5. However, for

b = ca, a/(a + b)+ (a + b)/a = a/b + b/a = √5. Thus (b) is true so long as a/b
is not the golden ratio (a condition less stringent than the requirement that both a and
b be integers).

Also solved by Ulrich Abel, Technische Hochschule Mittelhessen, Germany and Georg Arends, Eschweiler,

Germany (jointly); Farrukh Rakhimjanovich Ataev, Westminster International U., Tashkent, Uzbekistan;
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Michel Bataille, Rouen, France; Brian Beasley, Presybterian C.; Brian Bradie, Christopher Newport U.;

Kyle Calderhead, Malone U.; John Christopher, California St. U., Sacramento; Christopher Newport

U. Problem Solving Seminar; Matthew Creek, Assumption U.; Richard Daquila, Muskingum U.; Eagle

Problem Solvers, Georgia Southern U.; Habin Far, Lone Star C. - Montgomery; Dmitry Fleischman, Santa

Monica, CA; Davide Fusi, U. of South Florida Beaufort; Russ Gordon, Whitman C.; Lixing Han, U. of Michi-

gan - Flint and Xinjia Tang, Chang Zhou U.; Eugene Herman, Grinnell C.; Donald Hooley, Bluffton, OH;

Tom Jager, Calvin U.; A. Bathi Kasturiarachi, Kent St. U. at Stark; Elias Lampakis, Kiparissia, Greece;

Kee-Wai Lau, Hong Kong, China; Seungheon Lee, Yonsei U.; Graham Lord, Princeton, NJ; Rhea Malik;

Northwestern U. Math Problem Solving Group; Ángel Plaza and Francisco Perdomo, Universidad de

Las Palmas de Gran Canaria, Las Palmas, Spain; Mark Sand; Randy Schwartz, Schoolcraft C. (retired); Al-

bert Stadler, Herrliberg, Switzerland; Enrique Treviño, Lake Forest C.; Michael Vowe, Therwil, Switzer-

land; Roy Willits; Lienhard Wimmer; and the proposer.

A sum of harmonic sums

1195. Proposed by Marián Štofka, Slovak University of Technology, Bratislava, Slovak
Republic.

Prove the following:

∞∑
k=1

Hk

k + 1

(
π2

6
−Hk+1,2

)
= π4

90
,

where Hk =∑k

i=1
1
i

is the kth harmonic number and Hk,2 =∑k

i=1
1
i2

is the kth gener-
alized harmonic number.

Solution by Russ Gordon, Whitman College, Walla Walla, WA.

Since 1
6π

2 =∑∞k=1

(
1/k2

)
, we can express the given sum as

n=1∑
∞

∞∑
k=n+2

(n+ 1)k2
=
∞∑
n=1

∞∑
k=1

(n+ 1)(n+ k + 1)2
.

Using integration by parts, it is not difficult to verify that∫ 1

0
−xn−1 ln x dx = 1

n2
and

∫ 1

0
xn−1(ln x)2 dx = 2

n3

for each positive integer n. We also make note of the following Macluarin series:

− ln(1− x) =
∞∑
n=1

1

n
xn and

(ln(1− x))2
2x

=
∞∑
n=1

hn

n+ 1
xn.

Using this information, we find that

∞∑
n=1

∞∑
k=1

hn

(n+ 1)(n+ k + 1)2
=
∞∑
n=1

hn

n+ 1

∞∑
k=1

∫ 1

0
−xn+k ln x dx

=
∞∑
n=1

hn

n+ 1

∫ 1

0

−xn+1

1− x ln x dx
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=
∫ 1

0

− ln x

1− x
∞∑
n=1

hn

n+ 1
xn+1 dx

=
∫ 1

0

− ln x

1− x ·
(ln(1− x))2

2
dx

= 1

2

∫ 1

0

− ln(1− x)(ln x)2
x

dx

= 1

2

∞∑
n=1

1

n

∫ 1

0
xn−1(ln x)2 dx

= 1

2

∞∑
n=1

2

n4

= π4

90
,

the desired result.

Also solved by Michel Bataille, Rouen, France; Gerald Bilodeau, Boston Latin School; Khristo Boy-

adzhiev, Ohio Northern U.; Paul Bracken, U. of Texas, Edinburg; Brian Bradie, Christopher Newport U.;

Bruce Burdick, Roger Williams U.; Hongwei Chen, Christopher Newport U.; Lixing Han, U. of Michigan-

Flint and Xinjia Tang, Chang Zhou U.; Eugene Herman, Grinnell C.; Omran Kouba, Higher Inst. for Applied

Sci. and Tech., Damascus, Syria. Elias Lampakis, Kiparissia, Greece; Albert Stadler, Herrliberg, Switzer-

land; Seán Stewart, Bomaderry, NSW, Australia; Michael Vowe, Therwil, Switzerland; and the proposer.

Editor’s note: The name of James Brenneis was omitted from the list of solvers of
problem 1183 in the November 2021 issue. We apologize for the omission.
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SOLUTIONS

A continued fraction given by Fibonacci

1186. Proposed by Gregory Dresden, Washington and Lee University, Lexington, 
VA and ZhenShu Luan (high school student), St. George’s School, Vancouver, BC, 
Canada.

Find a closed-form expression for the continued fraction [1, 1, . . . ,  1, 3, 1, 1, . . . , 
1], which has n ones before, and after, the middle three.

Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

In order to get the desired expression, we recall the following elegant way of evaluat-
ing the convergents of a continued fraction. [See, for instance,
https://de.wikipedia.org/wiki/Kettenbruch, particularly the paragraph “matrixdarstel-
lung.”] We have to evaluate the product

[
1 1
1 0

]n
·
[

3 1
1 0

]
·
[

1 1
1 0

]n

Let Fn be the nth Fibonacci number. From the familiar representation

[1, 1, ..., 1] = Fn+1

Fn
,

(with n 1’s), we get [
1 1
1 0

]n
=
[
Fn+1 Fn
Fn Fn−1

]
,

whence[
1
1 0

]n
·
[

3 1
1 0

]
·
[

1 1
1 0

]n
=
[
Fn+1 Fn
Fn Fn−1

]
·
[

3 1
1 0

]
·
[
Fn+1 Fn
Fn Fn−1

]
;
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that is[
1
1 0

]n
·
[

3 1
1 0

]
·
[

1 1
1 0

]n

=
[

Fn+1 · (3Fn+1 + 2Fn) Fn+1 · Fn−1 + Fn (3Fn+1 + Fn)
Fn+1 · Fn−1 + 3FnFn+1 + F 2

n Fn (2Fn−1 + 3Fn)

]
.

This leads to the desired closed-form expression of [1, ..., 1, 3, 1, ..., 1]:

Fn+1 (3Fn+1 + 2Fn)

Fn+1 · Fn−1 + 3Fn · Fn+1 + F 2
n

= Fn+1 (3Fn+1 + 2Fn)

Fn+1 (Fn+1 − Fn)+ Fn (3F − n+ 1+ Fn)

= Fn+1 (3Fn+1 + 2Fn)

F 2
n+1 + 2Fn+1 · Fn + F 2

n

= Fn+1 (3Fn+1 + 2Fn)

(Fn+1 + Fn)2

= Fn+1 (3Fn+1 + 2Fn)

F 2
n+2

= Fn+1 (Fn+1 + 2Fn+2)

F 2
n+2

.

This and

Fn+1 + 2Fn+2 = Fn+3 + Fn+2 = Fn+4

yield the closed-form result

Fn+1Fn+4

F 2
n+2

.

Also solved by Brian Beasley, Presbyterian C.; Anthony Bevelacqua, U. of N. Dakota; Brian Bradie,

Christopher Newport U.; James Brenneis, Penn State - Shenango; Hongwei Chen, Christopher Newport

U.;Giuseppe Fera, Vicenza, Italy; Eugene Herman, Grinnell C.; Donald Hooley, Bluffton, OH; Joel Iiams,

U. of N. Dakota; Harris Kwong, SUNY Fredonia; Seungheon Lee, Yonsei U.; Carl Libis, Columbia Southern

U.; Graham Lord, Princeton, NJ; Ioana Mihaila, Cal Poly Pomona; Missouri State U. Problem Solving

Group; Northwestern U. Math Problem Solving Group; Randy Schwartz, Schoolcraft C. (retired); Al-

bert Stadler, Herrliberg, Switzerland; Paul Stockmeyer, C. of William and Mary; David Terr, Oceanside,

CA; Enrique Treviño, Lakeforest C.; Michael Vowe, Therwil, Switzerland; and the proposer.

A limit of maxima

1187. Proposed by Reza Farhadian, Lorestan University, Khorramabad, Iran.

Let α > 1 be a fixed real number, and consider the function M : [1,∞)→ N defined
by M(x) = max{m ∈ N : m! ≤ αx}. Prove the following:

lim
n→∞

n
√
M(1)M(2) · · ·M(n)

M(n)
= e−1.

390 © THE MATHEMATICAL ASSOCIATION OF AMERICA



Solution by Randy Schwartz, Schoolcraft College (retired), Ann Arbor, Michigan.

From the definition of the function M , we have [M(n) + 1]! > αn for α > 1, so
limn→∞M(n) = ∞, and thus limn→∞ lnM(n) = ∞. Also from the definition, we
have

[M(n)]! ≤ αn ⇒ ln([M(n)]!) ≤ n lnα ⇒ ln([M(n)]!)

n
≤ lnα,

and thus

lim
n→∞

ln([M(n)]!)

n
≤ lnα. (1)

Applying Stirling’s approximation to (1) leads to

lim
n→∞

(
M(n)+ 1

2

)
lnM(n)−M(n)+ 1

2 ln 2π

n
≤ lnα

lim
n→∞

[
M(n)

n
(lnM(n)− 1)+ lnM(n)

2n
+ ln 2π

2n

]
≤ lnα

lim
n→∞

[
M(n)

n
(lnM(n)− 1)+ lnM(n)

2n

]
≤ lnα

The last term inside the brackets is nonnegative and, from the foregoing, the factor
lnM(n) − 1 increases without bound; thus, M(n)

n
must vanish, since otherwise the

above limit could not be a finite number such as lnα. Thus, we have established

∈n→∞ M(n)

n
= 0.

We can deduce more the definition of the function M:

[M(n)+ 1]!αn

[M(n)+ 1]M(n)! > αn

[M(n)]! >
αn

M(n)+ 1

ln([M(n)!) > n lnα − ln[M(n)+ 1]

ln([M(n)!])

n
> lnα − ln[M(n)+ 1]

n

lim
n→∞

ln([M(n)]!)

n
≥ lnα,

and combining this with (1) yields

lim
n→∞

ln)[M(n)!])

n
= lnα

and then

lim
n→∞

ln)[M(n)!])

n
= 1. (2)
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Using Stirling again, we have

lim
n→∞

ln([M(n)!)

M(n) lnM(n)
= lim

n→∞

(
M(n)+ 1

2

)
lnM(n)−M(n)+ 1

2 ln 2π

M(n) lnM(n)

= lim
n→∞

[
M(n)+ 1

2

M(n)
− 1

lnM(n)
+ ln 2π

2M(n) lnM(n)

]

= 1− 0+ 0 = 1.

and combining this with (2) yields

lim
n→∞

M(n) lnM(n)

n lnα
= 1. (3)

We can now calculate the requested value, L. We have

L = lim
n→∞

n
√∏n

h=1M(h)

M(n)
= lim

n→∞
n

√√√√ n∏
h=1

M(h)

M(n)
,

and then

lnL = lim
n→∞

n∑
h=1

1

n
ln

[
M(h)

M(n)

]
.

There are many repeated terms in the above summation. The interval between (j −
1)! and j !, involving as it does a multiplication by j , encloses approximately logα j
powers of α, each one of them associated with the same value of the function M . In
other words, the number of integer solutions of M(n) = j is asymptotically logα j =
ln j
lnα . Using that as a weighting factor to gather the repeated terms, we can rewrite the
above summation as

lnL = lim
n→∞

M(n)∑
j=1

1

n
· ln j

lnα
ln

[
j

M(n)

]

= lim
n→∞

M(n)∑
j=1

(ln j)2 − ln j · lnM(n)
n lnα

= lim
n→∞

M(n)∑
j=1

(ln j)2 − ln j · lnM(n)
M(n) lnM(n)

, using (3),

and thus

lnL = lim
n→∞

⎡
⎣ 1

M(n) lnM(n)

M(n)∑
j=1

(ln j)2 − 1

M(n)

M(n)∑
j=1

ln j

⎤
⎦ . (4)

Using inscribed and circumscribed rectangles, we have

∫ k

1
ln x dx <

k∑
j=1

ln j <
∫ k+1

2
ln x dx
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k∑
j=1

ln j ≈
∫ k

1
ln x dx = k ln k − k + 1

lim
n→∞

1

k

k∑
j=1

ln j = ln k − 1,

and similarly

k∑
j=1

(ln j)2 ≈
∫ k

1
(ln x)2 dx = k(ln k)2 − 2k ln k + 2k − 2

lim
n→∞

1

k ln k

k∑
j=1

(ln j)2 = ln k − 2.

Applying these to (4) yields

lnL = lim
n→∞[(lnM(n)− 2)− (lnM(n)− 1)] = −1,

and thus

L = e−1.

Also solved by Dmitry Fleischman, Santa Monica, CA; Lixing Han, U. of Michigan-Flint and Xinjia Tang,

Chang Zhou U.; Albert Stadler, Herrliberg, Switzerland; and the proposer.

A recursively defined sequence of trigonometric functions

1188. Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Las
Palmas de Gran Canaria, Spain.

Let {fn(x)}n≥1 be the sequence of functions recursively defined by fn(x) =
∫ fn−1(x)

0 sin tdt ,
with initial condition f1(x) =

∫ x
0 sin tdt . For each n ∈ N, find the value of pn

such that Ln = lim
x→0

fn(x)

xpn
∈ R\{0} and the corresponding value Ln. Prove also that

log2(L
−1
n ) = 3 log2(L

−1
n−1)− 2 log2(L

−1
n−2) for n ≥ 3.

Solution by Michael Vowe, Therwil, Switzerland.

We have

f1(x) =
∫ x

0
sin t dt = 1− cos x = x2

2!
+O (x4

)
and hence p1 = 2, L1 = 1

2 . Further

f2(x) = 1− cos(1− cos x)

=
(

1− cos x

2!

)2

−
(

1− cos x

4!

)4

+ · · · = x4

2!4
+O (x6

)
,
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which means that p2 = 4, L2 = 1
8 .

Since

fn(x) = 1− cos (fn−1(x)) , p1 = 2, L1 = 1

2
,

we obtain

pn = 2pn−1 = 2 · 2pn−2 = · · · = 2n−1p1 = 2n

and

Ln = 1

2!
(Ln−1)

2 = 1

2!
· 1

(2!)2
(Ln−1)

4 = · · · = 1

2!1+2+4+···+2n−2 (L1)
2n−1

= 1

22n−1−1
· 1

22n−1 =
1

22n−1
.

Now

3 log2

(
L−1
n−1

)− 2 log2

(
L−1
n−2

) = 3
(
2n−1 − 1

)− 2
(
2n−2 − 1

)
= 2 · 2n−1 − 1 = 2n − 1 = log2 22n−1 = log2

(
L−1
n

)
.

Also solved by Michel Bataille, Rouen, France; Brian Bradie, Christopher Newport U.; Paul Budney, Sun-

derland, MA; Hongwei Chen, Christopher Newport U.; Christopher Newport U. Problem Solving Sem-

inar; Gerald Edgar, Denver, CO; Lixing Han, U. of Michigan-Flint; Justin Haverlick, State U. of New

York at Buffalo; Eugene Herman, Grinnell C.; Christopher Jackson, Coleman, Florida; Elias Lampakis,

Kiparissia, Greece; Albert Natian, Los Angeles Valley C.; Mark Sand, C. of Saint Mary; Randy Schwartz,

Schoolcraft C. (retired); Albert Stadler, Herrliberg, Switzerland; Seán Stewart, Bomaderry, NSW, Aus-

tralia; and the proposer. One incomplete solution and one incorrect solution were received.

A sum of harmonic sums

1189. Proposed by Seán Stewart, Bomaderry, NSW, Australia.

Evaluate the following sum:

∞∑
n=1

Hn+1 +Hn − 1

(n+ 1)(n+ 2)
,

where Hn =∑n

k=1
1
k

denotes the nth harmonic number.

Solution by Robert Agnew, Palm Coast, Florida.

The sum

S =
∞∑
n=1

Hn+1 +Hn − 1

(n+ 1)(n+ 2)

can be written as

S =
∞∑
n=1

1

(n+ 1)(n+ 2)

(
−1+ 1

n+ 1
+ 2 ·

n∑
k=1

1

k

)
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= −
∞∑
n=1

1

(n+ 1)(n+ 2)
+
∞∑
n=1

1

(n+ 1)2(n+ 2)
+ 2 ·

∞∑
n=1

1

(n+ 1)(n+ 2)

n∑
k=1

1

k
.

Evaluating each of these sums in turn gives

∞∑
n=1

1

(n+ 1)(n+ 2)
=
∞∑
n=1

(
1

n+ 1
− 1

n+ 2

)
= 1

2
;

∞∑
n=1

1

(n+ 1)2(n+ 2)
=
∞∑
n=1

(
− 1

n+ 1
+ 1

n+ 2
+ 1

(n+ 1)2

)

= −
∞∑
n=1

(
1

n+ 1
− 1

n+ 2

)
+
∞∑
n=1

1

(n+ 1)2

= −1

2
+
(
π2

6
− 1

)

= −3

2
+ π

2

6
;

and

∞∑
n=1

1

(n+ 1)(n+ 2)

n∑
k=1

1

k
=
∞∑
k=1

1

k

∞∑
n=k

1

(n+ 1)(n+ 2)

=
∞∑
k=1

1

k

∞∑
n=k

(
1

n+ 1
− 1

n+ 2

)
=
∞∑
k=1

1

k(k + 1)

= 1.

Hence

S = π2

6
.

Also solved by Arkady Alt, San Jose, CA; Farrukh Rakhimjanovich Ataev, Westminster International U.,

Tashkent, Uzbekistan; Michel Bataille, Rouen, France; Necdet Batir, Nevşehir Haci Bektaş Veli U.; Khristo

Boyadzhiev, Ohio Northern U.; Paul Bracken, U. of Texas, Edinburg; Brian Bradie, Christopher Newport

U.; Hongwei Chen, Christopher Newport U.; Geon Choi, Yonsei U.; Nandan Sai Dasireddy, Hyderabad,

India; Bruce Davis, St. Louis Comm. C. at Florissant Valley; Giuseppe Fera, Vicenza, Italy; Subhankar

Gayen, West Bengal, India; Michael Goldenberg, Baltimore Polytechnic Inst. and Mark Kaplan, U. of

Maryland Global Campus; GWStat Problem Solving Group; Lixing Han, U. of Michigan - Flint and Xinjia

Tang, Chang Zhou U.; Eugene Herman, Grinnell C.; Walther Janous, Innsbruck, Austria; Kee-Wai Lau,

Hong Kong, China; Seungheon Lee, Yonsei U.; Graham Lord, Princeton, NJ; Missouri State U. Problem

Solving Group; Shing Hin Jimmy Pa; Ángel Plaza and Francisco Perdomo, Universidad de Las Palmas

de Gran Canaria, Las Palmas, Spain; Rob Pratt, Apex, NC; Arnold Saunders, Arlington, VA; Volkhard

Schindler, Berlin, Germany; Randy Schwartz, Schoolcraft C. (retired); Allen Schwenk, Western Michigan

U. Albert Stadler, Herrliberg, Switzerland; Marián Ŝtofka, Slovak U. of Technology; Enrique Treviño,

Lake Forest C.; Michael Vowe, Therwil, Switzerland; and the proposer.
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A second-order differential equation

1190. Proposed by George Stoica, Saint John, New Brunswick, Canada.

Find all twice differentiable functions y = y(x) such that (y + x)y ′′ = y ′(y ′ + 1).

Solution by Eugene Herman, Grinnell College, Grinnell, Iowa.

Substituting z(x) = y(x) + x into the differential equation yields zz′′ = (z′ − 1)z′.
This has solutions z = k and z = x + k. Other than these, we have

d

dx

(
z′ − 1

z

)
= zz′′ − (z′ − 1)z′

z2
= 0

and so z′ − 1 = cz, where c �= 0. Separating variables yields z = kecx−1
c

. Therefore,
the solutions for y are

k − x, k,
kecx − 1

c
− x (where c �= 0).

Editor’s note: Solvers exercised various degrees of care in ensuring the existence of an
interval on which one could safely avoid dividing by zero. In the interests of space, we
have not incorporated that analysis here.

Also solved by Robert Agnew, Palm Coast, FL; Arkady Alt, San Jose, CA; Tomas Barajas, U. of Arkansas at

Little Rock; Michel Bataille, Rouen, France; Paul Bracken, U. of Texas, Edinburg; Brian Bradie, Christo-

pher Newport U.; Hongwei Chen, Christopher Newport U.; Richard Daquila, Muskingham U.; Bruce Davis,

St. Louis Comm. C. at Florissant Valley; Michael Goldenberg, Baltimore Polytechnic Inst. and Mark Ka-

plan, U. of Maryland Global Campus; Anna DePoyster, Missie Bogard, Rylee Buck, and Chanty Gray,

(students) U. of Arkansas, Little Rock; Raymond Greenwell, Hofstra U.; Lixing Han, U. of Michigan-Flint

and Xinjia Tang, Chang Zhou U.; Justin Haverlick, State U. of New York at Buffalo; Logan Hodgson;

Walther Janous, Innsbruck, Austria; Harris Kwong, SUNY Fredonia; Seungheon Lee, Yonsei U.; William

Littlejohn, Jason Pearson, and Cole Stillman (students) U. of Arkansas, Little Rock; James Magliano,

Union Country C. (emeritus); Albert Natian, Los Angeles C.; Randy Schwartz, Schoolcraft C. (retired); Al-

bert Stadler, Herrliberg, Switzerland; Seán Stewart, Bomaderry, NSW, Australia; Nora Thornber, Raritan

Valley Comm. C.; and the proposer.
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SOLUTIONS

Two limits of integrals

1181. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical University of 
Cluj-Napoca, Cluj-Napoca, Romania.

Let k > 0 be a real number. Calculate the following:

1. L := limn→∞
∫ 1

0

( n√x+k−1
k

)n
dx, and

2. limn→∞ n
( ∫ 1

0

( n√x+k−1
k

)n
dx − L).

Solution by Seán Stewart, Bomaderry, NSW, Australia.

We will show that for k > 0,

1. L = lim
n→∞

∫ 1

0

(
n
√
x + k − 1

k

)n
dx = k

k + 1
, and

2. lim
n→∞ n

[∫ 1

0

(
n
√
x + k − 1

k

)n
dx − L

]
= k(k − 1)

(k + 1)3
.
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We first find an asymptotic expansion for the term

J =
(
x

1
n + k − 1

k

)n
,

for large n. For x ∈ (0, 1), from the Maclaurin series expansion for the exponential
function as y → 0 we have

exp (y log x) = 1+ y log(x)+ 1

2
y2 log2(x)+O(y3).

Setting y = 1
n

then as n→∞, we have

exp

(
1

n
log x

)
= x 1

n = 1+ log(x)

n
+ log2(x)

2n2
+O

(
1

n3

)
.

Thus

x
1
n − 1

k
= log(x)

nk
+ log2(x)

2n2k
+O

(
1

n3

)
.

Now

log J = n log

(
1+ x

1
n − 1

k

)
= n log

[
1+

{
log(x)

nk
+ log2(x)

2n2k
+O

(
1

n3

)}]
. (1)

From the Maclaurin series expansion for log(1+ x), as x → 0, we have

log(1+ x) = x − x
2

2
+O(x3).

Using this result we can write (1) as

log J = n
[

log(x)

nk
+ (k − 1) log2(x)

2n2k2
+O

(
1

n3

)]

= log
(
x

1
k

)
+ (k − 1) log2(x)

2nk2
+O

(
1

n2

)
.

Thus

J = elog J = exp

[
log

(
x

1
k

)
+ (k − 1) log2(x)

2nk2
+O

(
1

n2

)]

= x 1
k exp

[
(k − 1) log2(x)

2nk2
+O

(
1

n2

)]
. (2)

From the Maclaurin series expansion for the exponential function, as x → 0, we have

ex = 1+ x +O(x2).
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Using this result we can write (2) as

J = x 1
k

[
1+ (k − 1) log2(x)

2nk2
+O

(
1

n2

)]

= x 1
k + (k − 1)x

1
k log2(x)

2nk2
+O

(
1

n2

)
, (3)

as n→∞ and is the asymptotic expansion we sought for the term J .
Let

In =
∫ 1

0

(
n
√
x + k − 1

k

)n
dx.

From the result given for the asymptotic expansion in (3), an asymptotic expansion for
the integral In as n→∞ is

In =
∫ 1

0
x

1
k dx + k − 1

2nk2

∫ 1

0
x

1
k log2(x) dx +O

(
1

n2

)
. (4)

The first of the integrals to the right of the equality is elementary. The result is

∫ 1

0
x

1
k dx = k

k + 1
.

For the second of the integrals to the right of the equality, enforcing a substitution of
x 
→ xk produces

∫ 1

0
x

1
k log2(x) dx = k3

∫ 1

0
xk log2(x) dx.

Integrating by parts twice leads to

∫ 1

0
x

1
k log2(x) dx = 2k3

(k + 1)3
.

Thus (4) becomes

In = k

k + 1
+ k(k − 1)

n(k + 1)3
+O

(
1

n2

)
. (5)

Using the result given in (5), we are now in a position to answer the questions asked
in each part. For the first part

L = lim
n→∞ In = lim

n→∞

[
k

k + 1
+ k(k − 1)

n(k + 1)3
+O

(
1

n2

)]
= k

k + 1
,

as announced. And for the second part.

lim
n→∞ n(In − L) = lim

n→∞ n
[{

k

k + 1
+ k(k − 1)

n(k + 1)3
+O

(
1

n2

)}
− k

k + 1

]
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= lim
n→∞

[
k(k − 1)

(k + 1)3
+O

(
1

n

)]

= k(k − 1)

(k + 1)3
,

as announced.

Also solved by Robert Agnew, Palm Coast, FL (part 1 only); Paul Brracken, U. of Texas, Edinburg; Brian

Bradie, Christopher Newport U.; Hongwei Chen, Christopher Newport U.; James Duemmel, Bellingham,

WA; Giuseppe Fera, Vicenza, Italy; Dmitry Fleischman, Santa Monica, CA (part 1 only); Russ Gordon,

Whitman C.; Walther Janous, Innsbruck, Austria (part 1 only); Albert Stadler, Herrliberg, Switzerland;

and the proposer. One incorrect solution was received.

The edge of convergence

1182. Proposed by Adam Hammett, Cedarville University, Cedarville, OH.

Let c ∈ R, let {ak}k≥1 be a sequence of real numbers satisfying ak − ak−1 ≥ ak+1 −
ak ≥ 0 for all k ≥ 2, and introduce the power series

χ(c, {ak}, x) :=
∑
n≥2

(an−1 − c)(−1)n

xn
.

1. Find a real number r > 0 such that χ(c, {ak}, x) converges absolutely for x > r

and all choices of c and {ak}, but χ(c, {ak}, r) diverges for for some choice of c
or {ak}, and

2. Prove that there exists a function f (c, {ak}) ≥ r and a threshold value c∗ such
that χ(c, {ak}, x) > 0 for each c < c∗ and x > f (c, {ak}), and χ(c, {ak}, x) < 0
for each c > c∗ and x > f (c, {ak}). Give an explicit formula for f (c, {ak}) and
value for c∗.

Solution by the proposer.

Since the constant sequence {ak} = {1} satisfies the sequence condition, and χ(0, {1}, 1)
diverges, it becomes clear that r ≥ 1. Let’s show that we actually have r = 1. For this,
assuming x > 0, note that by the triangle inequality and the condition on {ak} we have

∑
n≥2

|an−1 − c| 1

xn
=
∑
n≥2

|an−1 − an−2 + an−2 − an−3 + · · · + a2 − a1 + a1 − c| 1

xn

≤
∑
n≥2

(an−1 − an−2 + an−2 − an−3 + · · · + a2 − a1 + |a1 − c|) 1

xn

≤
∑
n≥2

(n− 1)M(c, {ak})
xn

, M(c, {ak}) := max{a2 − a1, |a1 − c|}.

Applying the ratio test to this last series, we obtain

nM(c, {ak})/xn+1

(n− 1)M(c, {ak})/xn =
(

n

n− 1

)
1

x
→ 1

x
, n→∞,
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and so absolute convergence of χ(c, {ak}, x) is guaranteed for 1/x < 1, i.e. x > 1. So
r = 1 and part (a) is solved. Consequently, below we will assume x > 1.

Now on to (b). By appropriately “shifting” the terms in the series �(c, {ak}, x)
and taking advantage of their alternating nature, we can remove c from all but one
term, making our analysis far simpler. To this end, introduce ψ(c, {ak}, x) = (x2 +
x)χ(c, {ak}, x) and note that

ψ(c, {ak}, x) =
(
x2 + x)∑

n≥2

(an−1 − c) (−1)n

xn

= (a1 − c)− (a2 − c)
x

+ (a3 − c)
x2

− (a4 − c)
x3

+ · · ·

+ (a1 − c)
x

− (a2 − c)
x2

+ (a3 − c)
x3

− · · ·

= (a1 − c)+
∑
n≥2

(an − an−1)
(−1)n−1

xn−1
. (6)

Since x2 + x > 0 for x > 1, it follows that ψ(c, {ak}, x) and χ(c, {ak}, x) have the
same sign for x > 1. So let’s analyzeψ(c, {ak}, x) as defined in (6), which will involve
a careful case analysis for various c-values.

To start, what if consecutive terms of the sequence {ak} are ever equal? If, say,
am = am+1 for some minimal m ≥ 1, then the sequence condition implies

0 = am+1 − am ≥ ak+1 − ak ≥ 0, k ≥ m,

that is ak = ak+1 for all k ≥ m. So the sequence {ak} is constant from the mth term
onward, and hence in this case ψ(c, {ak}, x) is a finite polynomial:

ψ(c, {ak}, x) = (a1 − c)+
∑

2≤n≤m
(an − an−1)

(−1)n−1

xn−1
. (7)

Here, the sum in (7) may well be empty (i.e. m = 1), and this would correspond to the
case where {ak} is a constant sequence. If the sum is nonempty with at least two terms
(i.e. m ≥ 3), then the magnitude of the ratio of consecutive terms in the sum is

(an+1 − an)/xn
(an − an−1)/xn−1

= an+1 − an
an − an−1

(
1

x

)
< 1

for 2 ≤ n < m and x > 1, since (an+1 − an)/(an − an−1) ≤ 1 due to the sequence
condition. Hence, this alternating sum has terms that decrease in magnitude, and so

a1 − c − (a2 − a1)

x
≤ ψ(c, {ak}, x) ≤ a1 − c for x > 1, c ∈ R. (8)

So from the right-hand side of (8), it follows that

ψ(c, {ak}, x) ≤ a1 − c < 0 for c > a1, x > 1.

Consequently we have χ(c, {ak}, x) < 0 for c > a1 and x > 1.
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And what happens when c < a1? Notice that for x > 1 we have

a1 − c− (a2 − a1)

x
> 0 ⇐⇒ (a1 − c)x − (a2 − a1) > 0 ⇐⇒ x >

a2 − a1

a1 − c .
(9)

Here, the last algebraic manipulation requires that c < a1 in order to safely divide
through and preserve the direction of the inequality. So, invoking the left-hand side
inequality in (8) we see that

ψ(c, {ak}, x) ≥ a1 − c − (a2 − a1)

x
> 0 for x > max

{
1,
a2 − a1

a1 − c
}
, c < a1.

This means that χ(c, {ak}, x) > 0 for x > max{1, (a2 − a1)/(a1 − c)} and any fixed
c < a1.

Finally, it remains to check the case where the sequence has all consecutive terms
differing. Clearly, the condition on {ak} implies that the sequence is non-decreasing,
and so in this case we would have a strictly increasing sequence a1 < a2 < · · · . But
careful examination of the argument just given for an eventually constant sequence
shows that the same analysis goes through. So in summary, given a sequence {ak}
satisfying our condition we’ve shown that for fixed c > a1, χ(c, {ak}, x) < 0 for x >
1, and that for fixed c < a1,�(c, {ak}, x) > 0 for x > max{1, (a2 − a1)/(a1 − c)}. For
the sake of simplicity, it is worth noting that this latter condition on x reduces to x > 1
for c ≤ a1 − (a2 − a1), and x > (a2 − a1)/(a1 − c) for c ∈ (a1 − (a2 − a1), a1). In
other words, our threshold value c∗ = a1, and

f (c, {ak}) =
{
a2−a1
a1−c , for c ∈ (a1 − (a2 − a1), a1)

1 , for c /∈ (a1 − (a2 − a1), a1)

Moreover, by taking, for example, {ak} = {1, 2, 2, 2, . . .} we see that the left-hand
bound in (8) is actually equality, and hence the algebraic manipulation in (9) involves
ψ(c, {ak}, x) itself. This means that our choice of f (c, {ak}) is optimal.

No other solutions were received.

Circular sums

1183. Proposed by Eugen Ionascu, Columbus State University, Columbus, GA.
Let n be an odd positive integer. Suppose that the integers 1, 2, . . . , 2n are placed
around a circle in arbitrary order.

1. Show that there exist n of these numbers, placed in successive locations around
the circle, having sum S1 satisfying S1 ≥ n2 + n+1

2 ,
2. Show that there exist n of these numbers, placed in successive locations around

the circle, having sum S2 satisfying S2 ≤ n2 + n−1
2 , and

3. Show that it is possible to place the 2n numbers around the circle in such a way
that the sum of every n of these numbers, placed in successive locations around
the circle, has sum S3 satisfying n2 + n−1

2 ≤ S ≤ n2 + n+1
2 .

Solution by Andie Rawson (undergraduate), Smith College.

Let x1, x2, . . . , x2n be an arbitrary ordering of the integers 1, 2, . . . , 2n around a
circle. Then

2n∑
i=1

xi = 1+ 2+ · · · + 2n = 2n2 + n.
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Then let Si be the sum of n numbers placed in successive locations around the circle
starting from xi . That is,

S1 = x1 + x2 + · · · + xn
S2 = x2 + x3 + · · · + xn+1

.

.

S2n = x2n + x1 + · · · + xn−1

As each xi occurs in n sums,

2n∑
i=1

Si = n(x1 + x2 + · · · + x2n) = 2n3 + n2

The mean of the S ′is is then S = n2 + n

2 .

1. As n is odd, S is not an integer. Thus at least one of the Si satisfies the inequality
Si ≥

⌈
n2 + n

2

⌉
, so there exist n numbers in successive locations with sum S

satisfying S ≥ n2 + n+1
2 .

2. Again as S is not an integer, at least one of the Si satisfies the inequality Si ≤⌊
n2 + n

2

⌋
, so there exist n numbers in successive locations with sum S satisfying

S ≤ n2 + n−1
2 .

3. Consider the ordering where

xi =

⎧⎪⎨
⎪⎩
i i ∈ 1, 3, . . . , 2n− 1
i + (n+ 1) i ∈ 2, 4, . . . , n− 1
i − (n− 1) i ∈ n+ 1, n+ 3, . . . , 2n

.

Then

S1 = 1+ 3+ · · · + n+ (n+ 3)+ (n+ 5)+ · · · + 2n

= n+ 1

2

n+ 1

2
+ n− 1

2

3n+ 3

2

= n2 + n− 1

2
.

For i ∈ 1, 2, . . . , n we have that

Si+1 = Si + xn+i − xi = Si + (−1)i+1,

and for i ∈ n+ 1, n+ 2, . . . , 2n− 1 we have that

Si+1 = Si + xi−n − xi = Si + (−1)i+1.

Therefore for all even i, Seven = S1 + 1 = n2 + n+1
2 and for all odd i, Sodd = S1 =

n2 + n−1
2 . So every sum S of n successive numbers in this ordering satisfies n2 + n−1

2 ≤
S ≤ n2 + n+1

2
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Also solved by Levent Batakci and Paramjyoti Mohapatra, Case Western Reserve U.; Brian Beasley,

Presbyterian C.; Cal Poly Pomona Problem Solving Group; Michael Goldenberg, Baltimore Polytechnic

Inst. and Mark Kaplan, U. of Maryland Global Campus; Eugene Herman, Grinnell C.; Walther Janous,

Innsburck, Austria; Missouri State U. Problem Solving Group; Mooez Muhammad, (student) Bloor Colle-

giate Inst.; Albert Natian, Los Angeles Valley C.; Northwestern U. Math Problem Solving Group; Joel

Schlosberg, Bayside, NY; Philip Straffin; Texas State U. Problem Solving Group; Janet Lai-Yu Wang

and Nicole Yuen-Yi Pa; and the proposer.

A double integral of a product

1184. Proposed by Seán Stewart, Bomaderry, NSW, Australia.

Evaluate the following integral:∫ ∞
0

∫ ∞
0

sin x sin(x + y)
x(x + y) dxdy.

Solution by the Missouri State University Problem Solving Group.

We will show that, more generally,

∫ ∞
0

∫ ∞
0
f (x)f (x + y) dy dx = 1

2

(∫ ∞
0
f (t) dt

)2

.

Since it is well known that ∫ ∞
0

sin t

t
dt = π

2
,

the value of the original integral is π2/8.

Letting u = x and v = x + y, reversing the order of integration, and then revers-
ing the roles of u and v, we have

I =
∫ ∞

0

∫ ∞
0
f (x)f (x + y) dy dx

=
∫ ∞

0

∫ ∞
u

f (u)f (v) dv du

=
∫ ∞

0

∫ v

0
f (u)f (v) du dv

=
∫ ∞

0

∫ u

0
f (u)f (v) dv du.

Therefore

2I =
∫ ∞

0

∫ ∞
u

f (u)f (v) dv du+
∫ ∞

0

∫ u

0
f (u)f (v) dv du

=
∫ ∞

0

∫ ∞
0
f (u)f (v) dv du
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=
(∫ ∞

0
f (t) dt

)2

,

and the result follows.

We note that similar techniques show that∫ ∞
0
· · ·
∫ ∞

0
f (x1)f (x1 + x2) . . . f (x1 + x2 + . . .+ xn) dxn . . . dx1

= 1

n!

(∫ ∞
0
f (t) dt

)n
.

Also solved by U. Abel and V. Kushnirevych, Technische Hochschule Mittelhesen, Germany; Radouan

Boukharfane, Kaust, Thuwal, KSA; Khristo Boyadzhiev, Ohio Northern U.; Paul Bracken, U. of Texas,

Edinburg; Brian Bradie, Christopher Newport U.; Hongwei Chen, Christopher Newport U.; Bruce Davis,

St. Louis Comm. C. at Florissant Valley; Giuseppe Fera, Vicenza, Italy; Lixing Han, U. of Michigan-Flint;

Eugene Herman, Grinnell C.; Walther Janous, Innsbruck, Austria; John Kampmeyer, (student), Elizabeth-

town C.; Kee-Wai Lau, Hong Kong, China; Moubinool Omarjee, Lycé e Henri IV, Paris, France; Volkhard

Schindler, Berlin, Germany; Albert Stadler, Herrliberg, Switzerland; Justin Turner, (Ph. D student) U. of

Arkansas at Little Rock; Stan Wagon, Macalester C.; and the proposer.

The non-existence of ’special’ rings

1185. Proposed by Greg Oman, University of Colorado, Colorado Springs, Colorado
Springs, CO.
Suppose that S is a commutative ring with identity 1. A subring R of S is called
unital if 1 ∈ R. For the purposes of this problem, call S special if S has the following
properties:

(a) S has a proper unital subring,
(b) there exists a prime ideal of S which is not maximal, and
(c) if R is any proper unital subring of S, then every prime ideal of R is maximal.

Prove the existence of a special ring or show that no such ring exists.

Solution by Anthony Bevelacqua, U. of North Dakota.
Assume such a ring S exists. Then S contains a prime but not maximal ideal P . Since
Z = Z · 1S has no proper unital subrings we have Z � S. Since Z ∩ P is a prime (and
therefore maximal) ideal of Z we must have Z ∩ P = pZ for some prime p. Hence
Zp ∼= Z/pZ, the field of p elements, embeds in S/P .

Suppose a ∈ S and Z[a] � S. Then Z[a] ∩ P is a prime (and hence maximal)
ideal of Z[a]. Thus Z[a]/(Z[a] ∩ P) is a field, and since Z[a]/(Z[a] ∩ P) naturally
embeds in S/P , we see that a = a + P is either zero or a unit in S/P . Therefore if
a ∈ S is such that a is a nonzero nonunit in S/P then S = Z[a].

Now S/P is an integral domain but not a field so there exists a ∈ S such that a is a
nonzero nonunit in S/P . Thus we have S = Z[a]. Since a2 is another nonzero nonunit
we must have S = Z[a2] as well.

Whenever S = Z[w] for some w ∈ S we have S/P = Zp[w]. Thus Zp[a] =
Zp[a2], and so a must be algebraic over Zp. Now S/P = Zp[a] is an integral do-
main algebraic over Zp. Hence S/P is a field, and so P is maximal, a contradiction.
Therefore no such ring S exists.
Also solved by the proposer.
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SOLUTIONS

An inequality involving the trace

1176. Proposed by Xiang-Qian Chang, MCPHS University, Boston, MA.

Let An×n be an n× n positive semidefinite Hermitian matrix. Prove that the following
inequality holds for any pair of integers p ≥ 1 and q ≥ 0:

Tr(Ap)+ Tr(Ap+1)+ · · · + Tr(Ap+q)
Tr(Ap+1)+ Tr(Ap+2)+ · · · + Tr(Ap+q+1)

≤ rA

Tr(A)
,

where rA is the rank of A and Tr is the trace function.

Solution by Michel Bataille, Rouen, France.

We assume that A is a non-zero matrix.
The matrix A is similar to a diagonal matrixD = diag(λ1, λ2, . . . , λk, 0, . . . , 0) where
λ1, λ2, . . . , λk are the positive eigenvalues of A. Since similar matrices have the same
rank and the same trace, we have k = rA and Tr(A) = λ1 + λ2 + · · · + λk. Also, for
any positive integer m, Am is similar to Dm, hence Tr(Am) = λm1 + λm2 + · · · + λmk .
Without loss of generality, we suppose that λ1 ≤ λ2 ≤ · · · ≤ λk. Then, from Cheby-
chev’s inequality, we have

(λm1 + λm2 + · · · + λmk )(λ1 + λ2 + · · · + λk) ≤ k(λm+1
1 + λm+1

2 + · · · + λm+1
k )

so that

Tr(Am) ≤ k

Tr(A)
Tr(Am+1).

It is immediately deduced that

Tr(Ap)+ Tr(Ap+1)+ · · · + Tr(Ap+q)

≤ k

Tr(A)
(Tr(Ap+1)+ Tr(Ap+2)+ · · · + Tr(Ap+q+1)),

and the required result follows (since k = rA).

Also solved by James Duemmel, Bellingham, WA; Dmitry Fleischman, Santa Monica, CA; Jim Hartman,

The College of Wooster; Justin Haverlick, Keene Valley, NY; Eugene Herman, Grinnell C.; Koopa Koo,

Hong Kong STEAM Academy; Omran Kouba, Damascus, Syria; Elias Lampakis, Kiparissia, Greece; Pi’ilani

Noguchi; Northwestern U. Math Problem Solving Group; Sunghee Park, Seoul, Korea; Michael

Vowe, Therwil, Switzerland; and the proposer.
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Small maximal ideals

1179. Proposed by Greg Oman, University of Colorado, Colorado Springs, Colorado 
Springs, CO.

Let R be a ring, and let I be an ideal of R. Say that I is small provided |I | < |R| (i.e., 
I has a smaller cardinality than R). Suppose now that R is an infinite commutative 
ring with identity that is not a field. Suppose further that R possesses a small maximal 
ideal M0. Prove the following:

1. there exists a maximal ideal M1 of R such that M1 �= M0, and
2. M0 is the unique small maximal ideal of R.

Solution by Anthony Bevelacqua, University of North Dakota, Grand Forks, ND.

We will need the following basic result about cardinality: If A or B is infinite then
|A× B| = max(|A|, |B|).

Since R is not a field there exists a non-zero non-unit a ∈ R. Let Ra = {ra | r ∈ R}
and R[a] = {r ∈ R | ra = 0}. It’s clear that both Ra and R[a] are ideals of R. Since
a is a non-unit we have 1 /∈ Ra, and since a is not zero we have 1 /∈ R[a]. Thus
both Ra and R[a] are proper ideals of R. The map R → Ra given by r �→ ra is a
ring epimorphism with kernel R[a] so, by the first isomorphism theorem, we have
Ra ∼= R/R[a]. Hence |R| = |Ra × R[a]| = max(|Ra|, |R[a]|). Thus R possesses a
proper ideal I of cardinality |R|. Let M1 be a maximal ideal of R containing I . Then
|I | ≤ |M1| ≤ |R| so M1 has cardinality |R|. Since |M0| < |R| we have M1 �= M0.
Thus we’ve shown 1.

Now assume M0 and N are distinct small maximal ideals of R. Then, since they
are distinct maximal ideals, we have R = M0 +N . SinceM0 +N = {x + y | (x, y) ∈
M0 ×N} and R is infinite we have M0 or N is infinite. Now

|R| ≤ |M0 ×N | = max(|M0|, |N |) < |R|,
a contradiction. This establishes 2.

Also solved by Paul Budney, Sunderland, MA; Eagle Problem Solvers, Georgia Southern U.; Elias

Lampakis, Kiparissia, Greece; and the proposer.

VOL. 52, NO. 3, MAY 2021 THE COLLEGE MATHEMATICS JOURNAL 231



Ideals in ideals

1180. Proposed by Luke Harmon, University of Colorado, Colorado Springs, Col-
orado Springs, CO.

In both parts, R denotes a commutative ring with identity. Prove or disprove the
following:

1. there exists a ring R with infinitely many ideals with the property that every
nonzero ideal of R is a subset of but finitely many ideals of R, and

2. there exists a ring R with infinitely many ideals with the property that every
proper ideal of R contains (as a subset) but finitely many ideals of R.

Solution by Bill Dunn, Lone Star College Montgomery, Conroe, TX.

For 1, let R be the ring of integers. Every ideal I of R is principal, I = (n), for some
positive integer n. Suppose I is nonzero, n �= 0. Then I is a subset of any other ideal
J = (m) if and only if m divides n. Because there are only finitely many positive
integer divisors of n, there are only finitely many ideals of R that contain I .

For 2, suppose such a ring R existed. Because R has infinitely many ideals, it must
have infinitely many proper ideals. Also, R must be Artinian because, by hypothesis
on every proper ideal containing but finitely many ideals of R, any decreasing
sequence of ideal must terminate.

However, an Artinian ring has only finitely many maximal ideals. Because every
proper ideal is contained in some maximal ideal, one of these maximal ideals must
contain infinitely many ideals of R, contradicting the hypothesis.

Therefore, such a ring R does not exist.

Also solved by Anthony Bevelacqua, U. of N. Dakota; Paul Budney, Sunderland, MA; Eagle Problem

Solvers, Georgia Southern U.; and the proposer.
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SOLUTIONS

Roots of a cubic equation

1171. Proposed by George Apostolopoulos, Messolonghi, Greece.

Let a, b, and c be the roots of the equation x3 − 2x2 − x + 1 = 0, with a < b < c.
Find the value of the expression ( a

b
)2 + ( b

c
)2 + ( c

a
)2.

Solution by Robert Doucette, McNeese State University, Lake Charles, LA.

Let S = x + y and P = x · y, where

x =
(a
b

)2 +
(
b

c

)2

+
( c
a

)2
,

and

y =
(
b

a

)2

+
(a
c

)2 +
( c
b

)2
.

Since abc = −1,

S =a4c2 + b4a2 + c4b2 + b4c2 + a4b2 + c4a2

= (a2 + b2 + c2
) (
a2b2 + b2c2 + c2a2

)− 3

and

P = (a4c2 + b4a2 + c4b2
) (
b4c2 + a4b2 + c4a2

)
= (a6c6 + a6b6 + b6c6

)+ (a6 + b6 + c6
)+ 3

= (a2b2 + b2c2 + c2a2
)3 + (a2 + b2 + c2

)3 − 6S − 9.

We also have a + b + c = 2 and ab + bc + ca = −1, so that

a2 + b2 + c2 = (a + b + c)2 − 2(ab + bc + ca) = 6,

and

a2b2 + b2c2 + c2a2 = (ab + bc + ca)2 − 2abc(a + b + c) = 5.

Therefore S = 6 · 5− 3 = 27, and P = 53 + 63 − 6 · 27− 9 = 170. The system x +
y = 27, xy = 170 has two solutions: (x, y) = (10, 17) and (x, y) = (17, 10).

Letting p(x) = x3 − 2x2 − x + 1, we find that p(−1)p(−0.8), p(0)p(1), and
p(2)p(3) are all negative. By the intermediate value theorem, y > c4a2 > 24(0.8)2 >
10. Therefore x = 10 is the desired value.

Also solved by Robert Agnew, Palm Coast, FL; Yagub Aliyev, ADA U., Baku, Azerbaijan; Hatef Arshagi,

Guilford Tech. Comm. C.; Farrukh Rakhimjanovich Ataev, WIUT, Uzbekistan; Dione Bailey, Elsie Camp-

bell, and Charles Diminnie (jointly), Angelo St. U.; Michel Bataille, Rouen, France; Rich Bauer, Shore-

line, WA; Anthony Bevelacqua, U. of N. Dakota; Brian Bradie, Christopher Newport U.; James Brenneis;

Scott Brown, Auburn U. Montgomery; Jiakang Chen; John Christopher, California St. U., Sacramento;

Satvik Dasariraju, (student), Lawrenceville S., Princeton, NJ; Gregory Dresden, Washington & Lee U.;

James Duemmel, Bellingham, WA; G. A. Edgar, Ohio St. U.; Michael Goldenberg, Baltimore Polytechnic
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Inst. and Mark Kaplan, Towson U. (jointly); G. C. Greubel, Newport News, VA; Lixing Han, U. of Michi-

gan - Flint; Justin Haverlick, Keene Valley, New York; Eugene Herman, Grinnell C.; Timmy Hodges and

Sean Parnell (jointly); Walther Janous, Ursulinengymnasium, Innsbruck, Austria; Benjamin Klein, David-

son C.; Sushanth Satish Kumar, Portola H. S.; Elias Lampakis, Kiparissia, Greece; Kee-Wai Lau, Hong

Kong, China; Math for America Teachers (2 solutions); Missouri State Problem Solving Group; Don-

ald Moore, Wichita, KS; Bob Newcomb, U. of Maryland; Joel Schlosberg, Bayside, NY; Randy Schwartz,

Schoolcraft C.; Ioannis Sfikas, Athens, Greece; Seán Stewart, Bomaderry, NSW, Australia; Georges Vidi-

ani, Les Dijon, France; Michael Vowe, Therwil, Switzerland; Stan Wagon, Macalester C.; and the proposer.

We received two incorrect solutions.

Asymptotic behavior of the solution of a first-order differential equation

1172. Proposed by Xiang-Qian Chang, MCPHS University, Boston, MA.

Suppose that a function y = y(x) satisfies the following first-order differential equa-
tion:

y ′ + x6 − x4 − 2yx3 − 3x2 + yx + y2 − 1 = 0,

with initial value y(0) = √π

2 . Show that y(x) ∼ 1+x4

x
as x tends to infinity.

Solution by Kee-Wai Lau, Hong Kong, China.

By the substitution z = y − x3 + x

2 , we transform the differential equation to

z′ = −z2 + x
2

4
+ 3

2
, (1)

with initial value z(0) =
√
π

2
. To show that y(x) ∼ 1+ x4

x
, it suffices to show that

z(x) ∼ x

2
+ 1

x
. (2)

A particular solution to (1) is z = x

2 + 1
x
. By using formula a◦ on p. 7 of reference [1]

, we readily obtain the exact solution

z = x

2
+

(√
π

2 +
∫ x

0 e
−t2/2 dt

)
ex

2/2(√
π

2 +
∫ x

0 e
−t2/2 dt

)
xex

2/2 + 1
,

and (2) follows.

Reference

[1] Polyanin, A. D., Zaitsev, V. F. (2003). Handbook of Exact Solutions for Ordinary
Differential Equations, 2nd ed. Boca Raton, London, New York: Chapman &
and Hall, CRC Press.

Also solved by U. Abel and V. Kushnirevych, Technische Hochschule Mittelhessen, Germany; Robert Ag-

new, Palm Coast, FL; Michel Bataille, Rouen, France; Paul Bracken, U. of Texas, Edinburg; William

Chang, U. of Southern California; G. C. Greubel, Newport News, VA; Elias Lampakis, Kiparissia, Greece;

Ioannis Sfikas, Athens, Greece; and the proposer.
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An infinite integral domain has the same cardinality as the set of units
of an integral domain which is integral over it

1173. Proposed by Greg Oman, University of Colorado Colorado Springs, Colorado
Springs, CO.

All rings in this problem are assumed commutative with identity. Now, let R and S
be rings and suppose that R is a subring of S (we assume that the identity of R is the
identity of S). An element s ∈ S is integral over R if s is a root of a monic polynomial
f (x) ∈ R[x]. If we set R := {s ∈ S : s is integral over R}, then it is well-known that
R is a subring of S containing R. The ring R is called the integral closure of R in
S. In case R = S, then we say that S is integral over R. For a ring R, let R× denote
the multiplicative group of units of R. Prove or disprove: for every infinite integral
domain D1, there exists an integral domain D2 such that D2 is integral over D1 and
|D×2 | = |D1| (that is, the set of units of D2 has the same cardinality as that of D1).

Solution by Anthony Bevelacqua, University of North Dakota.

Let F be the quotient field ofD1. SinceD1 is infinite we have |D1 − {0}| = |D1| and so
|D1 × (D1 − {0})| = |D1|2 = |D1|. Since D1 × (D1 − {0})→ F given by (a, b) �→
a/b is surjective, we have |F | ≤ |D1 × (D1 − {0})|. Thus |F | ≤ |D1|.

Let � be the algebraic closure of F and let D2 be the integral closure of D1 in �.
Then D2 is integral over D1. Since � is an algebraic extension of F and F is infinite
we have |�| ≤ |F |. Indeed, for each d ≥ 1 the set of elements of � with minimal
polynomial over F of degree d has cardinality ≤ d|F |d = |F |, and so |�| ≤ ℵ0|F | =
|F |. Combining this with the first paragraph we have |�| ≤ |D1|.

Now for each a ∈ D1, x2 + ax − 1 has a root ua ∈ �, and, since x2 + ax − 1 is
monic, we have ua ∈ D2. Since a ∈ D1 ⊆ D2 we have ua + a ∈ D2 as well. Thus
ua(ua + a) = 1 so ua ∈ D×2 . We note that if ua = ub for a, b ∈ D1 then

u2
a + aua − 1 = u2

b + bub − 1⇒ a = b.
Thus |D1| = |{ua : a ∈ D1}| ≤ |D×2 |.

Finally we have

|D1| ≤ |D×2 | ≤ |�| ≤ |D1|
where the first inequality is given by the previous paragraph, the second follows from
D×2 ⊆ �, and the last is given by the second paragraph. Therefore D2 is integral over
D1 and |D×2 | = |D1|.
Also solved by Tom Jager, Calvin U.; and the proposer.

Criterion for convergence of an infinite product

1174. Proposed by George Stoica, New Brunswick, Canada.

Let a1, . . . , ak and b1, . . . , bk be complex numbers which are not integers. Prove that
the infinite product below converges if and only if

∑k

i=1 ai =
∑k

i=1 bi . What is the
value of the product?

∞∏
n=1

(n− a1)(n− a2) · · · (n− ak)
(n− b1)(n− b2) · · · (n− bk)
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Solution by Eugene Herman, Grinnell College, Grinnell, Iowa.

The gamma function identity �(1+ z) = z�(z) holds for all complex numbers z that
are not integers. Hence

�(1+ z)
m∏
n=1

(n+ z) = �(m+ 1+ z).

Therefore

∏k

i=1 �(1− ai)∏k

i=1 �(1− bi)
·
m∏
n=1

(n− a1)(n− a2) · · · (n− ak)
(n− b1)(n− b2) · · · (n− bk) =

∏k

i=1 �(m+ 1− ai)∏k

i=1 �(m+ 1− bi)
.

Furthermore,

lim
n→∞

�(n+ z)
�(n)nz

= 1

for all complex numbers z that are not integers. Therefore the mth partial product of
the given infinite product converges asm→∞ if and only if the following expression
converges:

∏k

i=1(m+ 1)−ai∏k

i=1(m+ 1)−bi
= (m+ 1)

∑k
i=1 bi−

∑k
i=1 ai .

Therefore, a necessary and sufficient condition for convergence of the product is∑k

i=1 ai =
∑k

i=1 bi . Also, the limit is

∏k

i=1 �(1− bi)∏k

i=1 �(1− ai)
.

Editor’s note: Janous and Lampakis pointed out that this problem and its solution are
known, with both of these solvers providing reference [1] and Lampakis also providing
reference [2].
References

[1] Whittaker, E. T., Watson, G. N. (1927). Modern Analysis: An Introduction to
the General Theory of Infinite Processes and of Analytic Functions, with an Ac-
count of the Principal Transcendental Functions, 4th ed. Cambridge: Cambridge
University Press, p. 238.

[2] Nimbran, A. S. (2016). Interesting infinite products of rational functions moti-
vated by Euler. Math. Stud. 85(1–2): 122, Theorem 3.1.

Also solved by Michel Bataille, Rouen, France; Paul Bracken, U. of Texas, Edinburg; James Duemmel,

Bellingham, WA; Walther Janous, Ursulinengymnasium, Innsbruck, Austria; Elias Lampakis, Kiparissia,

Greece; Michael Vowe, Therwil, Switzerland; and the proposer. There were three solutions that were either

incomplete or incorrect
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Nonexistence of a sign-preserving field isomorphism between distinct
proper subfields of the reals

1175. Proposed by George Stoica, New Brunswick, Canada.

Let F1 and F2 be distinct proper subfields of the field R of real numbers. Is there a field
isomorphism f : F1 → F2 preserving signs, that is, for all real x: x ∈ F1 and x > 0 if
and only if f (x) ∈ F2, f (x) > 0?

Solution by Northwestern University Math Problem Solving Group.

First note that every subfield of R contains the field of rational numbers Q. This follows
from the fact that every subfield of R contains 1, and Q is the subfield of R generated
by 1. On the other hand, every isomorphism f between subfields of R restricted to
Q is the identity on Q, i.e., if r ∈ Q, then f (r) = r . This can be proved as follows:
f(0) = 0; f(1) = 1; for integers n, f (n) = f (1+ · · · + 1) = nf (1), f (−n) = −f (n) =
−n; and for integers m and n, with n �= 0, f (m/n) = f (m)/f (n) = m/n.

Next, since F1 and F2 are distinct, f cannot be the identity on F1, so there is some
u ∈ F1 such that f (u) �= u. Assume u < f (u) (the case u > f (u) is analogous).
Since the rational numbers are dense in the reals, there is some number r ∈ Q such
that u < r < f (u); hence,

u− r < 0 < f (u)− r = f (u)− f (r) = f (u− r).
Letting x = u− r , we have x < 0 and f (x) > 0, implying that f does not preserve
signs.

Also solved by Anthony Bevelacqua, U. of N. Dakota; Paul Budney, Sunderland, MA; William Chang,

U. of Southern California; Dmitry Fleischman, Santa Monica, CA; Eugene Herman, Grinnell C.; Tom Jager,

Calvin C.; Sushanth Sathish Kumar, Portola High S.; Elias Lampakis, Kiparissia, Greece; Missouri State

Problem Solving Group; Lawrence Peterson, U. of N. Dakota; Stephen Scheinberg, Corona del Mar, CA;

and the proposer.
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Solutions

The largest divisor of nk − n February 2020

2086. Proposed by David M. Bradley, University of Maine, Orono, ME.

Let f (k) denote the largest integer that is a divisor of nk − n for all integers n. For
example, f (2) = 2 and f (3) = 6. Determine f (k) for all integers k > 1.

Solution by the Northwestern University Math Problem Solving Group, Northwestern
University, Evanston, IL.
To simplify notation, we write gk(n) = nk − n.

First, we prove two lemmas.
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Lemma 1. For every k > 1, f (k) is square-free, i.e., if p is a prime then p2 does not
divide f (k).

Proof. Note that gk(p) = p(pk−1 − 1). If p2 divided gk(p) then p would divide
pk−1 − 1. But this would imply that p divides 1, giving a contradiction. �

Lemma 2. If p is a prime, then p divides f (k) if and only if p − 1 divides k − 1.

Proof. (⇐) If k − 1 = (p − 1)� for some � ≥ 1, then

gk(n) = n((n�)p−1 − 1).

If p divides n then it divides gk(n) too. If p does not divide n then by Fermat’s little
theorem p divides (n�)p−1 − 1. Hence p divides gk(n) for every n, and this implies
that p divides f (k).

(⇒) Assume a prime p divides f (k). This means that p divides gk(n) = n(nk−1 −
1) for every n. Pick n to be a primitive root modulo p (which, by a well-known result
in number theory, always exists). Then 1, n, n2, . . . , np−2, are distinct modulo p. Since
p does not divide n, it must divide nk−1 − 1. Using the Euclidean algorithm we write
k − 1 = (p− 1)�+ i, with � ≥ 0, 0 ≤ i < p− 1. By Fermat’s little theorem np−1 ≡ 1
(mod p), hence

nk−1 = n(p−1)�+i ≡ ni (mod p).

Since p divides nk−1 − 1 we have nk−1 ≡ 1 (mod p), hence ni ≡ 1 (mod p). Since
1, n, . . . , np−2 are distinct modulo p, we must have i = 0. Therefore k − 1 = (p −
1)�, i.e., p − 1 divides k − 1. �

Lemmas 1 and 2 allow us to determine f (k):

f (k) =
∏
d|k−1

d+1 is prime

(d + 1).

Example: To compute f (19) we find the divisors of 19− 1 = 18 : 1, 2, 3, 6, 9, 18,
add 1 to each of them: 2, 3, 4, 7, 10, 19, then multiply the primes appearing on this
list: 2 · 3 · 7 · 19 = 798. Thus f (19) = 798.

Editor’s Note. It is immediate that f (2j) = 2. The proposer points out that by the
von Staudt–Clausen theorem, f (2j + 1) is the denominator of B2j , the 2j th Bernoulli
number.

Also solved by Elijah Bland & Brooke Mullins, Elton Bojaxhiu (Germany) & Enkel Hys-
nelaj (Australia), Robert Calcaterra, William Chang, John Christopher, Prithwijit De & B. Sury
(India), Joseph DiMuro, Dmitry Fleischman, George Washington University Problems Group,
Justin Haverlick, Omran Kouba (Syria), Sushanth Satish Kumar, Elias Lampakis (Greece), László
Lipták, José Heber Nieto (Venezuela), Joel Schlosberg, Randy K. Schwartz, Doga Can Sert-
bas (Turkey), Jacob Siehler, John H. Smith, Albert Stadler (Switzerland), David Stone & John
Hawkins, Edward White & Roberta White, and the proposer. There was one incomplete or incor-
rect solution.

A limit involving a recursively defined sequence February 2020

2087. Proposed by Florin Stanescu, Şerban Cioiculescu School, Găeşti, Romania.

Consider the sequence defined by x1 = a > 0 and

xn = ln

(
1+ x1 + x2 + · · · + xn−1

n− 1

)
for n ≥ 2.
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Compute limn→∞ xn ln n.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology,
Damascus, Syria.
The answer is 2. A simple induction argument shows that xn > 0 for all n ≥ 1. Now,
let Sn = x1 + x2 + · · · + xn and define σn = Sn/n. Using the well-known inequality
ln(1 + x) ≤ x which is valid for x > −1 (with equality if and only if x = 0), we
conclude that

Sn − Sn−1 = xn = ln

(
1+ Sn−1

n− 1

)
≤ Sn−1

n− 1

or equivalently σn ≤ σn−1 for n ≥ 2. So, the sequence (σn)n≥1 is positive and decreas-
ing, and since xn = ln(1+ σn−1) the sequence (xn)n≥1 is also positive decreasing. Let
� = limn→∞ xn. By Cezáro’s lemma we know that � = limn→∞ σn and the equality
xn = ln(1+ σn−1) implies that � = ln(1+ �), and consequently � = 0.

Now, because

lim
x→0

ln(1+ x)/x = 1

we conclude that limn→∞ xn/σn−1 = 1 On the other hand

σn = σn−1 − 1

n
(σn−1 − xn) = σn−1 − σn−1 − ln(1+ σn−1)

n
.

But ln(1+ x) = x − (1/2)x2 +O(x3) for small x, so

σn = σn−1 − 1

2n
σ 2
n−1 +O

(
σ 3
n−1

n

)
.

In particular, σn, σn−1, xn, and xn+1 are all equivalent as n→∞. Now

1+ σn = (1+ σn−1)

(
1− 1

2n
σ 2
n−1 +O

(
σ 3
n−1

n

))
.

So

xn+1 = xn + ln

(
1− 1

2n
σ 2
n−1 +O

(
σ 3
n−1

n

))
= xn − 1

2n
σ 2
n−1 +O

(
σ 3
n−1

n

)
.

Hence

n

(
1

xn+1
− 1

xn

)
= 1

2

σ 2
n−1

xnxn+1
+O (σn−1) .

Thus

lim
n→∞ n

(
1

xn+1
− 1

xn

)
= 1

2
.

Consequently, the Stolz–Cesáro theorem implies that

lim
n→∞

1

Hn

· 1

xn
= 1

2
,

whereHn =∑n

k=1 1/k is the nth harmonic number. Finally, recalling thatHn = ln n+
O(1) we conclude that limn→∞ xn ln n = 2, as claimed.
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Also solved by Robert A. Agnew, Brian Bradie, Robert Calcaterra, Hongwei Chen, Kee-Wai
Lau (Hong Kong), Albert Stadler (Switzerland), and the proposer.

A Fibonacci sum February 2020

2088. Proposed by Mircea Merca, University of Craiova, Romania.

Let n and t be nonnegative integers. Prove that

2n∑
k=0

(−1)kFtkF2tn−tk = −Ft
Lt
F2tn,

where Fi denotes the ith Fibonacci number and Li denotes the ith Lucas number.

Solution by G. C. Greubel, Newport News, VA.
More generally let

φn = μn − νn
μ− ν and θn = μn + νn,

where μ+ ν = a and μν = −b. Note that when a = b = 1, φn = Fn and θn = Ln by
the Binet formulas.

We have

(μ− ν)2 φtkφt(2n−k) = θ2tn − μ2tn

(
ν

μ

)tk
− ν2tn

(μ
ν

)tk
.

Using the sums

2n∑
k=0

(−1)k = 1

2n∑
k=0

(−1)k
(
ν

μ

)tk
= μt

θt

(
1+

(
ν

μ

)t (2n+1)
)

2n∑
k=0

(−1)k
(μ
ν

)tk = νt

θt

(
1+

(μ
ν

)t (2n+1)
)

we find that

2n∑
k=0

(−1)k φtk φt(2n−k) = 1

(μ− ν)2
(
θ2tn − 2 θt(2n+1)

θt

)

= − 1

θt

1

(μ− ν)2
(
2 θt(2n+1) − θt θ2tn

) = −φt
θt
φ2tn.

Letting a = b = 1 gives the desired result.
A similar argument shows that

2n∑
k=0

φtk φt(2n−k) = (2 nφt θ2tn − θt φ2tn)

(a2 + 4 b) φt
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and hence

2n∑
k=0

Ftk Ft(2n−k) = (2 nFt L2tn − Lt F2tn)

5Ft
.

Also solved by Michel Bataille (France), Brian Bradie, Robert Calcaterra, Dmitry Fleishman,
Harris Kwong, Abhisar Mittal, José Heber Nieto (Venezuela), Angel Plaza (Spain), Albert Stadler
(Switzerland), Michael Vowe (Switzerland), and the proposer.

A product of ratios for nested polygons February 2020

2089. Proposed by Rick Mabry, LSU Shreveport, Shreveport, LA.

Let A1, A2, . . . , An be the vertices of a convex n-gon in the plane. Identifying the
indices modulo n, define the following points: Let Bi and Ci be vertices on AiAi+1

such that AiBi = CiAi+1 < AiAi+1/2 and let Di be the intersection of Bi−1Ci and
BiCi+1. Prove that

∏n

i=1(BiDi)/(DiCi) = 1.

Solution by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela.
Let βi = ∠CiBiDi and γi = ∠DiCiBi . Applying the law of sines to triamgles
�BiCiDi and �Bi−1AiCi leads to

BiDi

DiCi
= sin γi

sinβi
and

Bi−1Ai

AiCi
= sin γi

sinβi−1
.

Also, AiBi = CiAi+1 implies that AiCi = BiAi+1. Using these equations, we obtain

n∏
i=1

BiDi

DiCi
=

n∏
i=1

sin γi
sinβi

=
∏n

i=1 sin γi∏n

i=1 sinβi
=

∏n

i=1 sin γi∏n

i=1 sinβi−1

=
n∏
i=1

sin γi
sinβi−1

=
n∏
i=1

Bi−1Ai

AiCi
=
∏n

i=1 Bi−1Ai∏n

i=1AiCi

=
∏n

i=1 Bi−1Ai∏n

i=1 BiAi+1
=
∏n

i=1 Bi−1Ai∏n

i=1 Bi−1Ai
= 1.

Also solved by Robert Calcaterra, William Chang, Elton Bojaxhiu (Germany) & Enkel Hys-
nelaj (Australia), George Washington University Problems Group, Joel Schlosberg, and the pro-
poser.



VOL. 94, NO. 1, FEBRUARY 2021 77

Matchings in a certain family of graphs February 2020

2090. Proposed by Gregory Dresden, Washington & Lee University, Lexington, VA.

Recall that a matching of a graph is a set of edges that do not share any vertices. For
example, C4, the cyclic graph on four vertices (i.e., a square), has seven matchings: the
empty set, single edges (four of these), or pairs of opposite edges (two of these).
Let Gn be the (undirected) graph with vertices xi and yi , 0 ≤ i ≤ n − 1, and edges
{xi, xi+1}, {xi, yi}, and {yi, xi+1}, 0 ≤ i ≤ n − 1, where the indices are to be taken
modulo n. For example, G4 is shown below. Determine the number of matchings of
Gn.

Solution by the George Washington University Problems Group, George Washington
University, Washington, DC.
The answer is 3n. To see this, let S = {−1, 0, 1}n, a set whose cardinality is clearly
3n. We show that there is a bijection φ from S to the set of matchings of Gn. Let
a = (a1, . . . , an) be an element of S. We define φ(a) as follows:

{xi, xi+1} ∈ φ(a) if and only if ai = 1 and ai+1 = −1,

{xi, yi} ∈ φ(a) if and only if ai = 1 and ai+1 �= −1, and

{xi+1, yi} ∈ φ(a) if and only if ai �= 1 and ai+1 = −1.

We now check that φ(a) is indeed a matching. The edges incident to yi are not both
in φ(a), since {xi, yi} ∈ φ(a) requires ai = 1 but {xi+1, yi} ∈ φ(a) requires ai �= 1.
Also, among the four edges incident to xi , at most one can be chosen for φ(a), since
including {xi, xi−1}, {xi, yi−1}, {xi, yi}, and {xi, xi+1} require, respectively, the four
mutually exclusive conditions (1) ai = −1 and ai−1 = 1, (2) ai = −1 and ai−1 �= 1,
(3) ai = 1 and ai 1 �= −1, and (4) ai = 1 and ai 1 = −1.

Given a matching
+ 

M , there is a unique a ∈ 
+
S so that M is φ(a). To see this, let

ai = 1 if  M contains {xi, xi+1} or {xi, yi }, let ai = −1 if  M contains {xi−1, xi } or
{xi, yi−1}, and let ai = 0 if  xi is not the endpoint of any edge in M . This element a ∈ S 
is the only element in φ−1(M). Hence φ is bijective.

Also solved by Elton Bojaxhiu (Germany) and Enkel Hysnelaj (Australia), Robert Calcaterra, 
Jiakang Chen, Eddie Cheng; Serge Kruk; Li Li & László Lipták (jointly), José H. Nieto (Venezuela), 
Kishore Rajesh, Edward Schmeichel, John H. Smith, and the proposer. There was one incomplete 
or incorrect solution.



SOLUTIONS

A Nilpotent Commutator

12339 [2022, 686]. Proposed by Cristian Chiser, Elena Cuza College, Craiova, Romania.
Let A and B be complex n-by-n matrices for which A2 + xB2 = y (AB − BA), where x
is a positive real number and y is a real number such that (1/π) cos−1

(
(y2 − x)/(y2 + x))

is irrational. Prove that (AB − BA)n is the zero matrix.

Solution by Kyle Gatesman, Fairfax, VA. Let U = A+ i√xB and V = A− i√xB. Note
that y ± i√x �= 0 because y is real and x is positive. Since

UV = A2 + xB2 − i√x(AB − BA) = (y − i√x)(AB − BA)
and

VU = A2 + xB2 + i√x(AB − BA) = (y + i√x)(AB − BA),
we have

VU = y + i√x
y − i√x UV =

y2 − x + 2yi
√
x

y2 + x UV.

Let (y + i√x)/(y − i√x) = cos θ + i sin θ = eiθ . The spectrum of VU is eiθ times that of
UV . By hypothesis, θ is not a rational multiple of π , so einθ �= 1 for all nonzero integers n.

It is well known for complex n-by-nmatrices U and V , that UV and VU have the same
characteristic polynomial. Hence any eigenvalue of UV or VU is an eigenvalue of the
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other. Thus the spectrum of UV is invariant under multiplication by eiθ . Since the complex
numbers eiθ , e2iθ , e3iθ , . . . are distinct and the spectrum of UV has cardinality at most
n, we conclude that the only eigenvalue of UV is zero. It follows that the characteristic
polynomial of AB − BA is λn. By the Cayley–Hamilton Theorem, (AB − BA)n is the
zero matrix.

Also solved by C. P. Anil Kumar (India), S. Bhadra, E. A. Herman, O. P. Lossers (Netherlands), M. Omarjee
(France), R. Stong, L. Zhou, and the proposer.

A Nascent Delta Function

12340 [2022, 686]. Proposed by Antonio Garcia, Strasbourg, France. Let g : [0, 1]→R
be continuous. Prove that

lim
n→∞

n

2n

∫ 1

0

g(x)

xn + (1− x)n dx = Cg(1/2)

for some constant C (independent of g), and determine the value of C.

Solution by Missouri State University Problem Solving Group, Missouri State University,
Springfield, MO. Substituting u = n(2x − 1) and letting χ[−n,n] denote the characteristic
function of [−n, n] gives

n

2n

∫ 1

0

g(x)

xn + (1− x)n dx =
1

2

∫ ∞
−∞

g
(

1
2 + u

2n

)
χ[−n,n](u)(

1+ u
n

)n + (1− u
n

)n du.
Since g is continuous, we may choose aK > 0 such that |g(x)| ≤ K on [0, 1]. Further, for
n ≥ 2, the binomial theorem gives

(
1+ u

n

)n + (1− u
n

)n ≥ 2

(
1+

(
n

2

)
u2

n2

)
≥ 2

(
1+ u

2

4

)
.

Therefore for n ≥ 2,

1

2

∣∣∣∣∣g
(

1
2 + u

2n

)
χ[−n,n](u)(

1+ u
n

)n + (1− u
n

)n
∣∣∣∣∣ ≤ K

4+ u2
.

This upper bound has finite integral, so the dominated convergence theorem applies, and
we get

lim
n→∞

n

2n

∫ 1

0

g(x)

xn + (1− x)n dx =
1

2

∫ ∞
−∞

lim
n→∞

g
(

1
2 + u

2n

)
(
1+ u

n

)n + (1− u
n

)n du
= 1

2

∫ ∞
−∞

g(1/2)

eu + e−u du

= 1

2
g(1/2)arctan(eu)

∣∣∣∞−∞ = π

4
g(1/2).

Also solved by M. Aassuka (France), A. Berkane (Algeria), S. Bhadra (India), H. Chen (US), W. J. Cowieson,
M.-C. Fan (China), K. Gatesman, R. Guadalupe (Philippines), E. A. Herman, N. Hodges (UK), F. Holland
(Ireland), E. J. Ionascu, S. Kaczkowski, O. Kouba (Syria), C. Krattenthaler (Germany), G. Lavau (France),
J. H. Lindsey II, P. W. Lindstrom, O. P. Lossers (Netherlands), F. Masroor, R. Mortini (Luxembourg) &
R. Rupp (Germany), M. Omarjee (France), D. Pascuas (Spain), P. Perfetti (Italy), K. Schilling, A. Stadler
(Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), E. I. Verriest, J. Vukmirović (Serbia), J. H. Yan (China),
and the proposer.
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A Product Inequality

12341 [2022, 686]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let
x1, . . . , xn be positive real numbers with

∑n
i=1 x

2
i ≤ n, and let S =∑n

i=1 xi . Prove

n∏
i=1

(
1+ 1

xixi+1

)x2
i ≥ 2S

2/n,

where xn+1 is taken to be x1.

Solution by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy. We prove the
more general inequality

n∏
i=1

(
1+ 1

yi

)x2
i ≥

(
1+ n

T

)S2/n

, (∗)

where x1, . . . , xn and y1, . . . , yn are positive real numbers, S =∑n
i=1 xi , and T =∑n

i=1 yi .
The required inequality follows from (∗) by letting yi = xixi+1 and noting that, by the
rearrangement inequality,

T =
n∑
i=1

yi =
n∑
i=1

xixi+1 ≤
n∑
i=1

x2
i ≤ n.

To prove (∗), we compute

log

(
n∏
i=1

(
1+ 1

yi

)x2
i

)
=

n∑
i=1

x2
i log

(
1+ 1

yi

)

=
n∑
i=1

x2
i

∫ 1

0

dt

yi + t =
∫ 1

0

n∑
i=1

x2
i

yi + t dt.

For 0 ≤ t ≤ 1, the Cauchy–Schwarz inequality implies

S2 =
(

n∑
i=1

√
yi + t · xi√

yi + t

)2

≤
n∑
i=1

(yi + t) ·
n∑
i=1

x2
i

yi + t = (T + nt)
n∑
i=1

x2
i

yi + t ,

so
n∑
i=1

x2
i

yi + t ≥
S2

T + nt .

Therefore

log

(
n∏
i=1

(
1+ 1

yi

)x2
i

)
=
∫ 1

0

n∑
i=1

x2
i

yi + t dt ≥
∫ 1

0

S2

T + nt dt =
S2

n
log

(
1+ n

T

)
.

Inequality (∗) follows.

Also solved by P. Bracken, W. J. Cowieson, O. P. Lossers (Netherlands), S. Patra, A. Stadler (Switzerland),
R. Stong, and the proposer.

Characterizing Cyclic Quadrilaterals

12343 [2022, 785]. Proposed by Tran Quang Hung, Hanoi, Vietnam. Let ABCD be a
convex quadrilateral with AB = a, BC = b, CD = c, DA = d, AC = e, and BD = f .
Prove that ABCD is a cyclic quadrilateral (i.e., the four vertices lie on a circle) if and
only if

f 2 − e2

ac + bd =
(
a2 − c2

) (
b2 − d2

)
(ab + cd)(ad + bc) .
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Solution by Prithwijit De, Mumbai, India. Denote the angles of ABCD at the four vertices
by A, B, C, and D. Let

T1 = cosA+ cosC = d2 + a2 − f 2

2ad
+ b

2 + c2 − f 2

2bc
,

T2 = cosB + cosD = a2 + b2 − e2

2ab
+ c

2 + d2 − e2

2cd
.

Algebraic manipulation yields

2abcd
(
(ab + cd)T1 − (ad + bc)T2

) =
(ac + bd)(a2 − c2)(b2 − d2)− (ab + cd)(ad + bc)(f 2 − e2).

It therefore suffices to show that ABCD is cyclic if and only if

(ab + cd)T1 − (ad + bc)T2 = 0.

By the sum-to-product formula for the cosine function and the fact that B +D = 2π −
(A+ C), we have

(ab + cd)T1 − (ad + bc)T2 =

2

(
(ab + cd) cos

(
A− C

2

)
+ (ad + bc) cos

(
B −D

2

))
cos

(
A+ C

2

)
.

Since |A − C| and |B − D| are less than π , cos((A − C)/2) and cos((B − D)/2) are
strictly positive. Hence (ab+ cd)T1− (ad + bc)T2 = 0 if and only if cos((A+C)/2)= 0,
which happens if and only if A+ C = π , which is equivalent to ABCD being cyclic.

Also solved by G. Fera (Italy), O. Geupel (Germany), M. Goldenberg & M. Kaplan, N. Hodges (UK),
O. P. Lossers (Netherlands), C. R. Pranesachar (India), C. Schacht, A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), L. Zhou, Fejéntaláltuka Szeged Problem Solving Group (Hungary), and the proposer.

Linear Combinations of Powers That Are Not Perfect Squares

12346 [2022, 785]. Proposed by Nguyen Quang Minh, Hwa Chong Institution, Bukit
Timah, Singapore. Prove that there are infinitely many integers A such that, for every
nonzero integer x and distinct positive odd integers m and n, the integer xm + Axn is
not a perfect square.

Solution by Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. We claim that
the infinite family consisting of the negatives of primes congruent to 3 modulo 8 satisfies
the requirements of the problem.

Let A = −p for such a prime p. Factoring out the perfect square xmin{m,n}−1, we see
that it suffices to show that no xm − pxn is a perfect square when m and n are odd and
either m = 1 or n = 1. Suppose otherwise.

First considerm = 1 and set k = (n− 1)/2. With x − pxn = x(1− px2k), both factors
are negative. Since also 1 − px2k is relatively prime to x, both −x and px2k − 1 must
be squares. Modulo p, the equation px2k − 1 = a2 for a positive integer a reduces to
a2 ≡ −1. However, when p ≡ 3 (mod 8) (indeed, whenever p ≡ 3 (mod 4)) the value
−1 is not a square modulo p, a contradiction.

Now consider n = 1 and set k = (m− 1)/2, so xm − px = x(x2k − p). The greatest
common divisor of x and x2k − p is 1 or p. Since xm − px is a square, we have either
(i) x = ±a2 and x2k − p = ±b2 or (ii) x = ±pa2 and x2k − p = ±pb2, for some integers
a and b.
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Note that squares are congruent to 0, 1, or 4 modulo 8, and recall that p ≡ 3 mod 8. In
case (i), if a is odd, then x2k − p ≡ 6 (mod 8). If a is even, then x2k − p ≡ 5 (mod 8).
In both subcases, this value cannot be a square or its negative, so we move on to case (ii).
Substituting for x and simplifying, we have p2k−1a4k − 1 = ±b2. The left side is positive.
However, again because −1 cannot be a square modulo p, the alternative p2k−1a4k − 1 =
b2 is also impossible.

Editorial comment. All solvers had roughly similar approaches. We generalize some of
their families. Using the fact that −2 is a quadratic nonresidue for primes p congruent to 5
or 7 modulo 8, one can show that the family A = pr satisfies the condition of the problem
for such primes p and even r . Another family is given by A = pr , where p is a prime
congruent to 7 modulo 16 and r is odd. This can be proved by the method of descent.

Also solved by J. Boswell & C. Curtis, W. J. Cowieson, K. Gatesman, P. W. Lindstrom, R. Stong, R. Tauraso
(Italy), H. von Eitzen (Germany), and the proposer.

A Functional Equation With Piecewise Linear Solutions

12347 [2022, 786]. Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National Col-
lege, Bı̂rlad, Romania. Let a and b be real numbers with 0 < a < 1 < b. Find all continu-
ous functions f : R→ R such that f (0) = 0 and f (f (x))− (a + b)f (x)+ abx = 0 for
all x ∈ R.

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damas-
cus, Syria. We show that there are exactly four solutions, given by

f (x) = ax, f (x) = bx, f (x) =
{
ax, if x ≥ 0,

bx, if x < 0,
and f (x) =

{
bx, if x ≥ 0,

ax, if x < 0.

Clearly these four functions are solutions. Now let f : R→ R be continuous and satisfy
f (0) = 0 and f (f (x))− (a + b)f (x)+ abx = 0 for all x ∈ R. For all x ∈ R,

x = (a + b)f (x)− f (f (x))
ab

.

This implies that x = y if f (x) = f (y), so f is one-to-one. Since f is continuous, it
follows that f is monotonic, and consequently f ◦ f is increasing. Moreover, the equality

f (x) = f (f (x))+ abx
a + b (1)

shows that f is increasing. Since f (0) = 0, the sign of f (x) is the same as the sign of x.
By (1), we have f (x) > abx/(a + b) for all x > 0 and f (x) < abx/(a + b) for all x < 0.
This implies that limx→∞ f (x) = +∞ and limx→−∞ f (x) = −∞. Hence f is bijective.

Let g = f −1. Applying the functional equation to g(g(x)) leads to

g(g(x))−
(

1

a
+ 1

b

)
g(x)+ 1

ab
x = 0.

Thus g satisfies the same functional equation as f , but with a and b replaced by 1/a and
1/b.

Suppose x > 0. We define two sequences {xn}n≥0 and {yn}n≥0 by x0 = x, y0 = f (x),
and xn+1 = f (xn) and yn+1 = g(yn) when n ≥ 0. By the functional equations of f and g,
{xn}n≥0 and {yn}n≥0 satisfy the following second-order linear recurrence relations:

x0 = x, x1 = f (x), xn+2 − (a + b)xn+1 + abxn = 0,

y0 = f (x), y1 = x, yn+2 −
(

1

a
+ 1

b

)
yn+1 + 1

ab
yn = 0.
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Solving these recurrence relations, we find that for all n ≥ 0,

xn = f (x)− bx
a − b an + f (x)− ax

b − a bn, (2)

yn = f (x)− bx
a − b a1−n + f (x)− ax

b − a b1−n. (3)

We now consider two cases. If f (x) ≤ x, then because f is increasing, we have xn ≥
xn+1 > 0 for all n. Thus the sequence (xn)n≥0 is nonincreasing and bounded below, so it
must be convergent. Since b > 1, the coefficient of bn in (2) must be zero, which implies
that f (x) = ax.

On the other hand, if f (x) > x, then similar reasoning shows that the sequence (yn)n≥0

converges, the coefficient of a1−n in (3) is zero, and f (x) = bx.
Thus for all x > 0, either f (x) = ax or f (x) = bx, so f (x)/x can take only the two

values a and b on (0,∞). However, since f is continuous, it cannot take both values. We
conclude that either f (x) = ax for all x > 0 or f (x) = bx for all x > 0.

Applying the above analysis for x > 0 to the function−f (−x), we conclude that either
f (x) = ax for all x < 0 or f (x) = bx for all x < 0. Thus there are no solutions other than
the four listed earlier.

Also solved by J. Boswell & C. Curtis, H. Chen (China), W. J. Cowieson, H. von Eitzen (Germany), D. Hen-
derson, N. Hodges (UK), O. P. Lossers (Netherlands), R. Mortini (Luxembourg), K. Schilling, R. Stong,
R. Tauraso (Italy), and the proposer.

A Variation on the Josephus Problem

12348 [2022, 786]. Proposed by Erik Vigren, Uppsala, Sweden, and Hans Rullgård,
Kungälv, Sweden. We have n people in a circle, numbered from 1 to n clockwise. They
are removed one at a time as follows, until just one remains. At each step, remove the
nth person among those remaining, where the count starts at the lowest-numbered person
remaining and proceeds clockwise. Let W(n) be the number of the last person remaining.
For example, with n = 5, we remove in order the people numbered 5, 1, 3, and 2, and so
W(5) = 4. (This is a variation of the classic Josephus problem.)
(a) What is W(1012)?
(b) For n ≥ 5, show that W(n) = n− 4 if and only if n/2 is a Sophie Germain prime (i.e.,
n/2 and n+ 1 are prime).
(c) Find the smallest even number that does not equal W(n) for any n.

Composite solution by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy, and
the proposers.
(a) By reversing the procedure, we showW

(
1012

) = 671,046,354,072. As in the problem
statement, the number of a person is that person’s original index and remains unchanged.
The position of a person at a given time is that person’s index among the remaining people;
it counts the remaining people with smaller numbers (plus 1).

Consider the point in the process when m people remain. In the next step, skipping
n− 1 people means passing through the entire list r times before stopping at the person
to be removed, where r = (n− 1)/m�. The person removed will be in position n− rm.
We say that removals whose associated value of r are the same occur in the same round,
and we label this round with the value r . For example, in round 0 we remove person n, and
in round 1 we remove all the remaining odd-numbered people, starting with person 1. The
rounds occur in increasing order, but the round numbers are not consecutive. For example,
when n = 9 there is no round 3, because 8/3� = 2 and 8/2� = 4. Rather than reversing
the procedure one removal at a time, the computation is quicker if we reverse it one round
at a time. This will also be useful in part (c).
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Now consider the time when a round has just been finished and k rounds remain to be
completed. Let mk denote the number of people remaining at this time, and let pk denote
the position at this time of the person P who will be the last person remaining. Thusm0 = 1
and p0 = 1, since P is never removed. For k ≥ 1, let rk denote the number of the round
about to start. By definition, rk = (n− 1)/mk�.

The last removal in round rk+1 occurs with mk + 1 people remaining, so

rk+1 = (n− 1)/(mk + 1)�. (1)

When rk+1 > 0, the number of people remaining at the start of round rk+1 is the largest m
such that rk+1 = (n− 1)/m�; that is,

mk+1 = (n− 1)/rk+1�. (2)

During round rk+1, when m people remain, the person in position n − rk+1m will be
removed. This position strictly increases throughout round rk+1 as m decreases from mk+1

to mk + 1. Meanwhile, the position of P decreases from pk+1 to pk . Since P reaches pk ,
the position of P must decrease on the step that starts with m people remaining if and
only if

n− rk+1m ≤ pk. (3)

By (2), we have (n − 1)/rk+1 < mk+1 + 1, which yields n − rk+1(mk+1 + 1) < 1.
Also, the definition of rk implies (n − 1)/mk ≥ rk ≥ rk+1 + 1, from which we obtain
n− rk+1mk ≥ mk + 1. Together, these inequalities yield

n− rk+1(mk+1 + 1) < 1 ≤ pk < mk + 1 ≤ n− rk+1mk.

It follows that there is some integer j with 0 ≤ j ≤ mk+1 −mk such that

n− rk+1(mk+1 − (j − 1)) ≤ pk < n− rk+1(mk+1 − j).
By (3), there will then be exactly j steps during round rk+1 on which the position of P
decreases by 1. Therefore

pk+1 = pk + j = pk +
⌊
pk + rk+1 (mk+1 + 1)− n

rk+1

⌋
. (4)

We now have a recursive procedure, starting from m0 = p0 = 1. Given mk and pk , we
usemk to compute rk+1 by (1), rk+1 to computemk+1 by (2), and then all of {pk, rk+1,mk+1}
to compute pk+1 by (4). We run the recursion until reaching k such that mk equals n− 1.
The original position (and number) of P is then pk . In the particular instance n = 1012, we
obtain k = 1999997, leading to W(n) as claimed.

(b) Assume n ≥ 5. Because all people with odd numbers will have been removed by the
end of round 1, W(n) is an even number less than n. In particular, n − 4 is removed by
then if n is odd, so we need only consider even n. When n is even, the person with the
larger number will be removed when only two people remain. Therefore W(n) = n− 4 if
and only if the last two people are numbered n− 4 and n− 2.

Suppose that m people remain, where m ≤ n/2− 1. Recall that n is removed first and
then all odd numbers. If both n− 4 and n− 2 remain, then they occupy positions m− 1
and m. To avoid removing either, n must not be congruent to m− 1 or m modulo m. That
is, we avoid removing person n− 2 if and only if n is not divisible by any number from
3 to n/2 − 1, meaning that n/2 is prime. Similarly, we avoid removing person n − 4 if
and only if n− 1 is not divisible by any number from 3 to n/2− 1, meaning that n+ 1 is
prime.

(c) We show that the smallest even number that does not equal W(n) for any n is 34. The
table below gives the smallest value of n yielding each value of W(n) less than 34, by
explicit computation.
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W(n) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
n 3 5 7 16 11 13 50 17 19 76 23 56 248 29 31 424

We need only consider n > 34 and show that in all cases person 34 is removed at some
point in the process. We have observed that person n is removed in round 0, and all smaller
odd numbers are removed in round 1. Person 34 is then in position 17.

Since round r is defined as {m : (n − 1)/m� = r}, the number of people remaining
when round r ends is min{m : (n− 1)/m� = r} − 1. This number is (n− 1)/(r + 1)�.
Let ar+1 be the integer such that

(n− 1)/(r + 1)� = (n− ar+1)/(r + 1).

The first person removed in round r + 1 is in position ar+1 at the start of the round. For
each subsequent removal in round r + 1, the removed element pushes the round-starting
position of the next person removed up by r + 2. That is, the key additional observation is
that positions at the start of round r + 1 of the people removed in round r + 1 are

ar+1, ar+1 + r + 2, ar+1 + 2r + 4, . . . .

For even n, those removed in round 2 start the round in positions 2, 5, 8, 11, 14, 17, . . . .
Hence we may assume n is odd.

For odd n, those removed in round 2 start the round in positions 1, 4, 7, 10, 13, 16, . . . .
Thus after round 2, person 34 is in position 11.

When n ≡ 3 (mod 6), those removed in round 3 start the round in positions 3, 7, 11,
15, . . . , so we may forbid this case.

When n ∈ {1, 5, 7, 11} (mod 12), getting (n − a3)/3 to be an integer requires a3 ∈
{1, 2}. Those removed in round 3 start the round in positions 1, 5, 9, 13, . . . , or positions
2, 6, 10, 14, . . . . In both cases, person 34 ends round 3 in position 8.

When n ∈ {7, 11} (mod 12), we have a4 = 3, and those starting round 4 in positions 3,
8, . . . are removed. Hence we may forbid this case.

When n ∈ {1, 5} (mod 12), we have a4 = 1, and those starting round 4 in positions
1, 6, . . . are removed. Hence person 34 occupies position 6 at the end of round 4. Since
a5 ∈ {1, 2, 3, 4, 5}, round 5 removes exactly one person from the first five positions, so
person 34 ends round 5 in position 5.

When n ≡ 5 (mod 12), we have a6 = 5, so round 6 removes person 34.
Hence we may assume n ≡ 1 (mod 12). If also n ≥ 73, then at least 12 people remain

at the end of round 5. When the number of people remaining is in {12, 6, 4, 3, 2}, the person
occupying the first position at that time will be removed. This means that person 34, who
is already as early as position 5 when at least 12 people remain, is removed while a person
still remains.

To complete the proof, it remains only to check explicitly that W(n) �= 34 when n ∈
{37, 49, 61}.
Editorial comment. Reasoning like that for part (b) shows that W(n) = n− 1 if and only
if n is an odd prime. Round r actually eliminates one or more people if (n− 1)/(r + 1) <
(n− 1)/r�. This holds for all r with r ≤ r∗, where r∗ = (√4n− 3− 1)/2�. Thereafter,
at most one person is removed per round. As a result, the number of rounds in which people
are removed is r∗ + (n− 1)/(r∗ + 1)�.
Also solved by O. P. Lossers (Netherlands). Parts (b) and (c) also solved by K. Schilling and Eagle Problem
Solvers.

A Lobachevsky-type Formula

12351 [2022, 886]. Proposed by Seán Stewart, King Abdullah University of Science and
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Technology, Thuwal, Saudi Arabia. Evaluate∫ ∞
0

ln
(
cos2 x

)
sin3 x

x3
(
1+ 2 cos2 x

) dx.
Solution by Mohammed Aassila, Strasbourg, France. Let I denote the requested integral.
We prove that

I = −π
4

(
ln 2+ ln(1+√3)√

3

)
.

We have

I = 1

2

∫ ∞
−∞

ln
(
cos2 x

)
sin3 x

x3
(
1+ 2 cos2 x

) dx = 1

2

∞∑
k=−∞

∫ (k+1)π

kπ

ln
(
cos2 x

)
sin3 x

x3
(
1+ 2 cos2 x

) dx

= 1

2

∞∑
k=−∞

∫ π

0

(−1)k ln
(
cos2 x

)
sin3 x

(x + kπ)3 (1+ 2 cos2 x
) dx

= 1

2

∫ π

0

( ∞∑
k=−∞

(−1)k

(x + kπ)3
)

ln
(
cos2 x

)
sin3 x

1+ 2 cos2 x
dx,

where the final interchange of integration and summation can be justified by the dominated
convergence theorem.

To evaluate the summation in the last formula, we start with the equation
∞∑

k=−∞

(−1)k

x + kπ =
1

sin x
.

(See I. S. Gradshteyn, I. M. Ryzhik (2007), Table of Integrals, Series, and Products, 7th
ed., Burlington, MA: Academic Press, equation 1.422.6.) Differentiating twice, we get

∞∑
k=−∞

(−1)k

(x + kπ)3 =
1+ cos2 x

2 sin3 x
,

so this gives

I = 1

4

∫ π

0

(1+ cos2 x) ln
(
cos2 x

)
1+ 2 cos2 x

dx =
∫ π/2

0

(1+ cos2 x) ln (cos x)

1+ 2 cos2 x
dx

= 1

2

∫ π/2

0
ln(cos x) dx + 1

2

∫ π/2

0

ln (cos x)

1+ 2 cos2 x
dx.

Both of these integrals are special cases of equation 4.385.3 in Gradshteyn and Ryzhik:∫ π/2

0

ln(cos x)

b2 sin2 x + a2 cos2 x
dx = π

2ab
ln

(
b

a + b
)

for a, b > 0. Applying this with b = 1 and both a = 1 and a = √3 leads to the claimed
answer.

Editorial comment. As several solvers noted, the beginning of this argument proves a
Lobachevsky-type result: For any continuous function f (x) that is periodic with period
π , ∫ ∞

−∞
sin3 x

x3
f (x) dx = 1

2

∫ π

0
(1+ cos2 x)f (x) dx.
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Also solved by T. Amdeberhan, A. Berkane (Algeria), P. Bracken, B. Bradie, C. Burnette, H. Chen (US),
B. E. Davis, M. L. Glasser, G. C. Greubel, N. Hodges (UK), W. Janous (Austria), L. Kempeneers & J. V. Cast-
eren (Belgium), O. Kouba (Syria), K. Nelson, M. Omarjee (France), A. Stadler (Switzerland), A. Stenger,
R. Stong, R. Tauraso (Italy), Y. Zhang (China), and the proposer.

CLASSICS

C25. Letw0, w1, . . . be the sequence of Fibonacci words, defined byw0 = 0,w1 = 1, and,
for n ≥ 2,wn = wn−2wn−1, the concatenation ofwn−2 andwn−1. Thus the sequence begins
0, 1, 01, 101, 01101, 10101101, 0110110101101, . . . . Show that, for n ≥ 3, removing the
first two symbols from wn yields a palindrome.

The Tennis Ladder

C24. Due to Colin L. Mallows. Over the history of a certain tennis club, every player has
played at least one match against every other player. Matches are played one at a time, and
after each match a ranking of the players in the club is computed as follows. Starting with
the most recent match and working backwards through time, use the match results to build
up a partial order. Ignore any match that is inconsistent with more recent results. The final
result is guaranteed to be a linear order, since any incomparability between a pair of players
is resolved when a match between them is encountered. This linear order becomes the new
club ranking. Prove or disprove: A player cannot rise in the club ranking by intentionally
losing a match.

Solution. The assertion is false. Suppose that the results of the last nine matches among six
players are as follows, where we write a > b for a match where player a defeats player b
and we list the matches from oldest to most recent.

2>3, 6>1, 2>4, 1>2, 6>4, 4>5, 3>4, 3>6, 5>6

The ranking at this moment is 1 > 2 > 3 > 4 > 5 > 6, with player 3 in third place. How-
ever, if player 3 loses the next match to player 5, the ranking becomes 5 > 3 > 6 > 1 >
2 > 4, with player 3 in second place. So player 3 ranks higher after losing.

Editorial comment. The problem appeared as E3240 [1987, 996; 1989, 530] in this
Monthly. The problem statement has two interpretations. The strong form asks if a player
can rank higher immediately after throwing a match. The weak form asks if a player can
rank higher today by deciding to forfeit a match that took place in the past. No solution to
the strong form of the problem was received from the Monthly readership other than the
proposer’s solution, which involved seven players. The example here involves six players.
This raises the question of whether there is an example with five players.

One can show that any time a player defeats a lower-ranked opponent (or loses to a
higher-ranked opponent), the ranking remains unchanged. However, reversing the outcome
of each match in the example above shows that defeating a higher-ranked opponent can
lower one’s overall ranking.

Say that a ranking algorithm respects duality if changing all wins to losses reverses the
resulting ranking. A familiar algorithm for ranking tennis club members is as follows: If
a lower-ranked player A defeats a higher-ranked player B, the new ranking is formed by
replacing B with A in the prior ranking and moving B and all the players ranked between A
and B down one spot. If a higher-ranked player defeats a lower-ranked player, the ranking
remains unchanged. One concern with this usual algorithm is that it fails to respect duality.
The algorithm of this problem is an alternative that does respect duality. The existence
of the example above, however, shows that this ranking system violates a certain kind of
monotonicity and suggests that it is an unreasonable system for actual use.
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SOLUTIONS

A Sufficient Condition for Generalized Commuting

12331 [2022, 588]. Proposed by WeChat Group on Matrix Analysis, Nova Southeastern
University, Fort Lauderdale, FL. Let A and B be complex m-by-n matrices, and let C
be a complex n-by-m matrix. Prove that if there are nonzero scalars x and y such that
ACB = xA+ yB, then ACB = BCA.

Solution by Li Zhou, Polk State College, Winter Haven, FL. Since CACB = xCA+ yCB,
we have (CA− yIn)(CB − xIn) = xyIn. Thus CB − xIn has an inverse P that satisfies
CA− yIn = xyP . Hence

B(CA− yIn) = xyBP = x(ACB − xA)P = xA(CB − xIn)P = xA,
so BCA = xA+ yB = ACB.

Also solved by C. P. Anil Kumar (India), M. Bataille (France), M. R. Elgersma, K. Gatesman, E. A. Herman,
O. Kouba (Syria), O. P. Lossers (Netherlands), M. Omarjee (France), P. Oman & H. Wang, M. Reid, K. Sarma
(India), K. Schilling, R. Stong, R. Tauraso (Italy), Southeast Missouri State University Math Club, UM6P Math
Club (Morocco), and the proposer.

A Symmetric Decomposition into Icosahedra

12333 [2022, 588]. Proposed by Moshe Rosenfeld, University of Washington, Seattle, WA,
and Tacoma Institute of Technology, Tacoma, WA. Let G be the multigraph obtained by
replacing each edge of the complete graph K12 by five edges. Show that the 330 edges
of G can be partitioned into 11 sets such that each set forms a graph isomorphic to the
icosahedron.

Solution by Eagle Problem Solvers, Georgia Southern University, Statesboro and Savan-
nah, GA. We assign the label z to one vertex of K12, and label the other 11 vertices with
the elements of Z11. Notice that each edge of K12 can be written uniquely as either (z, v),
for some v ∈ Z11, or (v, v + j), for some v ∈ Z11 and j ∈ {1, 2, 3, 4, 5}. In the latter case,
we refer to j as the difference of the edge.
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The icosahedronH is a 5-regular graph with 12 vertices and 30 edges. For each i ∈ Z11,
we define a copyHi ofH inK12 and then show that these copies together use each edge of
K12 five times. These copies of H can then be used to define the required partition of the
edges of G.

We draw Hi with z at the top and vertex i as the vertex at distance 3 from z. The five
vertices adjacent to z in Hi are i + 1, i + 2, i + 3, i + 4, and i + 5, and the five vertices
adjacent to i are i − 1, i − 2, i − 3, i − 4, and i − 5. There is a 10-cycle alternating between
the vertices adjacent to z and those adjacent to i. (The “wraparound” edge from i − 2 to
i + 1 has been left broken to emphasize the symmetry.) In the drawing of Hi below, we
have labeled each edge not incident to z with its difference. For example, the edge from
i + 1 to i − 5 has difference 5 because (i + 1)+ 5 = i + 6 = i − 5 in Z11.

It remains to show that each edge ofK12 occurs inHi for exactly five values of i in Z11.
An edge of the form (z, v) for some v ∈ Z11 occurs in Hi if and only if

v ∈ {i + 1, i + 2, i + 3, i + 4, i + 5},
in other words, if and only if

i ∈ {v − 1, v − 2, v − 3, v − 4, v − 5}.
Now consider an edge (v, v + j) with difference j . If j = 1, then the edge occurs in

Hi if and only if v ∈ {i + 1, i + 2, i + 3, i + 4, i − 1}. These values correspond to the five
edges in the figure that are labeled 1, and they determine five values of i for which the edge
occurs in Hi . Similarly, there are five edges in the figure labeled with each of the other
differences 2, 3, 4, and 5, and therefore for each of these values of j , an edge of the form
(v, v + j) occurs in Hi for five values of i.

Editorial comment. Several solvers described a decomposition using a rotation modulo 11.
Rob Pratt obtained a decomposition via integer linear programming.

The proposer used the fact that the graph H ′ whose edges are the pairs of vertices
separated by distance 2 in a copy H of the icosahedron is isomorphic to the icosahedron.
Since each vertex has exactly one antipodal vertex at distance 3, the union of H and H ′
omits exactly a perfect matching in K12. Said another way, the complement of a perfect
matching in K12 decomposes into two copies of the icosahedron. The icosahedron is 5-
edge-colorable, meaning that it decomposes into five perfect matchings. This can be seen
by drawing h with a central vertex and 5-fold rotational symmetry and forming a perfect
matching using one edge from each of the six orbits of five edges. For each of these five
matchings, the remaining edges ofK12 decompose into two copies of the icosahedron. The
resulting ten copies of the icosahedron together cover each edge outside H five times and
cover each edge inH four times. Together withH itself, we obtain 11 copies ofH covering
each edge in K12 five times.
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The decomposition argument generalizes in a straightforward way to yield the following
result: If H is an n-vertex k-regular graph that decomposes into k perfect matchings, and
Kn decomposes into t copies of H plus a leftover perfect matching, then the multigraph
kKn with k copies of each vertex pair as edges decomposes into kt + 1 copies of H . Other
applications besides the problem here include decomposing 4K6 into five octahedra and
decomposing 3K8 into seven cubes, which were proved earlier in the literature.

Also solved by K. Gatesman, O. P. Lossers (Netherlands), R. Pratt, A. J. Schwenk, R. Stong, and the proposer.

A Recursively Defined Sequence

12334 [2022, 588]. Proposed by Florin Stanescu, Şerban Cioculescu School, Găeşti,
Romania. Let f be a real-valued function on [0, 1] with a continuous second derivative.
Assume that f (0) = 0, f ′(0) = 1, f ′′(0) �= 0, and 0 < f ′(x) < 1 for all x ∈ (0, 1]. Let
x1, x2, . . . be a sequence with 0 < x1 ≤ 1 and with

xn = f
(
x1 + x2 + · · · + xn−1

n− 1

)

for n ≥ 2. Prove lim
n→∞ xn ln n = −2/f ′′(0).

Solution by Jinhai Yan, Fudan University, Shanghai, China. Let

sn = x1 + x2 + · · · + xn
n

.

Since 0 < f ′(x) < 1 for all x ∈ (0, 1], we find that f is increasing, 0 < f (x) < x on
(0, 1], and sn ∈ (0, 1]. Moreover,

nsn − (n− 1)sn−1 = xn = f (sn−1) < sn−1.

It follows that 0 < sn < sn−1. Hence sn is monotone decreasing, so it converges. Let
limn→∞ sn = A. By the Stolz–Cesàro theorem and the continuity of f ,

f (A) = lim
n→∞ f (sn) = lim

n→∞ xn+1 = lim
n→∞

(n+ 1)sn+1 − nsn
n+ 1− n = lim

n→∞ sn = A,
which implies that A = 0. By assumption,

f (x) = x + f
′′(0)
2

x2 + o(x2) (x → 0+).

Hence

sn+1 = nsn + f (sn)
n+ 1

= nsn + sn + o(sn)
n+ 1

∼ sn, and

xn = f (sn−1) = sn−1 + o(sn−1) ∼ sn.
Notice that 1/sn→∞ monotonically. Applying the Stolz–Cesàro theorem again, together
with ln(1+ 1/n) ∼ 1/n ∼ 1/(n+ 1), we find

lim
n→∞ xn ln n = lim

n→∞
xn

sn
· ln n

1/sn
= lim

n→∞
ln(n+ 1)− ln n

1/sn+1 − 1/sn

= lim
n→∞

ln(1+ 1/n)sn+1sn

sn − sn+1
= lim

n→∞
s2
n/(n+ 1)

sn − (nsn + f (sn))/(n+ 1)

= lim
n→∞

s2
n

sn − f (sn) = lim
n→∞

s2
n

−f ′′(0)s2
n/2+ o(s2

n)
= − 2

f ′′(0)
,

as claimed.
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Editorial comment. This problem is a generalization of problem 12079 [2018, 944; 2020,
568] from this Monthly.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), H. Chen (US), C. Chiser (Romania),
H. von Eitzen (Germany), K. Gatesman, M. Goldenberg & M. Kaplan, E. A. Herman, O. Kouba (Syria),
J. H. Lindsey II, O. P. Lossers (Netherlands), M. Omarjee (France), N. D. Phuoc (Vietnam), K. Sarma (India),
K. Schilling, A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), and the proposer.

Gaussian Integers

12335 [2022, 685]. Proposed by Tom Karzes, Sunnyvale, CA, Stephen Lucas, James Madi-
son University, Harrisonburg, VA, and James Propp, University of Massachusetts, Lowell,
MA. A Gaussian integer is a complex number z such that z = a + bi for integers a and b.
Show that every Gaussian integer can be written in at most one way as a sum of distinct
powers of 1+ i, and that the Gaussian integer z can be expressed as such a sum if and only
if i − z cannot.

Solution by William J. Cowieson, Fullerton College, Fullerton, CA. Let N and N0 denote
the sets of positive integers and nonnegative integers, respectively. Suppose first that∑

s∈S(1 + i)s =
∑

t∈T (1 + i)t for distinct sets S, T ⊂ N0. Subtract one side from the
other, divide by the lowest remaining power of 1+ i, and isolate 1 to obtain 1 = (1+ i)w,
where

w =
∑
s∈S′
(1+ i)s−1 −

∑
t∈T ′

(1+ i)t−1

for some disjoint sets S ′, T ′ ⊂ N. Letting N(z) = zz = a2 + b2 when z = a + bi, we
conclude

1 = N(1) = N((1+ i)w) = N(1+ i)N(w) = 2N(w),

which is impossible. Thus equality requires S = T , so there is at most one way to write
any Gaussian integer as a sum of distinct powers of 1+ i.

Let G denote the set Z[i] of Gaussian integers. For z = a + ib ∈ G, we have

z

1+ i =
1

2
(1− i)z = a + b

2
+ i b − a

2
.

Thus z/(1+ i) is also in G if and only if a + b is even, which holds if and only if a2 + b2 is
even. On the other hand, if a + b is odd, then (a − 1)+ b is even, so (z− 1)/(1+ i) ∈ G.
Writing these conditions in terms of N , we have a mapping F : G→ G defined by

F(z) =
{

z/(1+ i) if N(z) is even
(z− 1)/(1+ i) if N(z) is odd

.

We now establish various properties of the mapping F .

Claim 1: For all z ∈ G and n ∈ N0, we have Fn(i − z) = i − Fn(z).

Proof. If N(z) is even, then N(i − z) is odd, and

F(i − z) = (i − z− 1)/(1+ i) = i − z/(1+ i) = i − F(z).
The computation when N(z) is odd is similar, yielding F(i − z) = i − F(z) for all z ∈ G.
This is the base case for a proof by induction on n. For the induction step, assuming the
result for n = k − 1, we obtain

Fk(i − z) = F(F k−1(i − z)) = F(i − Fk−1(z)) = i − F(F k−1(z)) = i − Fk(z),
which is the result for n = k. �
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Claim 2: The Gaussian integer z is a sum of distinct powers of 1+ i if and only if F(z) is
also.

Proof. If F(z) is such a sum, then so are (1+ i)F (z) and (1+ i)F (z)+ 1, one of which is
z. Conversely, if z is such a sum, then either all powers are positive and F(z) = z/(1+ i)
is such a sum, or 1 is a summand and F(z) = (z− 1)/(1+ i) is such a sum. �

Claim 3: For all z ∈ G, there exists n ∈ N0 such that either Fn(z) = 0 or Fn(z) = i.

Proof. If N(z) is even, then N(F(z)) = N(z/(1+ i)) = N(z)/2. If N(z) is odd, then

N(F(z)) = N((z− 1)/(1+ i)) = N(z− 1)/2 = ((a − 1)2 + b2
)
/2,

which is at least a2 + b2 if and only if (a + 1)2 + b2 ≤ 2. Thus N(F(z)) < N(z) for
all z ∈ G except z ∈ {0, i,−i,−1,−2+ i,−2− i}, so for every z ∈ G there exists m ∈ N
with Fm(z) equal to a member of this set. Furthermore, F 3(−i) = F 2(−1) = i = F(i) and
F 6(−2− i) = F 5(−2+ i) = 0 = F(0), so always Fn(z) ∈ {0, i} for some n ∈ N. �

Finally, observe that 0 is (vacuously) a sum of distinct powers of 1+ i, while i is not
such a sum: If i =∑s∈S(1+ i)s for some S ⊂ N0, then∑

s∈S
(1+ i)s = i = 1+ (1+ i)i = 1+ (1+ i)

∑
s∈S
(1+ i)s =

∑
s∈(S+1)∪{0}

(1+ i)s .

By uniqueness, |S| = |(S + 1) ∪ {0}| = |S| + 1, which is impossible for finite S. Since no
such infinite sum converges, i is not such a sum.

It follows from this and Claims 1–3 that z is a sum of distinct powers of 1 + i if and
only if Fn(z) = 0 for some n. This is further equivalent to Fn(i − z) = i − Fn(z) = i for
some n, which holds if and only if i − z is not a sum of distinct powers of 1+ i.
Editorial comment. Gagola, Ionaşcu, Meyerson, Tauraso, Wildon, and the Eagle Problem
Solvers all mentioned the fractal nature of the Gaussian integers shaded in one of two
colors depending on whether the Gaussian integer can or cannot be expressed as a sum of
distinct powers of 1+ i, and they attached graphics showing this property. See W. J. Gilbert
(1982), Fractal geometry derived from complex bases, Math. Intelligencer 4(2): 78–86.

Also solved by J. Boswell & C. Curtis, T. Eisenkölbl (Austria), H. von Eitzen (Germany), S. M. Gagola Jr.,
K. Gatesman, F. Gesmundo (Germany) & T. M. Mazzoli (Austria), N. Hodges (UK), E. J. Ionaşcu, Y. J. Ionin,
S. Lee, O. P. Lossers (Netherlands), M. D. Meyerson, K. Schilling, A. Stadler (Switzerland), A. Stenger,
R. Stong, R. Tauraso (Italy), E. I. Verriest, M. Wildon (UK), Eagle Problem Solvers, Fejéntaláltuka Szeged
Problem Solving Group (Hungary), and the proposers.

Four Concurrent Euler Lines

12336 [2022, 685]. Proposed by Szilárd András, Babeş-Bolyai University, Cluj-Napoca,
Romania. Let N be the center of the nine-point circle of triangle ABC, and let D, E, and
F be the orthogonal projections of N onto the sides BC, CA, and AB, respectively. Prove
that the Euler lines of triangles ABC, AEF , BFD, and CDE are concurrent. Prove also
that the point of concurrency is equidistant from the circumcenters of AEF , BFD, and
CDE.

Solution by Kyle Gatesman, MITRE Corporation, Fairfax, VA. Let H be the orthocenter of
triangle ABC, and let O be its circumcenter. Let the midpoints of the sides opposite A, B,
and C beMA,MB , andMC , respectively. Let the feet of the altitudes fromA, B, and C (the
orthic points) be XA, XB , and XC , respectively. Let the midpoints of AH , BH , and CH
(the halfway points) beHA,HB , andHC , respectively. The nine-point circle passes through
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all three midpoints, all three orthic points, and all three halfway points. It is the image of
the circumcircle of triangle ABC under a dilation centered at H with scaling factor 1/2, so
its center N is the midpoint of the segment OH .

Let OA, OB , and OC be the circumcenters of triangles AEF , BFD, and CDE, respec-
tively. By definition of the points D, E, and F , quadrilaterals AENF , BFND, and
CDNE are cyclic, and their circumcircles have diameters AN , BN , and CN , respec-
tively. Therefore OA, OB , and OC are the midpoints of these diameters. It follows that
the circumcircle of triangle OAOBOC is the image of the circumcircle of triangle ABC
under a dilation centered at N with scaling factor 1/2, and its center P is the midpoint
of NO. The point P is equidistant from OA, OB , and OC , and it lies on the line HO,
which is the Euler line of triangle ABC, so it suffices now to show that the Euler lines
of triangles AEF , BFD, and CDE are concurrent at P . We show that the Euler line of
triangle AEF passes through P ; the claims for the other two triangles follow by symmetry
of the construction.

Note that HA is the orthocenter of triangle AMBMC , because AMBHAMC is the image
ofACHB under a dilation centered atAwith scaling factor 1/2. Let J be the orthocenter of
triangle AXBXC . Letting α = ∠BAC, we have AXC = AC cosα and AXB = AB cosα.
Therefore triangle AXBXC is the image of triangle ABC under first a dilation centered
at A with scale factor cosα and then a reflection across the line m that bisects ∠BAC. It
follows that J lies on the reflection of AH across m. Since

∠OAB = π

2
− 1

2
∠AOB = π

2
− ∠ACB = π

2
− ∠ACXA = ∠XAAC = ∠HAC,

O also lies on the reflection of AH across m. Thus A, O, and J are collinear.
For any pair of parallel lines �1 and �2, we say that the line that is parallel to both �1

and �2 and halfway between them is their midline. This midline contains the midpoint of
every line segment with an endpoint on each of �1 and �2. The nine-point circle of triangle
ABC passes through MB , XB , MC , and XC , so E and F are the midpoints of MBXB and
MCXC , respectively. The midline of the altitudes from MB and XB to AB is the altitude
from E to AB, and the midline of the altitudes fromMC and XC to AC is the altitude from
F to AC. Since HA lies on the altitudes from both MB and MC , and J lies on the altitudes
from both XB and XC , the midpoint of the segment HAJ lies on the altitudes from both E
and F , and therefore it is the orthocenter of triangle AEF .
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Since HA is the midpoint of HA and N is the midpoint of HO, the line AO is parallel
to HAN . Since OA is the midpoint of NA and P is the midpoint of NO, the line OAP is
parallel to AO, and it is the midline of AO and HAN . The orthocenter of triangle AEF is
the midpoint of the segment HAJ , whose endpoints lie on the lines HAN and AO, so this
orthocenter lies on OAP . This shows that OAP is the Euler line of triangle AEF , and it
passes through P , as required.

Editorial comment. N. S. Dasireddy pointed out that this problem was posed as part
of the 2015 IMO preparation program in Vietnam. Several solutions can be found at
artofproblemsolving.com/community/c6h1087710.

Also solved by M. Bataille (France), S. Bhadra (India), N. S. Dasireddy (India), G. Fera (Italy), O. Geupel
(Germany), N. Hodges (UK), W. Janous (Austria), K.-W. Lau (China), G.-H. Liu (Taiwan), O. P. Lossers
(Netherlands), F. Masroor, C. R. Pranesachar (India), C. Schindler (Germany), R. Stong, B. D. Suceavă, and
the proposer.

Beta Integrals and Partial Fractions

12337 [2022, 685]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. For k ∈ {0, 1, 2}, let

Sk =
∑ (−4)n

2n+ 1

(
2n

n

)−1

,

where the sum is taken over all nonnegative integers n that are congruent to k modulo 3.
Prove

(a) S0 =
ln
(

1+√2
)

3
√

2
+ π

6
;

(b) S1 =
ln
(

1+√2
)

3
√

2
−

ln
(

2+√3
)

2
√

3
− π

12
; and

(c) S2 =
ln
(

1+√2
)

3
√

2
+

ln
(

2+√3
)

2
√

3
− π

12
.

Solution by Roberto Tauraso, Tor Vergata University of Rome, Rome, Italy. The presence

of
(2n
n

)−1
suggests expressing the sums using beta function integrals. We have

(−4)n

2n+ 1

(
2n

n

)−1

= (−4)nB(n+ 1, n+ 1) = (−4)n
∫ 1

0
tn(1− t)n dt

= 1

2

∫ 1

−1
(s2 − 1)n ds =

∫ 1

0
(s2 − 1)n ds

under the change of variable s = 2t − 1. Evaluating a geometric series and using partial
fractions yields

S0 =
∫ 1

0

∞∑
r=0

(s2−1)3rds =
∫ 1

0

ds

1− (s2−1)3
= 1

3

∫ 1

0

(
1

2− s2
+ s2+1

s4− s2+1

)
ds. (∗)

To study this and similar expressions, let

I0 =
∫ 1

0

ds

2− s2
, I1 =

∫ 1

0

s2 − 1

s4 − s2 + 1
ds, and I2 =

∫ 1

0

s2 + 1

s4 − s2 + 1
ds.

Using partial fractions and

s4 − s2 + 1 = (s2 +√3s + 1)(s2 −√3s + 1),

360 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 131

https://artofproblemsolving.com/community/c6h1087710


we obtain

I0 = 1

2
√

2

∫ 1

0

(
1√

2+ s +
1√

2− s
)
ds = ln(1+√2)√

2
,

I1 = − 1

2
√

3

∫ 1

0

(
2s +√3

s2 +√3s + 1
+ 2s −√3

s2 −√3s + 1

)
ds = − ln(2+√3)√

3
,

and

I2 = 1

2

∫ 1

0

(
1

s2 +√3s + 1
+ 1

s2 −√3s + 1

)
ds

=
[
arctan(2s +√3)+ arctan(2s −√3)

]1

0
= π

2
.

From (∗), we have S0 = (I0 + I2)/3, which completes (a). For the other sums, we com-
pute

S1 − S2 =
∫ 1

0

∞∑
k=0

(
(s2 − 1)2k+1 − (s2 − 1)3k+2

)
ds

=
∫ 1

0

(s2 − 1)(2− s2)

1− (s2 − 1)3
ds =

∫ 1

0

s2 − 1

s4 − s2 + 1
ds = I1

and

S0 + S1 + S2 =
∫ 1

0

∞∑
n=0

(s2 − 1)n ds = I0.

This yields S1 = (2I0 + 3I1 − I2)/6 for (b) and S2 = (2I0 − 3I1 − I2)/6 for (c).

Editorial comment. Michel Bataille based his solution on the general formula

∞∑
n=1

(2x)2n

n
(2n
n

) = 2x arcsin(x)√
1− x2

,

proved in D. H. Lehmer (1985), Interesting series involving the central binomial coeffi-
cient, this Monthly 92(7): 449–457.

Also solved by T. Amdeberhan & V. H. Moll, M. Bataille (France), A. Berkane (Algeria), P. Bracken, B. Bradie,
H. Chen (US), W. J. Cowieson, K. Gatesman, M. L. Glasser, N. Hodges (UK), W. Janous (Austria), O. Kouba
(Syria), C. Krattenthaler (Austria), P. Lalonde (Canada), G. Lavau (France), O. P. Lossers (Netherlands),
R. Molinari, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), D. Terr, M. Vowe (Switzerland), T. Wiandt,
M. Wildon (UK), Y. Zhang (China), and the proposer.

A Trigonometric Exponential Integral by the Leibniz Integral Rule

12338 [2022, 686]. Proposed by István Mező, Nanjing, China. Prove∫ ∞
0

cos(x)− 1

x (ex − 1)
dx = 1

2
ln
(
π csch(π)

)
.

Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans,
LA. We start by writing the integral in the form∫ ∞

0

cos x − 1

x(ex − 1)
dx =

∫ ∞
0

cos x − 1

xex(1− e−x) dx =
∞∑
n=0

∫ ∞
0

(cos x − 1)e−(n+1)x

x
dx.
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For a > 0, let

I (a) =
∫ ∞

0

(cos x − 1)e−ax

x
dx.

Differentiation under the integral sign (an application of what is known as the Leibniz
integral rule) yields

I ′(a) =
∫ ∞

0
(1− cos x)e−ax dx = e−ax

(
a cos x − sin x

1+ a2
− 1

a

)∣∣∣∣
∞

0

= 1

a(1+ a2)
,

and therefore

I (a) =
∫

da

a(1+ a2)
= 1

2
ln

(
a2

1+ a2

)
+ C.

Since lima→∞ I (a) = 0, we have C = 0, so the requested integral is given by∫ ∞
0

cos x − 1

x(ex − 1)
dx = 1

2

∞∑
n=0

ln

(
(n+ 1)2

1+ (n+ 1)2

)
= 1

2
ln

( ∞∏
k=1

k2

1+ k2

)
.

To evaluate the infinite product, we use the known formula

sinh z

z
=
∞∏
k=1

(
1+ z2

π2k2

)

(see I. S. Gradshteyn, I. M. Ryzhik (2007), Table of Integrals, Series, and Products, 7th
ed., Burlington, MA: Academic Press, equation 1.431.2, p. 45). Applying this formula
with z = π , we obtain∫ ∞

0

cos x − 1

x(ex − 1)
dx = 1

2
ln

( ∞∏
k=1

(
1+ 1

k2

)−1
)
= 1

2
ln
( π

sinhπ

)
.

Also solved by U. Abel & V. Kushnirevych (Germany), A. Berkane (Algeria), S. Bhadra (India), R. Bit-
tencourt (Brazil), K. N. Boyadzhiev, P. Bracken, B. Bradie, C. Burnette, H. Chen (US), W. J. Cowieson,
B. E. Davis, M.-C. Fan (China), G. Fera (Italy), P. Fülöp (Hungary), M. L. Glasser, H. Grandmontagne
(France), N. Hodges (UK), F. Holland (Ireland), W. Janous (Austria), S. Kaczkowski, O. Kouba (Syria),
K.-W. Lau (China), G. Lavau (France), O. P. Lossers (Netherlands), J. Magliano, M. Maniquiz, F. Masroor,
R. Mortini (Luxembourg) & R. Rupp (Germany), K. Nelson, M. Omarjee (France), D. Pascuas (Spain), P. Per-
fetti (Italy), S. Sharma (India), A. Stadler (Switzerland), S. M. Stewart (Saudi Arabia), R. Stong, R. Tauraso
(Italy), E. I. Verriest, M. Vowe (Switzerland), T. Wiandt, Y. Zhang (China), L. Zhou, and the proposer.

CLASSICS

C24. Due to Colin L. Mallows. Over the history of a certain tennis club, every player has
played at least one match against every other player. Matches are played one at a time, and
after each match a ranking of the players in the club is computed as follows. Starting with
the most recent match and working backwards through time, use the match results to build
up a partial order. Ignore any match that is inconsistent with more recent results. The final
result is guaranteed to be a linear order, since any incomparability between a pair of players
is resolved when a match between them is encountered. This linear order becomes the new
club ranking. Prove or disprove: A player cannot rise in the club ranking by intentionally
losing a match.
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Decomposing Space into Disjoint Circles

C23. Due to John H. Conway and Hallard T. Croft. Determine whether it is possible to
partition R3 into circles.

Solution. We first show that any sphere with two points deleted can be partitioned into
circles. This is clear when the two
deleted points are antipodal, wit-
nessed by the circular latitude lines
that cover the surface of the earth
apart from the two poles. When the
two deleted points are not antipodal,
let L be the line in space common
to the two planes that are tangent
to the sphere at the deleted points.
The cross-sections of the sphere with
the planes through L decompose the
sphere with two deleted points into
circles. This is illustrated at right.

Let B be the family of unit circles in the xy-plane centered at (4k + 1, 0, 0) for some
integer k. These circles are disjoint, and one of them contains the origin. For r > 0,
let Sr be the sphere of radius r centered at the origin. The key observation is that, for
every r > 0, Sr intersects

⋃
B in exactly two points. This is illustrated in the figure here:

Let Tr be a set of disjoint circles whose union is Sr with those two points deleted. The
union of B and Tr for all r > 0 gives the desired decomposition of R3.

Editorial comment. The problem first appeared in J. H. Conway and H. T. Croft (1964),
Covering a sphere with congruent great-circle arcs, in Math. Proc. Cambridge Phil. Soc.,
60: 787–800, where it was solved using the axiom of choice. While that solution gives the
stronger result that all the circles can be of unit radius and no two circles are linked, it does
not give an explicit construction. The solution here is due to Andrzej Szulkin (1983), R3 is
the union of disjoint circles, this Monthly, 90: 640–641. For a more detailed treatment,
see J. B. Wilker (1989), Tiling R3 with circles and disks, Geom. Dedicata 32: 203–209.

It is not possible to partition R2 into circles. In fact, if S is a family of disjoint circles in
the plane, then in the interior of every circle in S is a point not contained in any circle in S.
To see this, let C be such a circle. If the center of C is not part of any circle in S, then we
are done. Otherwise, let C ′ be a circle in S containing the center of C. Note that the radius
of C ′ is less than half the radius of C. If the center of C ′ is not part of any circle in S, then
we are again done. Otherwise, in the same way, let C ′′ be a circle in S containing the center
of C ′, and continue in this way to form an infinite family of nested circles in S whose radii
converge to 0. The point in the interior of all these circles cannot be part of any circle in S.
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SOLUTIONS

Two Tangent Circles

12325 [2022, 487]. Proposed by Dong Luu, Hanoi University of Education, Hanoi, Viet-
nam. Let ABCD be a quadrilateral with a circumscribed circle ω and an inscribed circle
γ . Prove that there are two circles α and β with the following property: For any triangle
�MEF with (1) M on ω, (2) E and F on the line AB, and (3) the lines ME and MF
tangent to γ , the circumcircle of �MEF is tangent to α and β.

Solution by Faraz Masroor, New York, NY. We first address a more general situation. Let ω
and γ be circles, with γ inside ω, and let � be a line tangent to γ . We show that there are
circles α and β as in the statement of the problem, with � playing the role of the line AB,
except that one of the circles may degenerate to a point. At the end, we show that if ω and
γ are the circumscribed and inscribed circles of a quadrilateral, then the degeneracy can
be ruled out.

Let W be the point where � is tangent to γ . Let I be the center of γ , and let R be its
radius. Let ω′ be the image of ω under inversion in γ . The circle ω′ is inside γ and contains
I in its interior. Let J be the center of ω′, and let r be its radius. Let S be the image of I
under reflection in J , and let T be the midpoint of WS.

Consider any triangle �MEF as in the statement of the problem, and let μ be its cir-
cumcircle. Let M ′, E′, and F ′ be the images of M , E, and F under inversion in γ , and let
μ′ be the image of μ. The circle μ′ circumscribes �M ′E′F ′; let P be its center. We now
make two claims about μ′ and P :

Claim 1: The radius of μ′ is R/2.

Claim 2: T P = r .
Before proving these claims, we show that they imply the desired conclusion. Let α′ be

a circle centered at T with radius |R/2− r|, and let β ′ be a circle centered at T with radius
R/2+ r . (It is possible that r = R/2, in which case α degenerates to a point.) The claims
above imply that the circle μ′ is tangent to both α′ and β ′. The point of tangency with α′
is the point on μ′ that is closest to T , and the point of tangency with β ′ is the point on μ′
furthest from T . It follows that, as long as neither α′ nor β ′ passes through I , the images
of α′ and β ′ under inversion in γ are circles α and β that are tangent to μ, as required.
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To confirm that neither α′ nor β ′ passes through I , note first that since J is the midpoint
of IS and T is the midpoint ofWS, we have JT = (1/2)IW = R/2. Also, since I is inside
ω′, which is inside γ , we must have IJ < r and IJ < R − r . It follows that T I > R/2− r
and T I > R/2− (R − r) = r − R/2, so T I > |R/2− r|, and therefore I lies outside of
α′. Also, T I ≤ JT + IJ < R/2+ r , so I lies inside of β ′. Thus neither α′ nor β ′ passes
through I .

To prove the claims, let ME and MF be tangent to γ at G and H , respectively. We use
the fact that if the tangent lines to γ at two points X and Y intersect at Z, then the image of
Z under inversion in γ is the midpoint of XY . Applying this fact three times, we see that
E′ is the midpoint of WG, F ′ is the midpoint of WH , and M ′ is the midpoint of GH . Let
V and Q, respectively, be the images of W and I under reflection in M ′, and let σ be the
image of γ under this reflection. The circle σ has radius R passing through G, H , and V ,
and its center is Q. Also, M ′ is the midpoint of both IQ and WV .

Since the midpoints of WV , WG, and WH are M ′, E′, and F ′, respectively, the image
of σ under a dilation with ratio 1/2 centered atW is μ′, the circumcircle of�M ′E′F ′. This
proves the Claim 1. Also, the image of Q under this dilation is P , so P is the midpoint of
WQ. Since T and P are the midpoints of WS and WQ, respectively, and J and M ′ are
the midpoints of IS and IQ, respectively, we have T P = (1/2)SQ = JM ′. But M is on
ω, so M ′ is on ω′, which is the circle of radius r centered at J . Therefore T P = JM ′ = r ,
which proves Claim 2.

Finally, we show that if ω and γ are the circumscribed and inscribed circles of a quadri-
lateralABCD, then the case r = R/2 can be ruled out, thus eliminating the possibility that
one of the circles is degenerate. In this case, by Poncelet’s porism, there is another quadri-
lateralA′B ′C ′D′ such thatω and γ are the circumscribed and inscribed circles ofA′B ′C ′D′
and, in addition, A′C ′ is a diameter of ω and contains a diameter of γ . A straightforward
calculation now shows that r = R(cos θ + sin θ)/2 > R/2, where θ = ∠A′C ′B ′.
Editorial comment. Since ω′ is a circle centered at J with radius r and JT = R/2, the
circles α′ and β ′ are both tangent to ω′. It follows that α and β are both tangent to ω. Also,
the line through the centers of α and β passes through I .

Also solved by O. Kouba (Syria), O. P. Lossers (Netherlands), C. R. Pranesachar (India), R. Stong, and the
proposer.
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A Function with Polynomial Differences is a Polynomial

12326 [2022, 487]. Proposed by George Stoica, Saint John, NB, Canada. Let f : R→ R
be a continuous function such that, for every fixed y ∈ R, f (x + y)− f (x) is a polynomial
in x. Prove that f is a polynomial function.

Solution by Jinhai Yan, Fudan University, Shanghai, China. We first note that, for every
nonzero real number c, all polynomials in x can be expressed in the form p(x + c)− p(x)
for some other polynomial p. To see this, note that (x + c)n − xn has degree n− 1, and
hence {(x + c)n − xn : n ≥ 1} forms a basis for the vector space of all polynomials in x.

Taking y = 1 in the hypothesis, we see that f (x + 1) − f (x) is a polynomial, so
we can find a polynomial p such that p(x + 1) − p(x) = f (x + 1) − f (x). Therefore
f (x + 1)− p(x + 1) = f (x)− p(x). If we let T (x) = f (x)− p(x), then T is periodic
with period 1.

Now let n be any positive integer. It is easy to check that T satisfies the same hypoth-
esis as f , and taking y = 1/n in that hypothesis we conclude that T (x + 1/n) − T (x)
is a polynomial. Therefore we can find a polynomial q such that q(x + 1/n) − q(x) =
T (x + 1/n)− T (x). It follows that

q(x + 1)− q(x) = T (x + 1)− T (x) = 0,

so q is periodic. But q is a polynomial, and therefore it is a constant function. Thus

T (x + 1/n)− T (x) = q(x + 1/n)− q(x) = 0,

so T is periodic with period 1/n.
Since n was arbitrary, T has period 1/n for every positive integer n, so it is constant

on the rationals. It is also continuous, so it must be a constant function. Finally, since
f (x) = p(x)+ T (x), we conclude that f is a polynomial.

Editorial comment. The problem appears as Lemma 2.5 in F. Kühn and R. L. Schilling
(2021), For which functions are f (Xt) − Ef (Xt) and g(Xt)/Ef (Xt) martingales?,
Theor. Prob. and Math. Statist. 105: 79–91. The problem was submitted to the Monthly
without mention of this reference. We regret publishing the problem without proper attri-
bution to the source.

Omran Kouba pointed out that it is sufficient to assume that f (x + y)− f (x) is a poly-
nomial for two values of y that are independent over the rationals.

The hypothesis that f is continuous is necessary. We can prove this by imitating the
reasoning used in the solution to classic problem C7 [2022, 694; 2022, 794]. Let B be a
basis for R as a vector space over Q, and let f : B → R be any function that takes the
value 0 infinitely many times but is not identically 0. Now extend f to a function from
R to R as follows: for any real number x, write x (uniquely) as a finite sum

∑n
i=1 qibi ,

where qi ∈ Q \ {0} and bi ∈ B, and define f (x) to be
∑n

i=1 qif (bi). It is easy to verify
that for any fixed y, f (x + y)− f (x) is equal to f (y), which is a constant function and
therefore a polynomial. Since f takes the value 0 infinitely many times but is not identically
0, it cannot be a polynomial. As explained in the editorial comment of problem C7, the
reasoning here requires the axiom of choice, and indeed the result cannot be proved without
using the axiom of choice.

Also solved by J. Boswell & C. Curtis, N. Caro-Montoya (Brazil), J.-P. Grivaux (France), D. A. Hejhal,
N. Hodges (UK), Y. J. Ionin, O. Kouba (Syria), O. P. Lossers (Netherlands & ELTE (Hungary), F. Mas-
roor, R. Mortini (France) & P. Pflug (Germany) & A. Sasane (UK), M. Omarjee (France), K. Sarma (India),
K. Schilling, A. Stenger, R. Stong, R. Tuaraso (Italy), D. J. Velleman, UM6P Math Club (Morocco), and the
proposer.
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A Gaussian Binomial Identity

12327 [2022, 487]. Proposed by Mircea Merca, University of Craiova, Craiova, Romania.
Let

[
n

k

]
q

=

⎧⎪⎨
⎪⎩
k−1∏
i=0

1− qn−i
1− qk−i if 1 ≤ k ≤ n;

1 if k = 0.

Prove
n∑
k=0

[
n

k

]
q2
qk =

n∑
k=0

[
n

k

]
q2
qk(k−1)+(n−k)2−n(n−1)/2

for n ≥ 0.

Solution by Doyle Henderson, Omaha, NE. Let Sn and Tn, respectively, denote the sums
on the left and on the right, respectively. We show that both equal

∏n
k=1(1 + qk). Using

(1− qn+1)
[
n

k

]
q
= (1− qn+1−k)

[
n+1
k

]
q

with q2 replacing q, we obtain

(1− q2n+2)Sn =
n∑
k=0

[
n+ 1

k

]
q2
(1− q2n+2−2k)qk

=
n∑
k=0

[
n+ 1

k

]
q2
qk −

n∑
k=0

[
n+ 1

k

]
q2
q2n+2−k.

Using the well-known identity
[
n

k

]
q
= [ n

n−k
]
q

and reversing the index of summation yields

Sn+1 =∑n+1
k=0

[
n+1
k

]
q2
qn+1−k , so

n∑
k=0

[
n+ 1

k

]
q2
q2n+2−k = qn+1(Sn+1 − 1).

We have now proved

(1− q2n+2)Sn = Sn+1 − qn+1 − qn+1(Sn+1 − 1) = (1− qn+1)Sn+1,

so Sn+1 = (1+ qn+1)Sn. This and S0 = 1 yield Sn =∏n
k=1(1+ qk).

To evaluate Tn, let f (n, k) = k(k − 1)+ (n− k)2 − n(n− 1)/2. Proceeding as for Sn
yields

(1− q2n+2)Tn =
n∑
k=0

[
n+ 1

k

]
q2
qf (n,k) −

n∑
k=0

[
n+ 1

k

]
q2
qf (n,k)q2n+2−2k.

Since f (n + 1, n + 1 − k) = f (n, k), using
[
n

n−k
]
q
= [ n

k

]
q

and reversing the index of

summation in Tn+1 yields Tn+1 = ∑n+1
k=0

[
n+1
k

]
q2
qf (n,k). Computing also that f (n, k) +

n+ 1− 2k = f (n+ 1, k), we obtain

n∑
k=0

[
n+ 1

k

]
q2
qf (n,k)q2n+2−2k = qn+1

n∑
k=0

[
n+ 1

k

]
q2
qf (n+1,k)

= qn+1
(
Tn+1 − qf (n+1,n+1)

)
.
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Since f (n, n+ 1) = n+ 1+ f (n+ 1, n+ 1), we have now proved

(1− q2n+2)Tn = Tn+1 − qf (n,n+1) − qn+1 (Tn+1 − qf (n+1,n+1)) = (1− qn+1)Tn+1.

Hence Tn+1 = (1 + qn+1)Tn. This and T0 = 1 yield Tn = ∏n
k=1(1 + qk), finishing the

proof.

Also solved by T. Amdeberhan & S. B. Ekhad, N. Hodges (UK), W. P. Johnson, P. Lalonde (Canada),
O. P. Lossers (Netherlands), R. Stong, R. Tauraso (Italy), and the proposer.

The Value Set of an Integer Quadratic Form

12328 [2022, 587]. Proposed by Peter Koymans and Jeffrey Lagarias, University of Michi-
gan, Ann Arbor, MI. An integer binary quadratic form is a function f : Z2 → Z defined by
f (m, n) = am2 + bmn+ cn2 for some a, b, c ∈ Z. The value set V(f) of such a form is
defined to be

{
f (m, n) : (m, n) ∈ Z2

}
.

(a) Prove that if f1(m, n) = m2 − mn − 3n2 and f2(m, n) = m2 − 13n2, then V (f1) =
V (f2).
(b) Prove that if f1(m, n) = m2 − mn − 4n2 and f2(m, n) = m2 − 17n2, then V (f2) ⊆
V (f1) but V (f1) �= V (f2).

Solution by Jacob Boswell and Charles Curtis, Missouri Southern State University, Joplin,
MO. In both (a) and (b), f2(m, n) = f1(m+ n, 2n), so V (f2) ⊆ V (f1).

(a) It suffices to show V (f1) ⊆ V (f2). We have

f1(m, n) = f2

(
11m− 25n

2
,
−3m+ 7n

2

)
,

so f1(m, n) ∈ V (f2) when m and n have the same parity. When m is even and n is odd,
we use f1(m, n) = f1(m− n,−n) to see that f1(m, n) ∈ V (f2), since in this case m− n
and −n have the same parity. Finally, when m is odd and n is even, we have f1(m, n) =
f2(m− n/2, n/2) ∈ V (f2).

(b) It suffices to show V (f1) �⊆ V (f2). We have f2(m, n) = m2 − 17n2 �≡ 2 (mod 4).
However f1(3, 1) = 2 ≡ 2 (mod 4).

Editorial comment. The identity used in (a) arises from the multiplicative property of the
norm N in Z[

√
13] defined by N(a + b√13) = f2(a, b). Thus

f1(m, n) = f2

(
11

2
,−3

2

)
f2

(
m− n

2
,
n

2

)
= f2

(
11m− 25n

2
,

7n− 3m

2

)
.

Several solvers considered more generally f1(m, n) = m2 − mn − an2 and f2(m, n) =
m2 − (4a + 1)n2, for integers a. The argument given for (a) applies when f2(m, n) = 4
has a solution in odd integers. For example, when a = 7 we have 272 − 29 · 52 = 4, so
f1(m, n) = f2

(
(27m+ 59n)/2, (5m+ 11n)/2

)
.

Also solved by U. Abel & V. Kushnirevych (Germany), A. J. Bevelacqua, P. Corn, T. Eisenkölbl (Austria),
G. Fera (Italy), K. Gatesman, Y. J. Ionin, O. P. Lossers (Netherlands), B. Phillabaum, C. R. Pranesachar (India),
M. Reid, J. P. Robertson, A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), D. Terr, L. Zhou,
and the proposer.

Equally Spaced Unit Vectors

12329 [2022, 587]. Proposed by Leonard Giugiuc, Drobeta-Turnu Severin, Romania. Let n
be a positive integer with n ≥ 3. For each positive integermwithm ≥ 2, find all real values
λm such that there are m distinct unit vectors v1, . . . , vm in Rn satisfying vi · vj = λm for
all i, j with 1 ≤ i < j ≤ m.
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Solution by Kuldeep Sarma, Tezpur University, Tezpur, India. If m ≤ n, then the allowed
values for λm are all numbers in the interval [−1/(m− 1), 1). If m = n+ 1, then the only
allowed value for λm is −1/n. If m > n+ 1, then no such λm exists.

Assume that such vectors exist, and let them be the columns of a real n×m matrix V .
The Gram matrix V T V has ones on the diagonal and λm in every off-diagonal position.
Thus V T V = (1 − λm)Im + λmJm, where Jm denotes the m-by-m matrix of all 1s. The
vector (1, . . . , 1)T is an eigenvector for this matrix with eigenvalue 1 + (m − 1)λm, and
there are m− 1 linearly independent vectors whose coordinates sum to zero, all of which
are eigenvectors with eigenvalue 1− λm. Thus the eigenvalues of this matrix are 1− λm
with multiplicity m − 1 and 1 + (m − 1)λm with multiplicity 1. Since V T V is positive
semidefinite, these eigenvalues must be nonnegative, and hence −1/(m − 1) ≤ λm ≤ 1.
However, the case λm = 1 is excluded, since it would force all of the vi to be equal. Also
note that V T V has rank at most n. Hence ifm = n+ 1, then V T V must have 0 as an eigen-
value, which implies λm = −1/n. If m > n+ 1, then V T V must have 0 as an eigenvalue
with multiplicity at least 2, which is impossible since λm = 1 has been excluded.

Conversely, suppose that the conditions on the eigenvalues λm are satisfied. Let A =
(1 − λm)Im + λmJm. The matrix A is a symmetric positive semidefinite m-by-m matrix
with rank at most n. Let r = rank(A). Using either the Cholesky decomposition or the
orthogonal diagonalizability of real symmetric matrices, we can write A = XTX for some
r-by-m matrix X, and padding with n − r extra rows of 0s, we can write A = V T V for
some n-by-m matrix V . The columns of V are then the desired unit vectors vi . They are
distinct since vi · vj = λm < 1 for 1 ≤ i < j ≤ m.

Also solved by C. P. Anil Kumar (India), N. Caro-Montoya (Brazil), M. Elgersma, K. Gatesman, Y. J. Ionin,
O. P. Lossers (Netherlands), R. Stong, L. Zhou, Eagle Problem Solvers, and the proposer.

One Concurrency Leads To Another

12330 [2022, 587]. Proposed by Oleh Faynshteyn, Leipzig, Germany. In the acute and
scalene triangle ABC, letG be the centroid, H be the orthocenter,D, E, and F be the feet
of the altitudes from A, B, and C, respectively, and K , L, and M be the midpoints of BC,
CA, and AB, respectively. Let P be the
intersection of DG and KH , let Q be
the intersection of EG and LH , and
let R be the intersection of FG and
MH .
(a) Prove that AP , BQ, and CR are
concurrent.
(b) Let X, Y , and Z be the points
where GH intersects AP , BQ, and
CR. Prove

HX

XG
+ HY
YG
+ HZ
ZG
= 3.

Solution by Faraz Masroor, New York, NY. Neither statement depends on the triangle being
acute or H being the orthocenter of ABC. We can let H be any point in the interior of
�ABC not lying on any of the lines AG, BG, or CG, as long as we redefine D, E, and F
to be the intersections of AH , BH , and CH with BC, CA, and AB, respectively.

(a) Let S, T , and U be the intersections of AP , BQ, and CR with BC, CA, and AB,
respectively. We must prove that AS, BT , and CU are concurrent. By Ceva’s theorem it
suffices to show

BS

SC
· CT
TA
· AU
UB
= 1. (1)
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Let HD and HK be the reflec-
tions of H across D and K ,
and let A′ be the point such
thatAHDHKA′ is a parallelogram.
Note that A′A ‖ HKHD ‖ KD, so
∠A′AG = ∠DKG. Also, A′A =
HKHD = 2KD, and since G is
the centroid of �ABC, AG =
2KG. Therefore triangles A′AG
and DKG are similar. It follows
that ∠A′GA = ∠DGK , so A′, G,
P , and D are collinear.

Since �SDP ∼ �AA′P and �DHP ∼ �A′HKP ,

SD

AA′
= PD

PA′
= DH

A′HK
= DHD

AHD
. (2)

Let S ′ be the intersection of AHK with BC. Since �S ′D′HK ∼ �AA′HK ,

S ′D′

AA′
= D′HK
A′HK

= DHD

AHD
. (3)

Combining (2) and (3), we see that SD = S ′D′. Also, D′D = HKHD = 2KD, so K is
the midpoint of DD′, and therefore KS = KS ′. We conclude BS = CS ′ and SC = S ′B.

Let HL and HM be the reflections of H across L and M , respectively, let T ′ be the
intersection of BHL with CA, and let U ′ be the intersection of CHM with AB. Imitating
the reasoning above, we can show CT = AT ′, TA = T ′C, AU = BU ′, and UB = U ′A.
Therefore (1) is equivalent to

CS ′

S ′B
· AT

′

T ′C
· BU

′

U ′A
= 1.

By another application of Ceva’s theorem, to prove this it suffices to show thatAHK , BHL,
and CHM are concurrent.

Since K is the midpoint of
both HHK and BC, BHCHK is a
parallelogram. Similarly, CHAHL
and AHBHM are parallelograms.
We have AHL ‖ HC ‖ BHK and
AHL = HC = BHK , so AHLHKB
is also a parallelogram. There-
fore the midpoints of the diago-
nals AHK and BHL coincide. Sim-
ilarly, this common midpoint coin-
cides with the midpoint of CHM , so
the three segments are concurrent,
as required.

(b) The law of sines implies

DS

SK
= AD

AK
· sin∠DAP

sin∠KAP .

This is sometimes known as the ratio lemma. A second application of the ratio lemma
yields

HX

XG
= AH

AG
· sin∠DAP

sin∠KAP .
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Combining these, and applying the fact that AK = (3/2)AG, we obtain

HX

XG
= AH

AG
· AK
AD
· DS
SK
= 3

2
· AH
AD
· DS
SK

. (4)

By Ceva’s theorem applied to �ADK ,

DS

SK
· KG
GA
· AH
HD
= 1,

and therefore
DS

SK
= GA

KG
· HD
AH
= 2 · HD

AH
.

Substituting into (4), we obtain

HX

XG
= 3

2
· AH
AD
· 2 · HD

AH
= 3 · HD

AD
= 3 · [HBC]

[ABC]
,

where for any points α, β, and γ , [αβγ ] denotes the area of �αβγ . Similarly, HY/YG =
3[HCA]/[ABC] and HZ/ZG = 3[HAB]/[ABC], so

HX

XG
+ HY
YG
+ HZ
ZG
= 3 · [HBC]+ [HCA]+ [HAB]

[ABC]
= 3 · [ABC]

[ABC]
= 3.

Editorial comment. Let O be the point on GH such that G is between O and H and
GH = 2OG. It can be shown that O is the common midpoint of AHK , BHL, and CHM .

Also solved by M. Bataille (France), H. Chen (China), C. Chiser (Romania), I. Dimitrić, G. Fera (Italy),
M. Goldenberg & M. Kaplan, K. Gatesman, J.-P. Grivaux (France), K.-W. Lau (China), C. R. Pranesachar
(India), V. Schindler (Germany), R. Stong, D. E. Türköz (Turkey), L. Zhou, and the proposer.

A Hyperbolic Integral

12332 [2022, 588]. Proposed by Finbarr Holland, University College, Cork, Ireland. Prove∫ ∞
0

tanh2 x

x2
dx = 14 ζ(3)

π2
,

where ζ(3) is Apéry’s constant
∑∞

k=1 1/k3.

Solution by Kuldeep Sarma, Tezpur University, Tezpur, India. We begin with the Weier-
strass product formula for the hyperbolic cosine,

cosh x =
∞∏
n=0

(
1+ x2

(n+ 1/2)2π2

)
.

Applying logarithmic differentiation, we obtain

tanh x

x
= 2

∞∑
n=0

1

(n+ 1/2)2π2 + x2
,

and therefore

tanh2 x

x2
= 4

∞∑
n,m=0

1(
(n+ 1/2)2π2 + x2

)(
(m+ 1/2)2π2 + x2

) . (1)

Next we claim that for all positive a and b,∫ ∞
0

dx

(a2 + x2)(b2 + x2)
= π

2ab(a + b) . (2)
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For distinct a and b, this follows from the calculation∫ ∞
0

dx

(a2 + x2)(b2 + x2)
= 1

b2 − a2

∫ ∞
0

(
1

a2 + x2
− 1

b2 + x2

)
dx

= 1

b2 − a2

( π
2a
− π

2b

)
= π

2ab(a + b) ,

but it is easily verified that (2) also holds when a = b.
Combining (1) and (2), we have∫ ∞

0

tanh2 x

x2
dx = 4

∞∑
n,m=0

∫ ∞
0

1(
(n+ 1/2)2π2 + x2

)(
(m+ 1/2)2π2 + x2

) dx

= 16

π2

∞∑
n,m=0

1

(2n+ 1)(2m+ 1)(2n+ 2m+ 2)

= 16

π2

∞∑
n,m=0

1

(2n+ 1)(2m+ 1)

∫ 1

0
x(2n+2m+2) dx

x

= 16

π2

∫ 1

0

( ∞∑
n=0

x2n+1

2n+ 1
·
∞∑
m=0

x2m+1

2m+ 1

)
dx

x

= 4

π2

∫ 1

0
ln2

(
1− x
1+ x

)
dx

x
.

Finally, to evaluate the last integral, we substitute u = (1− x)/(1+ x) and obtain∫ ∞
0

tanh2 x

x2
dx = 8

π2

∫ 1

0

ln2 u

1− u2
du = 8

π2

∞∑
n=0

∫ 1

0
u2n ln2 u du

= 16

π2

∞∑
n=0

1

(2n+ 1)3
= 16

π2
· 7ζ(3)

8
= 14ζ(3)

π2
.

Editorial comment. Several solvers noted a relationship between this problem and problem
12317, which asked for a proof of∫ π/2

0

sin(4x)

ln(tan x)
dx = −14

ζ(3)

π2
.

Let I denote the integral in problem 12317, and J the integral in this problem. Using the
substitution u = tan x, we have

I =
∫ ∞

0

4u(1− u2)

(1+ u2)3 ln u
du.

We can reexpress J by applying integration by parts, recognizing that the resulting inte-
grand is odd, and expressing the hyperbolic functions in terms of exponentials:

J = 2
∫ ∞

0

sinh x

x cosh3 x
dx =

∫ ∞
−∞

4e2x(e2x − 1)

x(e2x + 1)3
dx.

Finally, using the substitution u = ex , we obtain

J =
∫ ∞

0

4u(u2 − 1)

(1+ u2)3 ln u
du = −I.
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Also solved by U. Abel & V. Kushnirevych (Germany), T. Amdeberhan & V. Moll, K. F. Andersen (Canada),
M. Bataille (France), A. Berkane (Algeria), P. Bracken, B. Bradie, H. Chen, B. E. Davis, M.-C. Fan (China),
G. Fera (Italy), D. Fleischman, K. Gatesman, M. L. Glasser, H. Grandmontagne (France), G. C. Greubel,
E. A. Herman, N. Hodges (UK), F. Holland (Ireland), S. Kaczkowski, L. Kempeneers & J. Van Casteren (Bel-
gium), O. Kouba (Syria), O. P. Lossers (Netherlands), C. Maniquiz, K. Nelson, M. Omarjee (France), P. Per-
fetti (Italy), S. Sharma (India), A. Stadler (Switzerland), A. Stenger, S. M. Stewart (Saudi Arabia), R. Stong,
R. Tauraso (Italy), T. Wiandt, H. Widmer (Germany), M. Wildon (UK), Y. Zhang (China), Fejéntaláltuka
Szeged Problem Solving Group (Hungary), UM6P Math Club (Morocco), and the proposer.

CLASSICS

C23. Due to John H. Conway and Hallard T. Croft. Determine whether it is possible to
partition R3 into circles.

The Erdős–Mordell Inequality

C22. Due to Paul Erdős. Prove that from any point in any triangle, the sum of the distances
to the vertices of the triangle is at least twice as large as the sum of the distances to the
sides of the triangle.

Solution. Let P be a point in �ABC, let a = BC, b = CA, c = AB, x = PA, y = PB,
and z = PC, and let d, e, and f be the distances from P to the sides BC, CA, and AB,
respectively. The area of �ABC is given by (ad + be + cf )/2. Since f + z is no less
than the altitude of �ABC dropped to base AB, the area of �ABC is no greater than
c(f + z)/2. It follows that c(f + z) ≥ ad + be + cf , or cz ≥ ad + be.

We apply this inequality not to the original point P , but to the point in �ABC that is
the reflection of P across the angle bisector from C. We obtain the same inequality but
with the roles of d and e reversed: cz ≥ ae + bd.

The analogous inequalities ax ≥ bf + ce and by ≥ cd + af are obtained in the same
way. We obtain

x + y + z ≥ b

a
f + c

a
e+ c

b
d + a

b
f + a

c
e+ b

c
d =

(
c

b
+ b
c

)
d +

(c
a
+ a
c

)
e+

(
b

a
+ a
b

)
f.

By the AM-GM inequality, the three quantities in parentheses are all at least 2, and the
desired inequality x + y + z ≥ 2(d + e + f ) follows.

Editorial Comment: Equality holds if and only if �ABC is equilateral and P is its center.
The problem appeared as problem 3740 [1935, 396; 1937, 252] in this Monthly, proposed
by Paul Erdős and solved by Louis Mordell and independently by David F. Barrow. It has
come to be known as the Erdős–Mordell inequality. Barrow’s solution proved the stronger
claim that the inequality holds even if d, e, and f are the distances from P to the points
where the angle bisectors meet the sides of the triangle.

Numerous alternative proofs and generalizations have appeared over the decades. For
example, a proof that is more elementary than those of Mordell and Barrow appears in
V. Komornik (1997), A short proof of the Erdős–Mordell theorem, this Monthly, 104(1):
57–60. Our proof here follows roughly that of C. Alsina and R. Nelsen (2007), A visual
proof of the Erdős–Mordell inequality, Forum Geom. 7: 99–102. Peter Walker (2016), The
Erdős–Mordell theorem in the exterior domain, Internat. J. Geom. 5(1): 31–38 examines
the extent to which the result generalizes to points outside a triangle.
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SOLUTIONS

A Logarithmic Trigonometric Integral

12317 [2022, 385]. Proposed by Seán Stewart, King Abdullah University of Science and
Technology, Thuwal, Saudi Arabia. Prove∫ π/2

0

sin(4x)

log(tan x)
dx = −14

ζ(3)

π2
,

where ζ(3) is Apéry’s constant
∑∞

n=1 1/n3.

Composite solution by Hongwei Chen, Christopher Newport University, Newport News,
VA, and Thomas Dickens, Houston, TX. Let I denote the requested integral. Using the
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identity sin(4x) = 2 sin(2x) cos(2x) = 4 sin x cos x(cos2 x − sin2 x) and the substitutions
u = tan x and t = u2, we obtain

I =
∫ π/2

0

sin(4x)

log(tan x)
dx =

∫ ∞
0

4u(1− u2)

(log u)(1+ u2)3
du

= −4
∫ ∞

0

t − 1

(log t)(1+ t)3 dt.

We now use parametric integration to compute this integral. First observe that for t > 0,∫ 1

0
tp dp = t − 1

log t
.

Thus

I = −4
∫ ∞

0

∫ 1

0

tp

(1+ t)3 dp dt = −4
∫ 1

0

(∫ ∞
0

tp

(1+ t)3 dt
)
dp.

We evaluate the inner integral using the substitution s = 1/(1+ t) and then recognizing the
beta function. Using the identities B(z1, z2) = �(z1)�(z2)/�(z1 + z2), �(z+ 1) = z�(z),
and �(z)�(1− z) = π/ sin(zπ) yields∫ ∞

0

tp

(1+ t)3 dt =
∫ 1

0
s1−p(1− s)p ds = B(2− p, p + 1)

= �(2− p)�(p + 1)

�(3)
= p(1− p)�(1− p)�(p)

2
= p(1− p)π

2 sin(pπ)
,

for p ∈ (0, 1). Thus

I = −2π
∫ 1

0

p(1− p)
sin(pπ)

dp = − 2

π2

∫ π

0

x(π − x)
sin x

dx, (∗)

where we have used the substitution x = pπ in the second step. Applying the Fourier sine
series of x(π − x) on [0, π ] yields

x(π − x) = 8

π

∞∑
n=0

1

(2n+ 1)3
sin
(
(2n+ 1)x

)
,

and so

I = − 16

π3

∞∑
n=0

1

(2n+ 1)3

∫ π

0

sin
(
(2n+ 1)x

)
sin x

dx.

We now use the formula ∫ π

0

sin(nx)

sin x
dx =

{
0, if n is even,

π, if n is odd,

for n ∈ N, which follows from the fact that, for n ≥ 2,∫ π

0

sin(nx)

sin x
dx −

∫ π

0

sin
(
(n− 2)x

)
sin x

dx =
∫ π

0

sin(nx)− sin
(
(n− 2)x

)
sin x

dx

= 2
∫ π

0
cos
(
(n− 1)x

)
dx = 0.
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This yields

I = − 16

π3

∞∑
n=0

π

(2n+ 1)3
= − 16

π2

( ∞∑
n=1

1

n3
−
∞∑
n=1

1

(2n)3

)
= − 16

π2
· 7

8
ζ(3) = −14

ζ(3)

π2
.

Editorial comment. Most solvers converted the proposed integral into (∗) and then used
either the power series of csc x or a contour integral.

Also solved by A. Berkane (Algeria), N. Bhandari (Nepal), P. Bracken, B. Bradie, B. S. Burdick, B. E. Davis,
M.-C. Fan (China), G. Fera (Italy), M. L. Glasser (Spain), H. Grandmontagne (France), E. A. Herman,
N. Hodges (UK), W. Janous (Austria), O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Netherlands),
M. Maniquiz, K. Nelson, M. Omarjee (France), P. Perfetti (Italy), A. Stadler (Switzerland), A. Stenger,
R. Stong, R. Tauraso (Italy), T. Wiandt, H. Widmer (Switzerland), Y. Zhang (China), Fejéntaláltuka Szeged
Problem Solving Group (Hungary), UM6P Math Club (Morocco), and the proposer.

Two Operator Norms

12318 [2022, 386]. Proposed by Mohammadhossein Mehrabi, University of Gothenburg,
Gothenburg, Sweden. Let a be a positive real number, and let Sa be the set of func-
tions f : [−a, a]→ R such that

∫ a
−a(f (x))

2 dx = 1. Let A(f ) = ∫ a−a f (x) dx, B(f ) =∫ a
−a x f (x) dx, and C(f ) = ∫ a−a x2 f (x) dx.

(a) What is sup
{
A(f )2 + B(f )2 : f ∈ Sa

}
?

(b) What is sup
{
A(f )2 + B(f )2 + C(f )2 : f ∈ Sa

}
?

Solution by Kenneth Andersen, University of Alberta, Edmonton, AB, Canada. Applying
the Gram–Schmidt process to the basis {1, x, x2, . . .} in L2[−a, a], with inner product
〈f, g〉 = ∫ a−a f (x)g(x) dx, produces an orthonormal basis {e1, e2, . . .} with

e1 = 1√
2a
, e2 =

√
3

2
a−3/2x, and e3 =

√
5

8
a−5/2(3x2 − a2).

For f ∈ Sa we have f =∑∞n=1 fnen and
∑∞

n=1 f
2
n = 〈f, f 〉 =

∫ a
−a(f (x))

2 dx = 1, where
fn = 〈en, f 〉. Note that

1 = √2ae1, x =
√

2

3
a3/2e2, and x2 =

√
2

3
a5/2

(
2√
5
e3 + e1

)
,

so

A(f ) =
∫ a

−a
f (x) dx = 〈1, f 〉 = √2af1,

B(f ) =
∫ a

−a
xf (x) dx = 〈x, f 〉 =

√
2

3
a3/2f2,

C(f ) =
∫ a

−a
x2f (x) dx = 〈x2, f 〉 =

√
2

3
a5/2

(
2√
5
f3 + f1

)
.

(a) For any f ∈ Sa we have

A(f )2 + B(f )2 = 2af 2
1 +

2a3

3
f 2

2 = [f1 f2] S [f1 f2]T ,

where

S =
(

2a 0
0 2a3/3

)
.
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When computing the requested supremum, we may restrict attention to functions f with
f 2

1 + f 2
2 = 1 and fn = 0 for n ≥ 3. The supremum is the largest eigenvalue of S, so

sup
{
A(f )2 + B(f )2 : f ∈ Sa

} =
{

2a, if a ≤ √3,

2a3/3, if a >
√

3.

(b) For any f ∈ Sa , we have

A(f )2 + B(f )2 + C(f )2 =
(

2a + 2a5

9

)
f 2

1 +
2a3

3
f 2

2 +
8a5

45
f 2

3 +
8
√

5a5

45
f1f3

= [f1 f2 f3]U [f1 f2 f3]T ,

where

U =
⎛
⎝2a + 2a5/9 0 4

√
5a5/45

0 2a3/3 0
4
√

5a5/45 0 8a5/45

⎞
⎠ .

As in part (a), the requested supremum is the largest eigenvalue of U . The eigenvalues of
U are

2a3

3
and a + a

5

5
± a

15

√
9a8 + 10a4 + 225.

Since
√

5/a2 + a2/
√

5 ≥ 2, we have a + a5/5 ≥ 2a3/
√

5 > 2a3/3. Therefore

sup
{
A(f )2 + B(f )2 + C(f )2 : f ∈ Sa

} = a + a5

5
+ a

15

√
9a8 + 10a4 + 225.

Also solved by A. Berkane (Algeria), H. Chen (US), O. Kouba (Syria), B. Lai (China), J. H. Lindsey II,
P. W. Lindstrom, O. P. Lossers (Netherlands), M. Omarjee (France), K. Schilling, A. Stadler (Switzerland),
R. Stong, R. Tauraso (Italy), J. Yan (China), and the proposer. Part (a) also solved by E. A. Herman.

Counting Rectangles with Prime Area

12320 [2022, 386]. Proposed by Enrique Treviño, Lake Forest College, Lake Forest, IL.
Consider the grid of n2 lattice points {1, . . . , n}2. Let S1(n) be the number of rectangles
with corners in the grid (though not necessarily with horizontal and vertical sides) that have
area equal to a prime integer congruent to 1 (mod 4). Define S3(n) similarly using primes
congruent to 3 (mod 4). Prove that there is a value n0 such that S1(n) > S3(n) for n ≥ n0.

Solution by Nigel Hodges, Cheltenham, UK. We say that a rectangle is aligned if it has
horizontal and vertical sides; otherwise it is unaligned. First consider aligned rectangles.
When the area is a prime p, the sidelengths must be 1 and p. For p ≤ n − 1, there are
2(n − 1)(n − p) aligned rectangles with area p. Therefore the total number of aligned
rectangles with prime area is

n−1∑
p=1

p prime

2(n− 1)(n− p),

which is less than 2n3.
Now consider an unaligned rectangle with area p. Because each side has length

√
a for

some integer a that is at least 2, unaligned rectangles must be squares of side-length
√
p.
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Since an integer congruent to 3 modulo 4 cannot be the sum of two squares, no unaligned
rectangles will contribute to S3.

On the other hand, every prime p congruent to 1 mod 4 can be written as the sum of two
squares (uniquely up to order). Let p = k2 +m2 be one such representation. The smallest
aligned square that contains an unaligned square of area p has side-length k +m, and such
an aligned square contains two unaligned squares of area p. There are (n − (k + m))2
aligned squares with side-length k +mwithin the grid, so there are at least 2(n− (k +m))2
unaligned rectangles of area p.

Restricting to p ≤ n2/8, we have

k +m =
√

2p − (k −m)2 < √
2p ≤ n/2.

Thus there are at least n2/2 unaligned squares of area p in the grid. Therefore

S1(n) ≥
∑

π(n2/8; 4, 1) · n
2

2
,

where π(x; q, r) denotes the number of primes up to x that are congruent to r mod q.
By the prime number theorem for arithmetic progressions (see, for instance, H. Davenport
(1980), Multiplicative Number Theory, 2nd ed., Springer-Verlag, Berlin, Ch. 20),

π(x; 4, 1) ∼ x

φ(4) ln x
= x

2 ln x
.

Therefore, for ε ∈ (0, 1) and sufficiently large n,

S1(n) ≥ ε n2/8

2 ln(n2/8)
· n

2

2
= ε n4

32 ln(n2/8)
> 2n3 > S3(n).

Also solved by N. Caro-Montoya (Brazil), N. Fellini (Canada), D. Fleischman, K. Gatesman, A. Stadler
(Switzerland), R. Tauraso (Italy), and the proposer.

Primes are Rarely Squares Modulo Squares

12321 [2022, 486]. Proposed by Mohammadamin Sharifi, Sharif University of Technology,
Tehran, Iran. Let p be a prime number. Prove that the number of perfect squares m such
that the least nonnegative remainder of p (mod m) is a perfect square is less than 2p1/3.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. Writ-
ing m = b2 and letting a2 be the least nonnegative residue of p (mod m), we can write
p = kb2 + a2 for integers a, b, k with b > a ≥ 0 and k > 0 (since p is not a square).
Conversely, any such expression gives a solution m = b2. We prove the following:

Claim. For each positive integer k, there is at most one pair (a, b) with b > a ≥ 0 such
that p = kb2 + a2.

Proof: Suppose that (a, b) and (c, d) are two such pairs. Since b2 determines a, we must
have d �= b. We write

0 �= (b2 − d2)p = b2(kd2 + c2)− d2(kb2 + a2) = b2c2 − a2d2 = (bc + ad)(bc − ad).
Hence bc + ad or bc − ad is a nonzero multiple of p. Since b/a > 1 > c/d, the vectors
(b, a) and (c, d) are not parallel. By the Cauchy–Schwarz inequality (with strict inequality
for nonparallel vectors),

0 < |bc − ad| ≤ bc + ad < (b2 + a2)1/2(c2 + d2)1/2 ≤ p,
so neither factor is a multiple of p. This contradiction yields the claim. �
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Given p = kb2 + a2, either k ≤ p1/3 or b2 ≤ p2/3, since otherwise kb2 > p. Since k
determines the solution (by the claim), the first case gives at most �p1/3� solutions. In the
second case, since b determines a and hence determines the solution, we also have at most
�p1/3� solutions. Therefore the total number of solutions is at most 2�p1/3�.
Also solved by N. Hodges (UK), O. P. Lossers (Netherlands), R. Tauraso (Italy), and the proposer.

A Skew-Symmetric Determinant

12322 [2022, 486]. Proposed by Askar Dzhumadil’daev, Kazakh-British Technical Univer-
sity, Almaty, Kazakhstan. Given real numbers x1, . . . , x2n, let A be the skew-symmetric
2n-by-2n matrix with entries ai,j = (xi − xj )2 for 1 ≤ i < j ≤ 2n. Prove

det(A) = 4n−1
(
(x1 − x2)(x2 − x3) · · · (x2n−1 − x2n)(x2n − x1)

)2
.

Solution by Kuldeep Sarma, Tezpur University, Tezpur, India. Let p(x1, . . . , x2n) be the
desired determinant as a polynomial in x1, . . . , x2n. It is a homogeneous polynomial of
degree 4n. We claim (xk − xk+1)

2 | p for 1 ≤ k < 2n and (x2n − x1)
2 | p, which implies

(x1 − x2)
2(x2 − x3)

2 · · · (x2n−1 − x2n)
2(x2n − x1)

2 | p.
Noting the degree of p, we conclude that p is a scalar multiple of the desired polynomial.

To prove the claim for k = 1, fix arbitrary real numbers x2, . . . , x2n and let x1 = x2 + ε,
where ε may vary. It suffices to show that p(x2 + ε, x2, x3, . . . , x2n) = O(ε2). With this
expression for x1, the matrix A becomes⎡

⎢⎢⎢⎢⎢⎣

0 ε2 (x2 + ε − x3)
2 (x2 + ε − x4)

2 · · ·
−ε2 0 (x2 − x3)

2 (x2 − x4)
2 · · ·

−(x2 + ε − x3)
2 −(x2 − x3)

2 · · · · ·
−(x2 + ε − x4)

2 −(x2 − x4)
2 · · · · ·

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ .

Subtracting the second row from the first and then the second column from the first (which
does not change the determinant) gives⎡
⎢⎢⎢⎢⎢⎣

0 ε2 2(x2 − x3)ε + ε2 2(x2 − x4)ε + ε2 · · ·
−ε2 0 (x2 − x3)

2 (x2 − x4)
2 · · ·

−2(x2 − x3)ε − ε2 −(x2 − x3)
2 · · · · ·

−2(x2 − x4)ε − ε2 −(x2 − x4)
2 · · · · ·

...
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎦ .

Factors of ε can now be taken out from the first row and the first column. This yields
p(x2 + ε, x2, . . . , x2n) = O(ε2) and thus (x1 − x2)

2 | p.
The same argument works when 1 < k < 2n: set xk = xk+1 + ε and perform the oper-

ations on the kth and (k + 1)th rows and columns instead of the first and second. For
(x2n − x1)

2 | p, set x2n = x1 + ε and add the 2nth row to the first and the 2nth column to
the first; the rest of the argument is identical.

It remains only to find the scalar coefficient. We do this by evaluating p(x1, . . . , x2n)

when xk = (−1)k−1/2. In this case,

(x1 − x2)
2(x2 − x3)

2 · · · (x2n−1 − x2n)
2(x2n − x1)

2 = 1,

so we need to show that the determinant of A is 4n−1. Changing the order of the rows and
columns to put the odd-indexed rows and columns in order before the even-indexed rows

176 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 131



and columns does not change the sign of the determinant and yields

detA =
∣∣∣∣ 0 Bn
−BTn 0

∣∣∣∣ ,
where Bn is the n-by-n matrix with all entries 1 on and above the main diagonal and all
entries −1 below the main diagonal. Thus detA = (detBn)2.

We prove by induction on n that detBn = 2n−1. Note detB1 = 1. For n > 1, subtracting
the second row of Bn from the first gives the block matrix(

2 0
−1 Bn−1

)
,

where the second block of rows or columns has length n− 1. Thus detBn = 2 detBn−1 =
2n−1. Hence detA = 4n−1, and

p(x1, . . . , x2n) = 4n−1(x1 − x2)
2(x2 − x3)

2 · · · (x2n−1 − x2n)
2(x2n − x1)

2,

as desired.

Also solved by N. Caro-Montoya (Brazil), H. Chen (US), D. Fleischman, J.-P. Grivaux (France), N. Hodges
(UK), O. Kouba (Syria), P. Lalonde (Canada), O. P. Lossers (Netherlands), M. Omarjee (France), C. R. Prane-
sachar (India), R. Stong, R. Tauraso (Italy), Fejéntaláltuka Szeged Problem Solving Group (Hungary), and the
proposer.

Beyond Bell Numbers

12323 [2022, 486]. Proposed by Erik Vigren, Swedish Institute of Space Physics, Uppsala,
Sweden, and Andreas Dieckmann, Physikalisches Institut der Universität Bonn, Bonn, Ger-
many.
(a) Find integers c0, c1, and c2 such that

∞∑
k=0

k11

(k!)3
=
∞∑
k=0

c0 + c1k + c2k
2

(k!)3
.

(b) Prove that for any integers n and b with 1 ≤ b ≤ n, there are integers cm for 0 ≤ m ≤
b − 1 such that

∞∑
k=0

kn

(k!)b
=
∞∑
k=0

(
1

(k!)b

b−1∑
m=0

cmk
m

)
.

(c) Prove that the integers cm from part (b) are unique.

Solution by Kenneth Schilling, University of Michigan, Flint, MI. We first prove the claim
in (b). For 1 ≤ b ≤ n, we construct a sequence {pi} of polynomials as follows: let p0(x) =
xn, and if pi(x) =∑d

m=0 amx
m, then let

pi+1(x) =
b−1∑
m=0

amx
m +

d∑
m=b

am(x + 1)m−b.

An easy induction shows that the polynomials pi(x) have integer coefficients. Since
degree(pi+1) ≤ max{b− 1, degree(pi)− b}, the sequence of degrees of pi decreases until
we reach the first polynomial pr with degree less than b (at which point the sequence
repeats pr indefinitely). For m ≥ b we have

∞∑
k=0

km

(k!)b
=
∞∑
k=1

km−b

((k − 1)!)b
=
∞∑
k=0

(k + 1)m−b

(k!)b
,
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and it follows that for all i,
∞∑
k=0

pi+1(k)

(k!)b
=
∞∑
k=0

pi(k)

(k!)b
.

Hence ∞∑
k=0

kn

(k!)b
=
∞∑
k=0

pr(k)

(k!)b

and the required integers c0, . . . , cb−1 are the coefficients of pr(x).
For part (a), following the procedure above, we have

p0(x) = x11,

p1(x) = (x + 1)8 = 1+ 8x + 28x2 + 56x3 + 70x4 + 56x5 + 28x6 + 8x7 + x8,

p2(x) = 1+ 8x + 28x2 + 56+ 70(x + 1)+ 56(x + 1)2 + 28(x + 1)3+
8(x + 1)4 + (x + 1)5 = 220+ 311x + 226x2 + 70x3 + 13x4 + x5,

p3(x) = 220+ 311x + 226x2 + 70+ 13(x + 1)+ (x + 1)2 = 304+ 326x + 227x2.

Hence the required integers are given by c0 = 304, c1 = 326, and c2 = 227.
For part (c), suppose the contrary. Taking the difference of two distinct solutions, we

get a nonzero polynomial p(x) with integer coefficients and degree at most b− 1 such that∑∞
k=0 p(k)/(k!)b = 0. Assume without loss of generality that the leading coefficient of p

is positive. For sufficiently large N we have p(k) > 0 for all k > N , and it follows that in
the equation

(N !)b
∞∑

k=N+1

p(k)

(k!)b
= −(N !)b

N∑
k=0

p(k)

(k!)b
,

the left side is positive and the right side is an integer. Hence this quantity is a positive
integer and in particular it is at least 1.

Let C be the sum of the absolute values of all the coefficients of p. For x ≥ 1 we have
p(x) ≤ Cxb−1 and hence for every positive integer k,

p(N + k) ≤ C(N + k)b−1 ≤ C(kN + k)b−1 = Ckb−1(N + 1)b−1.

We also have
N !

(N + k)! =
1

(N + 1) · · · (N + k) ≤
1

(N + 1)k!
.

Thus

1 ≤ (N !)b
∞∑

k=N+1

p(k)

(k!)b
=
∞∑
k=1

p(N + k)(N !)b

((N + k)!)b

≤
∞∑
k=1

Ckb−1(N + 1)b−1

(N + 1)b(k!)b
≤ C

N + 1

∞∑
k=1

1

k!
→ 0 as N →∞,

so we have a contradiction.

Editorial comment. The problem can be viewed as saying that for all n ≥ 0 and b ≥ 1,
there is a unique polynomial Pn,b(x) with integer coefficients and of degree at most b − 1
such that

∞∑
k=0

kn

(k!)b
=
∞∑
k=0

Pn,b(k)

(k!)b
.
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The polynomial Pn,1 is constant and equal to the Bell number Bn, the number of partitions
of the set {1, . . . , n}. Hence the polynomials Pn,k can be viewed as a generalization of the
Bell numbers. The solution above gives a recurrence for these polynomials, and the pro-
posers have shown that a similar recurrence holds when the factorials are replaced by mul-
tifactorials (see www-elsa.physik.uni-bonn.de/ dieckman/InfProd/InfProd.html#Sumsxinv
olvingxreciprocalxmultifactorialsxorxfactorials).

One can also give a summation formula for Pn,b analogous to the formula for the Bell
numbers as a sum of Stirling numbers of the second kind. Specifically, let hk(x0, . . . , xm)

denote the complete homogeneous symmetric polynomial of degree k and define gener-
alized Stirling numbers Sb(n,m) to be hn−m evaluated at xi = �i/b� for 0 ≤ i ≤ m. For
b = 1 these are the Stirling numbers of the second kind. One can prove the polynomial
identity

Xn =
n∑

m=0

Sb(n,m)

m−1∏
i=0

(X − �i/b�),

from which it follows that
Pn,b(x) =

n∑
m=0

Sb(n,m)x
(m mod b).

Also solved by N. Hodges (UK), O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Netherlands), M. Omar-
jee (France), C. R. Pranesachar (India), R. Tauraso (Italy), Eagle Problem Solvers, and the proposer. Parts (a)
and (b) were solved by P. Bracken, H. Chen (US), N. Grivaux (France), E. A. Herman, W. Janous (Austria),
and D. Terr.

A Symmetrical Integral

12324 [2022, 486]. Proposed by Albert Stadler, Herrliberg, Switzerland. Let a and b be
positive real numbers. Prove∫ ∞

0

1√
ax4 + 2(2b − a)x2 + a dx =

∫ ∞
0

1√
bx4 + 2(2a − b)x2 + b dx.

Solution by Giuseppe Fera, Vicenza, Italy. Let

f (a, b) =
∫ ∞

0

1√
ax4 + 2(2b − a)x2 + a dx.

Splitting the integral at 1 and then making the change of variables y = 1/x in the second
integral, we get

f (a, b) =
∫ 1

0

1√
ax4 + 2(2b − a)x2 + a dx +

∫ ∞
1

1√
ax4 + 2(2b − a)x2 + a dx

=
∫ 1

0

1√
ax4 + 2(2b − a)x2 + a dx +

∫ 1

0

1√
ay4 + 2(2b − a)y2 + a dy

= 2
∫ 1

0

1√
ax4 + 2(2b − a)x2 + a dx. (∗)

Substituting x = (1− u)/(1+ u) and dx = −2 du/(1+ u)2, we obtain

f (a, b) = 2
∫ 1

0

1√
bu4 + 2(2a − b)u2 + b du = f (b, a),

which completes the proof.
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Editorial comment. Many solvers used the substitution x = tan(θ/2) in (∗) to get

f (a, b) =
∫ π/2

0

dθ√
a cos2 θ + b sin2 θ

,

which also easily yields the desired symmetric property with respect to a and b.

Also solved by K. F. Andersen (Canada), M. Bataille (France), A. Berkane (Algeria), P. Bracken, H. Chen
(US), K. Gatesman, M. L. Glasser, D. Henderson, O. Kouba (Syria), B. Lai (China) & R. Wang (China),
S. Lee, O. P. Lossers (Netherlands), J. Magliano, F. Masroor, M. Omarjee (France), C. R. Pranesachar (India),
V. Schindler (Germany), S. M. Stewart (Saudi Arabia), R. Stong, R. Tauraso (Italy), T. Wiandt, H. Widmer
(Switzerland), L. Zhou, UM6P Math Club (Morocco), and the proposer.

CLASSICS

C22. Due to Paul Erdős. Prove that from any point in any triangle, the sum of the distances
to the vertices of the triangle is at least twice as large as the sum of the distances to the
sides of the triangle.

The Infamous Pentagon Problem

C21. From the 1986 International Mathematical Olympiad. An integer is assigned to each
vertex of a regular pentagon in such a way that the sum of the five integers is positive. If
three consecutive vertices are assigned the numbers x, y, z in order, and y is negative, then
one may replace x, y, and z by x + y, −y, and z + y, respectively. Such an operation is
performed repeatedly as long as at least one of the five numbers is negative. Determine
whether this procedure necessarily comes to an end after a finite number of steps.

Solution. The procedure must end. To see this, let

F(a, b, c, d, e) = (a − c)2 + (b − d)2 + (c − e)2 + (d − a)2 + (e − b)2.
When the integers a, b, c, d, and e are assigned to the pentagon, we call F(a, b, c, d, e)
the score of that assignment. The score of any assignment is nonnegative, but the effect of
the replacement move is to lower the score, since, with c < 0, we have

F(a,b, c, d, e)− F(a, b + c,−c, d + c, e)
= (a − c)2 + (b − d)2 + (c − e)2 + (d − a)2 + (e − b)2

−
(
(a + c)2 + (b − d)2 + (−c − e)2 + (d + c − a)2 + (e − b − c)2

)

= −2c(a + b + c + d + e),
which is positive. Since there is no infinite strictly decreasing sequence of nonnegative
integers, no infinite sequence of replacement moves is possible.

Editorial Comment: Although the solution above appears simple, this was the hardest prob-
lem on the 1986 International Mathematical Olympiad, because the function F is difficult
to find. The problem has seen many incarnations and generalizations, and it has spawned
many papers in research journals. The solution in P. Winkler (2003) Mathematical Puz-
zles: A Connoisseur’s Collection, A K Peters, is attributed to B. Chazelle. It allows for the
generalization to an n-gon for any n and further yields the surprising conclusion that the
number of replacement moves until no negative integers remain and the final assignment
of these integers is independent of which sequence of moves is selected.
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SOLUTIONS

Minimizing an Integral

12308 [2022, 285]. Proposed by Cezar Lupu, Yanqi Lake BIMSA and Tsinghua Univer-
sity, Beijing, China. What is the minimum value of

∫ 1
0

(
f ′(x)

)2
dx over all continuously

differentiable functions f : [0, 1]→ R such that
∫ 1

0 f (x) dx =
∫ 1

0 x
2f (x) dx = 1?

Solution by Raymond Mortini, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
The minimum value is 105/2.

By the Cauchy–Schwarz inequality,(∫ 1

0
f ′(x)(x3 − x) dx

)2

≤
∫ 1

0
(f ′(x))2 dx

∫ 1

0
(x3 − x)2 dx. (∗)

Integrating by parts in the integral on the left in (∗), we obtain∫ 1

0
f ′(x)(x3 − x) dx = f (x)(x3 − x)

∣∣∣1
0
−
∫ 1

0
f (x)(3x2 − 1) dx

= −3
∫ 1

0
x2f (x) dx +

∫ 1

0
f (x) dx = −3+ 1 = −2.

Moreover, ∫ 1

0
(x3 − x)2 dx =

∫ 1

0
(x6 − 2x4 + x2) dx = 8

105
.

Therefore (∗) implies ∫ 1

0
(f ′(x))2 dx ≥ 4

8/105
= 105

2
.
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Equality holds in (∗) when f ′(x) is a scalar multiple of x3 − x, or equivalently when

f (x) = ax4

4
− ax

2

2
+ c

for some real numbers a and c. The constraint
∫ 1

0 f (x) dx =
∫ 1

0 x
2f (x) dx = 1 leads to

the values a = −105/4 and c = −33/16. Thus the minimum value 105/2 is attained when
f (x) = −(105/16)x4 + (105/8)x2 − 33/16.

Also solved by R. A. Agnew, K. F. Andersen (Canada), M. Bataille (France), A. Berkane (Algeria), P. Bracken,
H. Chen (US), C. Chiser (Romania), P. J. Fitzsimmons, K. Gatesman, L. Han, K. T. L. Koo (China), O. Kouba
(Syria), B. Lai & R. Wang (China), K.-W. Lau (China), J. H. Lindsey II, P. W. Lindstrom, O. P. Lossers
(Netherlands), R. Nandan, M. Omarjee (France), P. Perfetti (Italy), A. D. Pı̂rvuceanu (Romania), K. Schilling,
A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), E. I. Verriest, F. Visescu (Romania), J. Vukmirović
(Serbia), T. Wiandt, J. Yan (China), L. Zhou, UM6P Math Club (Morocco), and the proposer.

Two Inequalities Involving Power Means

12311 [2022, 286]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let m and n be posi-
tive integers, and let r , x1, x2, . . . , xn be positive real numbers.

(a) Prove
m∏
j=0

(
1

n

n∑
k=1

x
j

k

)r
≥
(

1

n

n∑
k=1

xrk

)(m+1
2 )

when r ≤ m/2.

(b) Prove
m∏
j=0

(
1

n

n∑
k=1

x
j

k

)r
≤
(

1

n

n∑
k=1

xrk

)(m+1
2 )

when r ≥ m.

Solution by Faraz Masroor, New York, NY. For t > 0, let

St =
(

1

n

n∑
k=1

xtk

)1/t

,

which is the power mean with exponent t of the numbers x1, . . . , xn. By the power mean
inequality, Sa ≤ Sb when 0 < a ≤ b.

(a) Suppose r ≤ m/2. By the Cauchy–Schwarz inequality, for any i and j in {0, . . . , m},
1

n

n∑
k=1

xik ·
1

n

n∑
k=1

x
j

k ≥
(

1

n

n∑
k=1

x
(i+j)/2
k

)2

.

Therefore
m∏
j=0

(
1

n

n∑
k=1

x
j

k

)r
=

m∏
j=0

(
1

n

n∑
k=1

x
j

k

)r/2
·
m∏
j=0

(
1

n

n∑
k=1

x
m−j
k

)r/2

=
m∏
j=0

(
1

n

n∑
k=1

x
j

k ·
1

n

n∑
k=1

x
m−j
k

)r/2
≥

m∏
j=0

(
1

n

n∑
k=1

x
m/2
k

)r

=
m∏
j=0

(Sm/2)
mr/2 ≥ (Sr)(m+1)mr/2 =

(
1

n

n∑
k=1

xrk

)(m+1
2 )

.

(b) Suppose r ≥ m. Since the j = 0 term in the product is 1, we have

m∏
j=0

(
1

n

n∑
k=1

x
j

k

)r
=

m∏
j=1

(Sj )
jr ≤

m∏
j=1

(Sr)
jr = (Sr)r

∑m
j=1 j =

(
1

n

n∑
k=1

xrk

)(m+1
2 )

.
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Editorial comment. Some solvers observed that the inequality in (a) actually holds for
r ≤ (m+ 1)/2. This can be proven by letting j run from 1 to m in the product (as in the
solution to (b)) and then changing xm−jk in the solution above to xm+1−j

k , with appropriate
modifications in the later steps.

Also solved by K. F. Andersen (Canada), M. Bataille (France), O. Geupel (Germany), O. Kouba (Syria),
H. Kwong, O. P. Lossers (Netherlands), A. Mhanna (Lebanon), P. Perfetti (Italy), M. Reid, R. Stong, R. Tauraso
(Italy), L. Zhou, and the proposer.

An Above Average Function

12312 [2022, 286]. Proposed by Martin Tchernookov, University of Wisconsin, Whitewater,
WI. Find all continuous functions f : [0,∞)→ R such that, for all positive x,

f (x)

(
f (x)− 1

x

∫ x

0
f (t) dt

)
≥ (f (x)− 1

)2
.

Solution by Edward Schmeichel, San Jose State University, San Jose, CA. Clearly the con-
stant function defined by f (x) = 1 satisfies the given inequality. We show that it is the
only continuous function that does so.

Let f be a continuous function satisfying the inequality. For x ≥ 0, let

A(x) =
{

1
x

∫ x
0 f (t) dt, if x > 0,

f (0), if x = 0.

Note that A is continuous from the right at 0. Letting x → 0+ in the given inequality, we
obtain 0 = f (0)(f (0)− f (0)) ≥ (f (0)− 1)2, and therefore f (0) = 1.

Since f (x) = 0 for any x > 0 gives a contradiction, the intermediate value theorem
implies f (x) > 0 for all x ∈ [0,∞). If follows that f (x)−A(x) ≥ (f (x)− 1)2/f (x) ≥ 0
and hence f (x) ≥ A(x). Thus A′(x) = (f (x) − A(x))/x ≥ 0 for all x > 0, so A(x) is
nondecreasing, and we obtain f (x) ≥ A(x) ≥ A(0) = 1 for all x ≥ 0.

The given inequality can be rearranged to read f (x)(2−A(x)) ≥ 1, soA(x) < 2. Thus
A(x) is both nondecreasing and bounded above, so as x tends to infinity, A(x) approaches
a limit L from below, where 1 ≤ L ≤ 2. If L = 1, then A(x) = 1 and hence f (x) = 1 for
all x, and we are done. Thus we may assume L > 1.

Say L = 1+ ε, where 0 < ε ≤ 1. Let a be any number with 1/(1+ ε) < a < 1, and
choose b large enough that A(x) ≥ 1+ aε for x ≥ b. For x ≥ b,

f (x) ≥ 1

2− A(x) ≥
1

1− aε ,

and therefore

A(x) = 1

x

∫ x

0
f (t) dt ≥ 1

x

∫ x

b

1

1− aε dt =
x − b

x(1− aε) .

It follows that

L = lim
x→∞A(x) ≥ lim

x→∞
x − b

x(1− aε) =
1

1− aε >
1

1− ε/(1+ ε) = 1+ ε = L,

a contradiction.

Also solved by K. F. Andersen (Canada), P. Bracken, J. Boswell & C. Curtis, H. Chen (China), C. Chiser
(Romania), P. J. Fitzsimmons, L. Han, D. A. Hejhal, D. Henderson, E. A. Herman, G. Herzog (Germany) &
R. Mortini (France), N. Hodges (UK), K.-W. Lau (China), O. P. Lossers (Netherlands), M. Omarjee (France),
L. J. Peterson, A. Sinha (India), R. Stong, R. Tauraso (Italy), J. Vukmirović (Serbia), J. Yan (China), and the
proposer.
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Trees with Pairwise Isomorphic Subtrees

12313 [2022, 286]. Proposed by Douglas B. West, University of Illinois, Urbana IL. For all
n ∈ N, determine all n-vertex trees having the property that the connected (n− 2)-vertex
subgraphs that can be obtained by deleting two vertices are pairwise isomorphic.

Solution by O. P. Lossers, Eindhoven University of Technology, Netherlands and Eötvös
Loránd University, Hungary. For all n, the trees with this property are the star and the path,
plus when n = 5 the one tree that is not a star or path. In each of these cases, the subtrees
all are stars or all are paths.

For n ≥ 6, let T be an n-vertex tree, and let � be the number of leaves of T . If � = 2,
then T is a path. If � = 3, then T consists of three paths with a common endpoint, and any
tree with three leaves is determined by the multiset of lengths of those paths. Let a, b, and c
be their lengths in T , with a ≥ b ≥ c ≥ 1. Note that a + b+ c = n− 1 ≥ 5. If c ≤ 2, then
T has both paths and non-paths as connected (n− 2)-vertex subgraphs. If c ≥ 3, then the
sets {a, b, c− 2} and {a − 1, b− 1, c} are different and determine nonisomorphic subtrees.

Hence we may assume � ≥ 4. The diameter of a tree is the maximum length of its paths,
and any longest path connects two leaves. Let d be the diameter of T . Deleting two leaves
outside a longest path produces a subtree having diameter d. If some two leaves together
cover all longest paths, then deleting them produces a subtree with smaller diameter. Hence
we may assume that T has no such pair of leaves, which implies that every connected
subgraph of T with n− 2 vertices has diameter d.

If d is odd, then T has a central edge e belonging to all paths of length d. Since all con-
nected subgraphs with n− 2 vertices have diameter d, both components of T − e contain
at least two leaves of T . The tree obtained by deleting any two leaves still has diameter d
and the same central edge e. Hence a subtree obtained by deleting two of the leaves of T
from the smallest component of T − e is not isomorphic to a subtree obtained by delet-
ing one leaf of T from each component of T − e; in these two subtrees the sizes of the
components obtained by deleting the central edge e are different.

The argument for even d with d ≥ 4 is similar. In this case the tree has a unique central
vertex z at the middle of every longest path. Let k be the degree of z. Note that k ≥ 2, and
k is the number of components of T − z. Let n1, . . . , nk be the numbers of vertices in the
components of T − z, in nonincreasing order. Every connected subgraph of T with n− 2
vertices has diameter d and the same central vertex z. If nk ≤ 2, then T has (n− 2)-vertex
subtrees whose central vertices have different degrees. If nk ≥ 3, then a subtree obtained
by deleting two vertices from a smallest component of T − z is not isomorphic to a subtree
obtained by deleting one vertex each from two largest components of T − z.
Editorial comment. Motivated by this problem, Stan Wagon conjectured that among all
graphs, the graphs whose connected subgraphs obtained by deleting two vertices are pair-
wise isomorphic are the stars, paths, cycles, complete graphs, and five other graphs with at
most five vertices. Wagon’s conjecture was proved by the proposer.

Also solved by K. Gatesman, O. Geupel (Germany), Y. Ionin, R. Stong, R. Tauraso (Italy), Texas State Problem
Solvers, and the proposer.

Rotating Devices

12314 [2022, 385]. Proposed by Gregory Galperin, Eastern Illinois University, Charleston,
IL, and Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Let n, m, and k
be positive integers with k ≤ n− 1. Consider n devices each of which can be in any of m
states denoted 0, 1, . . . , m− 1. A move consists of selecting a set of k devices and adding
1 (mod m) to each of their states. Prove that for any n,m, k as specified and any initial
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states of the n devices, there exists a sequence of moves that leaves each device in the state
0 or 1.

Solution by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA. Fixing k, we prove the claim by induction on n− k. For the induction step,
suppose n > k + 1. Let (a1, . . . , an) be the initial states. First, add 1 modulo m to the first
k devices until the state of the first device reaches 0. Next apply the induction hypothesis
to the last n− 1 devices, leaving a1 unchanged, to bring all those devices to state 0 or 1.

Thus it suffices to prove the claim when n = k + 1. For this, we begin with a lemma.

Lemma. Given any distinct indices i and j , moves can be made that result in replacing
ai with ai − s, replacing aj with aj + s, and leaving all other states unchanged, for any s
with 1 ≤ s ≤ m− 1.

Proof. By symmetry, we may assume i = 1 and j = k + 1. Add 1 to the last k devices s
times, and add 1 to the first k devices m− s times. �

Given initial states (a1, . . . , ak+1), using the lemma k times with (i, j, s) = (i, k + 1, ai)
for 1 ≤ i ≤ k brings the first k devices to 0 while accumulating

∑k+1
i=1 ai in position k + 1.

That is, we obtain (0, . . . , 0, �), where � ≡∑k+1
i=1 ai (mod m) and 0 ≤ � ≤ m− 1.

If � < k, then we apply the lemma � times with (i, j, s) = (k + 1, j, 1) for 1 ≤ j ≤ �
to obtain (1, . . . , 1, 0, . . . , 0), with 1 in the first � devices and 0 in the others.

If � ≥ k, then write � = qk + r for integers q and r with 0 ≤ r < k. Using the lemma
k times with (i, j, s) = (k + 1, j, 1) for 1 ≤ j ≤ k yields (1, . . . , 1, �− k). Now adding 1
to the first k devices m− 1 times produces (0, . . . , 0, �− k).

Repeating this process q times brings the states to (0, . . . , 0, r), where 0 ≤ r < k. The
argument in the case � < k then allows us to reach (1, . . . , 1, 0, . . . , 0), with 1 in the first
r devices and 0 in the others.

Also solved by J. Boswell & C. Curtis, B. S. Burdick, N. Caro-Montoya (Brazil), H. Chen (China), P. Corn,
K. Gatesman, A. Goel, E. A. Herman, N. Hodges (UK), O. P. Lossers (Netherlands), A. Mandal (India),
F. Masroor, G. Raduns, T. Song, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), O. Zhang, and the
proposer.

Determinants and Rooted Trees

12315 [2022, 385]. Proposed by Mikael P. Sundqvist and Victor Ufnarovski, Lund Uni-
versity, Sölvegatan, Sweden. Suppose ai,j ∈ [0, 1] for 1 ≤ i ≤ n and 1 ≤ j ≤ n. Let
B be the n-by-n matrix with i, j -entry bi,j defined by bi,j = ai,j when j �= i − 1 and
bi,j = −∑n

k=1 ai,k when j = i − 1.
(a) Evaluate det(B) in the case where ai,j = 1 for all i and j .
(b) Show that the value in part (a) is the maximum possible value of det(B).
(c) Show that det(B) ≥ 0 in all cases.

Solution I by Richard Stong, Center for Communications Research, San Diego, CA.
(a) We denote by A the matrix with i, j -entry ai,j . The matrix B in this case has a 1 as
every entry except just below the main diagonal, where the entries are −n. Subtracting the
top row from each other row yields a matrix whose only nonzero entry in row i for i > 1 is
−n− 1 in column i − 1. The cofactor expansion of the determinant along column n yields
det(B) = (−1)n+1(−n− 1)n−1 = (n+ 1)n−1.

(b) and (c) Clearly, det(B) is a homogeneous polynomial of degree n in the values ai,j ,
where each monomial has the form

∏n
i=1 ai,f (i) for some function f : [n]→ [n] (gener-

ally not a permutation). We prove a stronger version of (c) that implies (b), namely that the
coefficient of each such monomial is nonnegative. Increasing all entries of A to 1 therefore
maximizes each monomial and the value of det(B). The coefficient of a particular mono-
mial is the value of det(B) in the case where the corresponding n entries of A equal 1 and
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all other entries are 0. These n entries are one from each row of A. Thus it suffices to prove
(c) in the special case where A has a single 1 in each row and the rest of A is 0. This is the
statement proved in Lemma 2, since the corresponding matrix B always has −1 in each
subdiagonal entry.

Lemma 1. If M is an n-by-n matrix with all entries 0 except for diagonal entries 1 and at
most one entry in each row equal to −1, then det(M) ≥ 0.

Proof. We proceed by induction on n, with trivial base case n = 1. If any row of M lacks
a −1, then the expansion of det(M) along that row reduces to the case for n− 1 and the
induction hypothesis suffices. If every row of M has a −1, then the row sums of M are all
zero, so det(M) = 0. �

Lemma 2. If B is an n-by-n matrix with all entries 0 except for subdiagonal entries −1
and at most one entry equal to 1 in each row, then det(B) ≥ 0.

Proof. We again proceed by induction on n, with trivial base case n = 1. If B has no 1 in
the top row, then already det(B) = 0.

If b1,j = 1 with j < n, then obtain B ′ from B by deleting row 1 and column j . Expand-
ing along row 1 yields det(B) = (−1)j+1 det(B ′). Obtain B ′′ from B ′ by moving row j

of B ′ to the top, so det(B ′′) = (−1)j−1 det(B ′) = det(B). Since the −1 in row j + 1 of
B was deleted before moving the row, B ′′ satisfies the conditions of Lemma 2, and hence
det(B ′′) ≥ 0 by the induction hypothesis.

If b1,n = 1, then move row 1 to the bottom, introducing a factor of (−1)n−1, and negate
the top n − 1 rows, introducing a second factor of (−1)n−1. The resulting matrix M has
the form described in Lemma 1, so det(B) = det(M) ≥ 0, as desired. �
Solution II by Pierre Lalonde, Plessisville, QC, Canada. We express det(B) as the sum
of the weights of certain rooted spanning trees in a directed graph. To do this, we locate
−B as a submatrix in a particular matrix obtained from a weighted digraph with n + 1
vertices. Let G be the directed graph on vertices v1, . . . , vn+1 in which every ordered pair
of distinct vertices is an edge. Define the weight of edge vivj with i �= j as follows: let
w(viv1) = ai,i−1 for 2 ≤ i ≤ n, let w(vivj ) = ai,j−1 for 1 ≤ i ≤ n and 2 ≤ j ≤ n + 1,
and let w(vn+1vj ) = 0 for 1 ≤ j ≤ n.

The Laplacian matrix L(G) of G is defined by letting the entry in position (i, j) be
−w(vivj ) when i �= j and in position (i, i) be

∑
j �=i w(vivj ). Thus

L(G) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

a1,j −a1,1 −a1,2 · · · −a1,n−1 −a1,n

−a2,1

n∑
j=1

a2,j −a2,2 · · · −a2,n−1 −a2,n

−a3,2 −a3,1

n∑
j=1

a3,j · · · −a3,n−1 −a3,n

...
...

...
. . .

...
...

−an,n−1 −an,1 −an,2 · · ·
n∑
j=1

an,j −an,n
0 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The n-by-n submatrix obtained by deleting row n+ 1 and column 1 is −B.
A tree is an acyclic connected graph. We consider orientations of trees, in which each

edge is given a direction. A rooted tree is an orientation of a tree in which all edges are
oriented along paths to a distinguished vertex called the root. The weight of a rooted tree
is the product of the weights of its edges. A special case of a deep generalization of Tutte’s
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directed matrix tree theorem (S. Chaiken and D. J. Kleitman (1978), Matrix tree theorems,
J. Combinatorial Theory (A) 24:3, 377–381) states that the sum of the weights of the rooted
trees in a directed graph G that are rooted at a particular vertex vj is given by any cofactor
in the row for that vertex in the Laplacian matrix L(G) defined above. (Their proof is also
presented in D. B. West (2021), Combinatorial Mathematics, Cambridge, p. 750.) Thus
(−1)n+2 det(−B), which equals det(B), is the sum of the weights of all spanning trees of
G rooted at vn+1.

When ai,j = 1 for all i and j , we are just counting spanning trees in a complete graph
with n+ 1 vertices, which by Cayley’s formula yields det(B) = (n+ 1)n−1, solving (a).
Because the weights are nonnegative, det(B) is always nonnegative, solving (c), and det(B)
is maximized when all weights are maximized at 1, solving (b).

Also solved by L. Han & J. Xu, O. P. Lossers (Netherlands), R. Tauraso (Italy), and the proposer.

Organizing a Row of Coins

12316 [2022, 385]. Proposed by H. A. ShahAli, Tehran, Iran, and Manija Shahali, Bakers-
field, CA. For each i in {1, 2, . . . , C}, we have 2i coins with color i. Place these C(C + 1)
coins in a line. A move consists of the transposition of two adjacent coins. Let m be the
minimum number of moves required to reach a configuration where all coins of the same
color are together in a run of consecutive coins. Show that the maximum value of m over
all initial configurations is (C − 1)C(C + 1)(3C + 2)/12.

Solution by Nigel Hodges, Cheltenham, UK. We show first that, from any configuration,
(C − 1)C(C + 1)(3C + 2)/12 moves suffice to complete the task.

We proceed by induction on C. When C = 1 there is only one configuration, and the
number of moves needed is 0, which is the value of the specified formula at C = 1.

Now consider C > 1. Index the positions from 1 at the left end of the row to C(C + 1)
at the right end. We first move all coins of color C to one end, whichever end requires
fewer moves. Consider the leftmost coin of color C. Since an optimal set of moves will
never swap two coins of the same color, we may assume that this coin ends at position 1 or
position C2 − C + 1. The sum of the number of moves involving it if it goes left plus the
number if it goes right is C(C − 1).

This sum is independent of which coin of color C we consider, so the total number of
moves spent on all color C coins if moved left, plus the number of moves spent if moved
right, equals 2C2(C − 1). Therefore at most C2(C − 1) moves are needed to gather the
coins of color C at one end.

With all coins of color C coins at one end, what remains is an instance with C − 1
colors. By the induction hypothesis, the number of moves remaining to complete the task
now is at most (C − 2)(C − 1)C(3C − 1)/12, and adding this to 2C2(C − 1) yields the
desired formula.

Consider the initial configuration whose right half consists of i coins of color i together
for each i, from color 1 in the middle of the row through color C at the right end. The left
half is the reflection of this, with half the coins of color C on the left end. We now show
that this configuration requires the full (C − 1)C(C + 1)(3C + 2)/12 moves. Again we
use induction on C, and again the case C = 1 is trivial.

With C > 1, the two blocks of color C have all other C(C − 1) coins between them,
so forming a single block of color C will require each of at least C coins to move at least
C(C − 1) times, requiring a total of at least C2(C − 1) moves involving coins of color
C. Moves that involve a coin of color C do not change the order among the coins with
earlier colors. Hence the number of moves that must be made not involving a coin with
color C must be at least the number required to solve the problem with C − 1 colors that is
obtained by ignoring the coins with color C. That ordering is the instance of the specified
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configuration when the number of colors is C − 1. By the induction hypothesis, there must
be at least (C − 2)(C − 1)C(3C − 1)/12 moves not involving a coin with color C. Again
the sum of the two contributions is the desired formula.

Also solved by H. Chen (China), A. De la Fuente, L. Gualá & S. Leucci & R. Tauraso (Italy), Y. J. Ionin,
Y. Kim (Korea), O. P. Lossers (Netherlands), K. Schilling, R. Stong, and the proposer.

A Fermat Point Inequality

12319 [2022, 386]. Proposed by Mihály Bencze, Braşov, Romania. Let ABC be a triangle
with all angles less than 120◦, and let F be the Fermat point of ABC (the point in the
interior that minimizes the sum of the distances to A, B, and C). Prove

FA4

AB2
+ FB

4

BC2
+ FC

4

CA2
≥ FA

3 + FB3 + FC3

FA+ FB + FC .

Solution by Nandan Sai Dasireddy, Hyderabad, India. Write FA = x, FB = y, and FC =
z. It is well known that all of the angles ∠AFB, ∠BFC, and ∠CFA are equal to 120◦.
Therefore, by the law of cosines, AB2 = x2 + xy + y2, and similarly for BC2 and CA2.
Thus the desired inequality is

∑
cyc

x4

x2 + xy + y2
≥ x

3 + y3 + z3

x + y + z ,

where we use
∑
cyc
f (x, y, z) as a shorthand for f (x, y, z)+ f (y, z, x)+ f (z, x, y). Since

x3 + y3 + z3

x + y + z =
3xyz

x + y + z +
∑
cyc

(x2 − xy),

it suffices to show

3xyz

x + y + z ≤
∑
cyc

(
x4

x2 + xy + y2
− (x2 − xy)

)
=
∑
cyc

xy3

x2 + xy + y2
.

By the Cauchy–Schwarz inequality,

∑
cyc

xy3

x2 + xy + y2
=
∑
cyc

y2

x/y + y/x + 1
≥ (x + y + z)2∑

cyc(x/y + y/x + 1)
= xyz(x + y + z)

xy + yz+ zx .

Therefore it suffices to prove

xyz(x + y + z)
xy + yz+ zx ≥

3xyz

x + y + z .

But this is equivalent to (x + y + z)2 ≥ 3(xy + yz+ zx), which is true because

(x + y + z)2 − 3(xy + yz+ zx) =
∑
cyc

(x − y)2
2

≥ 0.

Also solved by O. Geupel (Germany), K. T. L. Koo (China), C. G. Petalas (Greece), A. Stadler (Switzerland),
R. Stong, R. Tauraso (Italy), A. Tzavellas (Greece), L. Zhou, UM6P Math Club (Morocco), and the proposer.
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CLASSICS

C21. From the 1986 International Mathematical Olympiad, suggested by the editors. An
integer is assigned to each vertex of a regular pentagon in such a way that the sum of
the five integers is positive. If three consecutive vertices are assigned the numbers x, y,
z in order, and y is negative, then one may replace x, y, and z by x + y, −y, and z + y,
respectively. Such an operation is performed repeatedly as long as at least one of the five
numbers is negative. Determine whether this procedure necessarily comes to an end after
a finite number of steps.

Period of the Fibonacci Sequence Modulo m

C20. Due to Peter Freyd, suggested by the editors. Given a positive integer m, let f (m) be
the period of the Fibonacci sequence taken modulo m. Prove f (m) ≤ 6m and that equality
holds for infinitely many m.
Solution. Let A denote the Fibonacci matrix

[
0 1
1 1

]
, and let I denote the 2-by-2 identity

matrix. The values F0 = 0 and F1 = 1 and the relation Fn+1 = Fn + Fn−1 imply that

An =
[
Fn−1 Fn

Fn Fn+1

]
. Hence f (m) is the multiplicative order of A modulo m. From the first

few Fibonacci numbers we learn that A3 ≡ I (mod 2), so f (2) = 3. Similarly, A4 ≡ −I
(mod 3), so f (3) divides 8; it does not divide 4, so f (3) = 8. To compute f (5), note that
A5 ≡ 3I (mod 5); hence A20 ≡ I (mod 5), and so f (5) divides 20. Because neither A4

nor A10 equals I modulo 5, we infer f (5) = 20.
We next note that f (m1m2) = lcm (f (m1), f (m2)) when gcd (m1,m2) = 1. This is

a consequence of the fact that a and b are congruent modulo m1m2 if and only if they
are congruent modulo both m1 and m2. This reduces the problem of bounding f (m) for
general m to the problem of finding such bounds when m is a prime power. For example,
f (10) = lcm(f (2), f (5)) = 60, so f (m) = 6m when m = 10.

When p is prime and a ≥ 2, the calculationA
pf
(
pa−1

)
= (I + pa−1M

)p ≡ I (mod pa)
for some matrix M shows that f (pa) divides pf

(
pa−1

)
. Applying this a − 1 times yields

that f (pa) divides pa−1f (p).
We need some special information about the case p = 5.

Claim 1. f (5a) = 4 · 5a .
Proof. We have A20 = I + 5K for some matrix K , and it is easily checked that K is
nonzero modulo 5. This is the base case for an induction proof of the stronger claim that
A4·5a ≡ I + 5aK (mod 5a+1). If this holds for some a, then

A4·5a+1 = (I + 5aK + 5a+1M)5 ≡ I + 5a+1K (mod 5a+2),

for some matrix M . This completes the induction. �
For odd primes p not equal to 5, we say that p is type 1 if p ≡ ±1 (mod 5) and type 2

if p ≡ ±2 (mod 5). Let
(
a
p

)
be the Legendre symbol, equal to 0 if a ≡ 0 (mod p), equal

to 1 if a is a quadratic residue modulo p, and equal to −1 otherwise. Thus
(
p

5

)
is 1 if p is

type 1 and is −1 if p is type 2.

Claim 2. If p is type 1, then f (p) divides p− 1. If p is type 2, then f (p) divides 2(p+ 1).

Proof. All congruences here are modulo p. Expand the Binet formula for the Fibonacci
numbers to obtain

Fm = (1+√5)m − (1−√5)m

2m
√

5
= 1

2m−1

�m/2�−1∑
i=0

5i
(

m

2i + 1

)
.
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We examine this formula for m = p − 1 and m = p, reducing modulo the prime p and
using 2p−1 ≡ 1 (mod p). When m = p, all terms in the sum except the last one are divisi-
ble by p, and so Fp is congruent modulo p to 5(p−1)/2, which is

(
5
p

)
. By the law of quadratic

reciprocity,
(

5
p

) = (p5 ), and so Fp ≡ 1 in the type 1 case and Fp ≡ −1 in the type 2 case.

When m = p − 1, note that
(
p−1
k

) ≡ (−1)k (mod p). Hence

Fp−1 ≡ 2p−1Fp−1 ≡ 2
(p−3)/2∑
i=0

5i (−1)2i+1 ≡ −2

(
5(p−1)/2 − 1

5− 1

)
,

and so Fp−1 ≡ 0 in the type 1 case and Fp−1 ≡ 1 in the type 2 case. In the type 1 case, we
have (Fp−1, Fp) ≡ (0, 1) and hence Fp−2 ≡ 1 and Ap−1 = I . In the type 1 case, we have
(Fp−1, Fp) ≡ (1,−1) and hence Fp+1 ≡ 0, Fp+2 = −1, and Ap+1 = −I . �

We now combine the preceding facts to get the desired bound on f (m). Consider an

arbitrary modulus m with prime factorization m = 2a5b
∏
p
ci
i

∏
q
dj
j , where a, b ≥ 0 and

pi and qj range, respectively, over all type 1 and type 2 primes that divide m. We have

f (m) ≤ lcmi,j

{[
3 · 2a−1

]
2 ,
[
4 · 5b]5 , (pi − 1) pci−1

i , 2
(
qj + 1

)
q
dj−1
j

}
,

where [x]p is x if p divides m and 1 otherwise. It follows that

f (m)

m
≤
[
3 · 2a−1

]
2

2a
·
∏
i

pi − 1

pi
·

lcmj

{
4 · 5b, 4

(
qj + 1

)
/2 · qdj−1

j

}
5b
∏
j q

dj
j

≤ 3

2
· 4 ·

∏
i

pi − 1

pi
·
∏
j

qj + 1

2qj
≤ 6. (∗)

This proves that f (m) ≤ 6m.
The inequality in (∗) is strict if either 2 or 5 does not divide m or if m has any type 1

divisors pi or type 2 divisors qj . Thus f (m) can equal 6m only if m has the form 2a5b for
a, b ≥ 1. In that case, f (m) ≤ lcm

(
3 · 2a−1, 4 · 5b) = 3 · 5b · lcm

(
2a−1, 4

)
. If a ≥ 2, then

lcm
(
2a−1, 4

)
/2a ≤ 1, so 6m cannot be reached. If a = 1, then f (m) = lcm

(
3, 4 · 5b) =

3 · 4 · 5b = 6m, so f (m) = 6m exactly when m is one of the infinitely many values 2 · 5b
with b ≥ 1.
Editorial Comments: The present problem appeared as part of Problem E3410 [1990, 916;
1992, 278] in this Monthly, with solution by Kevin Brown.

The first detailed investigation into Fibonacci periodicity was D. D. Wall (1960),
Fibonacci series modulo m, this Monthly 67, 525–532. Included there is an alternative
proof of Claim 2 that uses linear algebra, along the following lines: For type 1 primes p, the
characteristic polynomial ofA factors into distinct factors as x2 − x − 1 = (x − α)(x − β)
in the field with p elements. HenceA is similar modulo p to the diagonal matrix diag(α, β),
and so Ap−1 ≡ I (mod p), because both α and β have multiplicative order dividing p − 1.
A similar argument exists for type 2 primes, though then α and β reside in the field with
p2 elements.

It is easy to see that the Fibonacci sequence modulom is in fact periodic (and not merely
eventually periodic), which explains the implicit assumption in the problem statement.

When p is prime, f
(
p2
)

equals either pf (p) or f (p). Primes p with f (p2) = f (p)
are known as Wall–Sun–Sun primes. Surprisingly, it is unknown if any such primes exist.
There are none less than 1014 (A.-S. Elsenhans and J. Jahnel, The Fibonacci sequence
modulo p2—an investigation by computer for p < 1014, arxiv.org/pdf/1006.0824.pdf).

The editors thank Joe Buhler for his contribution in producing the solution here.
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SOLUTIONS

An Exponential Field Homomorphism

12301 [2022, 186]. Proposed by Jan Mycielski, University of Colorado, Boulder, Colorado.
Suppose that α : C→ C respects addition and exponentiation, in the sense that α(x + y) =
α(x)+ α(y) and α (ex) = eα(x) for all complex numbers x and y. (An example is complex
conjugation: α (z) = z̄.)
(a) Prove α(

√
2) = √2.

(b)∗ Must it be the case that α(21/3) = 21/3? What about α(21/4) = 21/4 or α(ln 2) = ln 2?

Solution to (a) by Jayanta Manoharmayum, University of Sheffield, Sheffield, UK. We
first show that α is a field homomorphism. To see this, note first that α(0) = α(0+ 0) =
α(0)+ α(0), so α(0) = 0. Hence α(1) = α(e0) = eα(0) = e0 = 1. To check that α respects
multiplication, let x, y ∈ C. If either x = 0 or y = 0, then α(xy) = 0 = α(x)α(y). If not,
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then we can find complex numbers u and v such that x = eu and y = ev , and therefore

α(xy) = α(eu+v) = eα(u+v) = eα(u)+α(v) = eα(u)eα(v) = α(x)α(y).
Being a field homomorphism, the map α is injective and fixes every rational number.

From−1 = α(−1) = α(eiπ ) = eα(iπ) we conclude that α(iπ) = inπ for some odd integer
n. Since

α(eiπ/n) = eα(iπ)α(1/n) = einπ/n = −1 = α(−1),

we must have eiπ/n = −1, so n = ±1, and hence α(iπ) = ±iπ . From
√

2 = eiπ/4 +
e−iπ/4, it follows that

α(
√

2) = α(eiπ/4 + e−iπ/4) = e±iπ/4 + e∓iπ/4 = √2.

Editorial comment. LetK ⊆ C be the maximal cyclotomic extension of Q (that is, the field
extension of Q generated by the roots of unity eirπ for r ∈ Q). The argument above shows
that α(eirπ ) = eα(r)α(iπ) = e±irπ for all rational r . Hence either α acts on K trivially, or
α acts on K as complex conjugation. The Kronecker–Weber theorem then implies that
α(θ) = θ for any θ ∈ R with Q(θ)/Q an abelian extension. In particular, α(

√
r) = √r for

any positive rational r .
A sketch of a solution to part (a) of this problem appeared in J. Mycielski (1985),

Remarks on infinite systems of equations, Alg. Univ. 21, 307–309.
No correct solutions to (b) were received.

Part (a) also solved by J. Boswell & C. Curtis, N. Caro-Montoya (Brazil), G. A. Edgar, N. Grivaux (France),
E. A. Herman, Y. J. Ionin, O. P. Lossers (Netherlands), G. Plumpton & R. Su (Canada), M. Reid, K. Schilling,
A. Stenger, R. Stong, Missouri State University Problem Solving Group, and the proposer.

Where Angle Bisectors Meet Opposite Sides

12303 [2022, 186]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let R and
r be the circumradius and inradius, respectively, of triangle ABC. Let D, E, and F be
chosen on sides BC, CA, and AB so that AD, BE, and CF bisect the angles of ABC.
Prove

FD

AB + BC +
DE

BC + CA +
EF

CA+ AB ≤
3

8

(
1+ R

2r

)
.

Composite solution by Richard Stong, Center for Communications Research, San Diego,
CA, and Tamas Wiandt, Rochester Institute of Technology, Rochester, NY. We prove

FD

AB + BC +
DE

BC + CA +
EF

CA+ AB ≤
3

4
,

which, by Euler’s inequality R ≥ 2r , implies the stated inequality.
Let a, b, and c denote the lengths of sides BC, CA, and AB, respectively. By the angle

bisector theorem, we have BD = ac/(b+ c) and BF = ac/(a + b). Therefore, by the law
of cosines (twice),

FD2 =
(
ac

b + c
)2

+
(

ac

a + b
)2

− 2

(
ac

b + c
)(

ac

a + b
)

cos(∠ABC)

=
(
ac

b + c
)2

+
(

ac

a + b
)2

− 2

(
ac

b + c
)(

ac

a + b
)(

a2 + c2 − b2

2ac

)

= abc(b3 + ab2 + cb2 + 3abc − a2b − c2b + a2c + c2a − a3 − c3)

(a + b)2(b + c)2 .
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Combining this with similar formulas for DE2 and EF 2, we obtain

(
FD

AB + BC
)2

+
(

DE

BC + CA
)2

+
(

EF

CA+ AB
)2

=

abc(9abc + a2b + a2c + b2c + b2a + c2a + c2b − a3 − b3 − c3)

(a + b)2(b + c)2(c + a)2 .

By Schur’s inequality, a2b + a2c + b2c + b2a + c2a + c2b − a3 − b3 − c3 ≤ 3abc, so(
FD

AB + BC
)2

+
(

DE

BC + CA
)2

+
(

EF

CA+ AB
)2

≤ 12(abc)2

(a + b)2(b + c)2(c + a)2

≤ 12(abc)2

(4ab)(4bc)(4ac)
= 3

16
.

The desired conclusion now follows by the Cauchy–Schwarz inequality.

Editorial comment. Several solvers noted that this problem is related to problem 12182
[2020, 461; 2022, 92] from this Monthly. Indeed, the inequality EF ≤ (2a + b + c)/8,
derived in the published solution there, can be used as the basis for another solution to this
problem.

Also solved by M. Bataille (France), N. S. Dasireddy (India), M. Drăgan & N. Stanciu (Romania), G. Fera
(Italy), O. Geupel (Germany), N. Hodges (UK), W. Janous (Austria), C. G. Petalas (Greece), C. R. Pranesachar
(India), V. Schindler (Germany), A. Stadler (Switzerland), R. Tauraso (Italy), M. Vowe (Switzerland), L. Zhou,
and the proposer.

An Interpolation Identity

12304 [2022, 186]. Proposed by Michel Bataille, Rouen, France. Let m and n be positive
integers with m < n. Prove(

m∑
k=0

(
m

k

)
(−1)k

n− k

) (
m∑
k=0

(
n

k

)
(−1)k

k + 1

)
=

m∑
k=0

(
m

k

)
(−1)k

(n− k)(k + 1)
.

Solution by Pierre Lalonde, Plessisville, QC, Canada. For a nonnegative integer k, extend
the binomial coefficient in the usual way as(

x

k

)
= x(x − 1) · · · (x − k + 1)

k!
.

We prove the polynomial identity
m∑
k=0

(
x

k

)
(−1)k

k + 1
=

m∑
k=0

(−1)m−k
(
m+ 1

k + 1

)( x

m+1

)
x − k . (1)

(The right side is a polynomial since x − k divides
(
x

m+1

)
.) Evaluating the left side of (1) at

x = j for 0 ≤ j ≤ m yields

m∑
k=0

(
j

k

)
(−1)k

k + 1
= −1

j + 1

j∑
k=0

(
j + 1

k + 1

)
(−1)k+1 = −1

j + 1

(
(1− 1)j+1 − 1

) = 1

j + 1
.

When we evaluate the right side of (1) at x = j , the only term in the sum that is nonzero is
the one with k = j . Thus

m∑
k=0

(−1)m−k
(
m+ 1

k + 1

)( x

m+1

)
x − k = (−1)m−j

(
m+ 1

j + 1

)
j !(−1)m−j (m− j)!

(m+ 1)!
= 1

j + 1
.
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Since both sides of (1) are polynomials of degree m that agree on m+ 1 values, they are
equal.

Dividing both sides of (1) by (−1)m
(
x

m+1

)
(m+ 1), we have

(−1)m(
x

m+1

)
(m+ 1)

m∑
k=0

(
x

k

)
(−1)k

k + 1
=

m∑
k=0

(
m

k

)
(−1)k

(k + 1)(x − k) . (2)

Expanding the coefficient on the left side of (2) by partial fractions yields

(−1)m(
x

m+1

)
(m+ 1)

= (−1)mm!

x(x − 1) · · · (x −m) =
m∑
k=0

ak

x − k ,

for some coefficients a0, . . . , am. To compute these coefficients, clear fractions and set
x = j . Only the term for k = j survives, and so we obtain

(−1)mm! =
m∑
k=0

akj (j − 1) · · · (j −m)
j − k = aj j !(−1)m−j (m− j)! .

Thus aj = (−1)j
(
m

j

)
. Substituting this expansion into (2) gives(

m∑
k=0

(
m

k

)
(−1)k

x − k

) (
m∑
k=0

(
x

k

)
(−1)k

k + 1

)
=

m∑
k=0

(
m

k

)
(−1)k

(x − k)(k + 1)
.

Evaluating at x = n when n > m yields the result.

Editorial comment. Lalonde notes that the left and right sides of (1) are the Newton and
Lagrange interpolation polynomials, respectively, for the points {(j, 1

j+1 ) : 0 ≤ j ≤ m}.
Most solvers evaluated the three sums individually, either in terms of Euler’s beta inte-

grals or by induction using binomial identities.

Also solved by U. Abel (Germany), A. Berkane (Algeria), P. Bracken, C. Curtis, G. Fera (Italy), O. Geupel
(Germany), N. Hodges (UK), W. Janous (Austria), O. Kouba (Syria), O. P. Lossers (Netherlands), F. Masroor,
E. Schmeichel, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), L. Zhou, and the proposer.

Laplace Simplifies an Integral

12305 [2022, 187]. Proposed by Shivam Sharma, Delhi University, New Delhi, India. Prove∫ 1

0

x − 1− x ln x

x ln x − x ln2 x
dx = γ,

where γ is Euler’s constant limn→∞(− ln n+∑n
k=1 1/k).

Solution by Seán Stewart, King Abdullah University of Science and Technology, Thuwal,
Saudi Arabia. Denote the integral to be calculated by I . The substitution x = e−t produces

I =
∫ ∞

0

1− e−t (1+ t)
t (1+ t) dt.

To evaluate this integral, we use the Laplace transform L, defined by L{g}(t) =∫∞
0 g(s)e−st ds. In particular, we use the property that, for positive functions f and g,

∫ ∞
0
f (t) · L{g}(t) dt =

∫ ∞
0

L{f }(s) · g(s) ds, (∗)
as long as both improper integrals are defined. This property is proved by expressing both
sides of (∗) as double integrals and reversing the order of integration.
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From elementary properties of the Laplace transform we have

L{1− e−t (1+ t)}(s) = L{1}(s)− L{e−t }(s)− L{te−t }(s) = 1

s
− 1

s + 1
− 1

(s + 1)2

and

L{1− e−s}(t) = L{1}(t)− L{e−s}(t) = 1

t
− 1

t + 1
= 1

t (t + 1)
.

Applying (∗) and then integration by parts, we get

I =
∫ ∞

0
(1− e−t (1+ t)) · L{1− e−s}(t) dt

=
∫ ∞

0
L{1− e−t (1+ t)}(s) · (1− e−s) ds

=
∫ ∞

0

(
1

s
− 1

s + 1
− 1

(s + 1)2

)
· (1− e−s) ds

=
(

ln s − ln(s + 1)+ 1

s + 1

)
(1− e−s)

∣∣∣∣
∞

0

−
∫ ∞

0

(
ln s − ln(s + 1)+ 1

s + 1

)
e−s ds

= −
∫ ∞

0
e−s ln s ds −

∫ ∞
0
e−s

(
1

s + 1
− ln(s + 1)

)
ds = γ − [e−s ln(s + 1)

]∞
0 = γ,

where in the last line we use the well-known integral representation γ = − ∫∞0 e−x ln x dx.
(See, for example, F. W. J. Olver et al. (2010), NIST Handbook of Mathematical Functions,
Cambridge Univ. Press, p. 140, Eq. 5.9.17.)

Also solved by E. Alan, T. Amdeberhan & V. H. Moll, M. Bataille (France), A. Berkane (Algeria), N. Bhandari
(Nepal), P. Bracken, B. Bradie, B. S. Burdick, W. Chang, H. Chen, H. Chen & F. Zhuang (Canada), B. E. Davis,
G. Fera (Italy), D. Fleischman, M. L. Glasser (Spain), R. Gordon, J.-P. Grivaux (France), L. Han, E. A. Herman,
N. Hodges (UK), F. Holland (Ireland), W. Janous (Austria), S. Kaczkowski, A. M. Karparvar (Iran), O. Kouba
(Syria), O. P. Lossers (Netherlands), F. Masroor, M. Omarjee (France), H. Ricardo, V. Schindler (Germany),
T. P. Sharma (India), A. Stadler (Switzerland), M. S̆tofka (Slovakia), R. Stong, R. Tauraso (Italy), M. Vowe
(Switzerland), J. Vukmirović (Serbia), T. Wiandt, H. Widmer, J. Yan (China), L. Zhou, Fejéntaláltuka Szeged
Problem Solving Group (Hungary), and the proposer.

A Sum of Euler and von Mangoldt Functions

12306 [2022, 187]. Proposed by Amrit Awasthi, Amritsar, India. For a positive integer n,
evaluate ∑

a|n
φ(a) ln a +

∑
a|n

∑
b|(n/a)

φ(a)�(b),

where φ is the Euler phi function (φ(m) is the number of integers k with 1 ≤ k ≤ m that
are relatively prime to m) and � is the von Mangoldt function (�(m) equals lnp when m
is a power of the prime number p and equals 0 when m is not a prime power).

Solution by Richard Stong, Center for Communications Research, San Diego, CA. The
sum equals n ln n. We use the well-known identities

∑
b|n �(b) = ln n and

∑
a|n φ(a) = n.

The first identity follows from the prime factorization n = pm1
1 · · ·pmrr : for each i, the mi

powers of pi each contribute lnpi to the sum, and all other terms are zero. The second
follows because φ(a) counts the elements k of {1, 2, . . . , n} such that gcd(k, n) = n/a for
each divisor a of n.
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Using these identities, we obtain∑
a|n
φ(a) ln a +

∑
a|n

∑
b|(n/a)

φ(a)�(b) =
∑
a|n
φ(a)

(
ln a + ln

n

a

)
= ln n

∑
a|n
φ(a) = n ln n.

Also solved by B. S. Burdick, C. Burnette, N. Caro-Montoya (Brazil), W. Chang, C. Curtis, T. Dickens,
O. Geupel (Germany), N. Hodges (UK), Y. J. Ionin, W. Janous (Austria), A. M. Karparvar (Iran), K. T. L. Koo
(China), O. Kouba (Syria), O. P. Lossers (Netherlands), R. Molinari, M. Reid, H. Ricardo, A. Stadler (Switzer-
land), R. Tauraso (Italy), L. Zhou, Missouri State University Problem Solving Group, and the proposer.

Double-Loading Six-Pack

12307 [2022, 285]. Proposed by Stuart Boersma, Central Washington University,
Ellensburg, WA, Kim Ruhland, Breckenridge,
CO, and Bruce Torrence, Randolph-Macon
College, Ashland, VA. Consider a ski lift with
n chairs attached to a cable loop. Let m be an
integer such that 1 ≤ m ≤ n. At each loading
stage at the bottom, the lowest m descending
chairs are detached from the cable in order,
loaded with skiers, and then reattached in the
reverse order but otherwise at the same loca-
tions around the cable from which they were
removed (see figure for the case n = 107 and
m = 2; a lift of this type is used at the Breck-
enridge ski area). At the next stage, the same
steps are carried out with the nextm descend-
ing chairs; the process continues indefinitely.
After how many loading stages are the chairs
returned to the same cyclic order they had at
the beginning?

Solution by the Eagle Problem Solvers, Georgia Southern University, Statesboro, GA and
Savannah, GA. Let f (n,m) denote the (minimum) number of loading stages required
before the chairs are returned to the same cylic order they had at the beginning. If m = 1,
then there is no change in the order of the chairs after each loading stage, so f (n, 1) = 1
for each n. Henceforth we assume m > 1.

Let q and r be the unique integers such that n = qm+ r and 0 ≤ r < m. We prove

f (n,m) =

⎧⎪⎨
⎪⎩

2q if r = 0;
q(q + 1) if r = 1 and q is odd, or r = m− 1 and q is even;

2q(q + 1) otherwise.

If r = 0, then after the first q loading stages each successive group of m chairs is inter-
nally reversed. Since m > 1, this differs from the original order. After q more stages, the
original order within each group is restored, and the order of the groups is unchanged, so
f (n,m) = 2q.

Now suppose r > 0. When k is a nonnegative integer, let Ak = (mk + 1, . . . , mk + r)
and Bk = (mk + r + 1, . . . , mk +m). Let Ak and Bk denote the reversals of Ak and Bk ,
respectively, and let Sk denote the order of the chairs after k loading stages. We assume the
initial order S0 is (1, . . . , n), so

S0 = A0B0A1B1 · · ·Aq−1Bq−1Aq.
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After each loading stage, the first (leftmost) m chairs are reversed and moved to the end
of the cable, so

S1 = A1B1A2B2 · · ·AqB0 A0

and

Sq+1 = A0 B1 A1 · · ·Bq−1 Aq−1B0Aq.

Notice that in each configuration, exactly one pair of Ak groups are adjacent (possibly with
one or both being reversed). In the initial configuration, A0 and Aq are adjacent. After one
loading stage, A1 and A0 are adjacent (and A0 has been reversed); after two loading stages,
the adjacent pair is A2 and A1. After q + 1 loading stages, the adjacent pair is again A0

and Aq , and then the pattern repeats. It follows that f (n,m) must be a multiple of q + 1.
After the first q + 1 loading stages, the groups Ak are back in their original positions, but
reversed, while the positions of the Bk have shifted by one position. The group B0 has
been reversed twice, so it is back in its original order, and every other Bk has been reversed
once. Each set of q + 1 loading stages has a similar effect, so the first time that the Ak and
Bk groups are back in their original cyclic order is after q sets of q + 1 loading stages, at
which point each Ak has been reversed q times and each Bk has been reversed q + 1 times.
Therefore

Sq(q+1) =
{
A0B0A1B1 · · ·Aq−1Bq−1Aq if q is odd

A0B0A1B1 · · ·Aq−1Bq−1Aq if q is even.

If r = 1, then Ak = Ak , while if r = m− 1 then Bk = Bk . Thus Sq(q+1) = S0 when r = 1
and q is odd, and when r = m − 1 and q is even. Otherwise, we need another q(q + 1)
loading stages for the Ak and Bk groups to once again return to their original cyclic order,
and S2q(q+1) = S0. This establishes the desired result for f (n,m).

Since 107 = 53 · 2+ 1, for the Breckenridge ski lift r = 1 and q is odd, so the number
of loading stages is f (107, 2) = q(q + 1) = 53 · 54 = 2862.

Editorial comment. The Quicksilver Super6 ski lift at Breckenridge seats 6 skiers per chair
and is the only ski lift in North America to have double loading. This arrangement is known
to the locals as a “double-loading six-pack”.

The problem is a discrete version of classic problem C4 [2022, 394; 2022, 495] from
this Monthly, and the methods of solution are similar.

Also solved by C. Farnsworth, K. Gatesman, O. Geupel (Germany), N. Hodges (UK), Y. J. Ionin, O. P. Lossers
(Netherlands), A. Mandal (India), R. Stong, L. Zhou, and the proposers.

Eliminating Tiles

12309 [2022, 286]. Proposed by Joseph DeVincentis, Salem, MA, Thomas C. Occhipinti,
Luther College, Decorah IA, and Daniel J. Velleman, Amherst College, Amherst, MA, and
University of Vermont, Burlington, VT. Consider a square grid that is infinite in all direc-
tions, with tiles placed on finitely many squares of the grid. Two grid squares are called
adjacent if they share an edge. There are two types of legal moves:
(A) If two tiles are on adjacent squares, then they can both be removed.
(B) If a tile is on a square and all adjacent squares are unoccupied, then the tile can be
removed with four new tiles then placed on the four adjacent squares.
For which initial configurations is it possible to eliminate all tiles from the grid?

Solution by José Heber Nieto, University of Zulia, Maracaibo, Venezuela. Color the squares
of the grid alternating black and white, as in an infinite chessboard. Given a distribution of
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tiles, letw and b denote the number of tiles placed on white and black squares, respectively.
We prove that it is possible to eliminate all of the tiles if and only if w ≡ b (mod 5).

The necessity of w ≡ b (mod 5) holds because A-moves do not change w − b and B-
moves increase or decrease w − b by 5. Hence w − b (mod 5) is an invariant and, if it is
possible to eliminate all of the tiles, then w − b ≡ 0 (mod 5).

To prove sufficiency, we apply induction on max{w, b}, beginning with the obvious case
w = b = 0. If any tiles are adjacent, we can apply an A-move and then apply the induction
hypothesis. If no tiles are adjacent and w �= b, say w > b without loss of generality, we
apply a B-move to any tile on a white square, leavingw− 1 tiles on white squares and b+ 4
tiles on black squares. Because w ≥ b + 5, we may again apply the induction hypothesis.
Thus we may assume w = b > 0 and that no tiles are adjacent.

Now choose a tile on a white square and one on a black square so that the Euclidean
distance between the centers of the squares is minimal. We may assume that the squares are
unit squares, assign integral coordinates to their centers, and name each square by its center.
By symmetry, we may assume one tile is on (0, 0) and the other on (a, b), where a >
b ≥ 0. Observe that a ≥ 2 and that a and b have opposite parity. Squares (a ± 1, b) and
(a, b ± 1) are adjacent to (a, b), so they are empty. Squares (a − 2, b) and (a − 1, b − 1)
are also empty because they are closer to (0, 0) than is (a, b).

Case 1: (a − 1, b + 1) is empty. Apply a B-move to (a, b), a B-move to (a − 1, b), and
A-moves to (a − 1, b + 1) and (a, b + 1), to (a, b) and (a + 1, b), and to (a − 1, b − 1)
and (a, b − 1). The net effect is to move the tile on (a, b) to (a − 2, b).

Case 2: (a − 1, b + 1) is occupied. Again first apply a B-move to (a, b), this time
followed by applying an A-move to (a − 1, b + 1) and (a, b + 1). Now apply a B-move to
(a − 1, b) and A-moves to (a, b) and (a + 1, b) and to (a − 1, b − 1) and (a, b − 1). The
net effect is again to move the tile on (a, b) to (a − 2, b).

Case 1 and Case 2 both reduce the distance between (0, 0) and the nearest square of
the opposite color. Hence iterating the appropriate case brings a tile next to (0, 0). At that
point an A-move removes the pair, and the induction hypothesis applies.

Also solved by J. Boswell & C. Curtis, V. Chen & O. Zhang, K. Gatesman, O. Geupel (Germany), N. Hodges
(UK), Y. J. Ionin, O. P. Lossers (Netherlands), A. Martin & P. Martin & R. Martin (Germany), K. Schilling,
R. Stong, R. Tauraso (Italy), and the proposer.

Parallel Segments and Concurrent Cevians

12310 [2022, 286]. Proposed by Thanos Kalogerakis, Kiato, Greece, Dan-Stefan Mari-
nescu, Hunedoara, Romania, and Mehmet Şahin, Ankara, Turkey. Let P be a point inside
triangle ABC, and let D, E, and F be points on BC, CA, and AB, respectively, such that
PE, PF , and PD are parallel to AB, BC, and CA, respectively. Let A′, B ′, and C ′ be
points on BC, CA, and AB, respectively, such that AA′, BB ′, and CC ′ are parallel toDE,
EF , and FD, respectively.
(a) Prove Area(ABC) ≥ 3 · Area(DEF), and determine conditions for equality.
(b) Prove that AA′, BB ′, and CC ′ are concurrent.
(c) Prove PD · PE · PF ≥ 8 · A′D · B ′E · C ′F , and determine conditions for equality.

960 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 130



Solution by Faraz Masroor, New York, NY.
(a) Suppose thatAP , BP , and CP intersect BC, CA, andAB atX, Y , andZ, respectively.
Let x = PX/AX, y = PY/BY , and z = PZ/CZ. For any polygon IJKL, denote its area
by [IJKL]. We have x = [PBC]/[ABC], y = [PCA]/[ABC], and z = [PAB]/[ABC].
Thus x + y + z = 1. By the Cauchy–Schwarz inequality,

(1+ 1+ 1)
(
x2 + y2 + z2

) ≥ (x + y + z)2 = 1,

with equality if and only if
x = y = z = 1/3. Suppose
that PD, PE, and PF inter-
sect AB, BC, and CA at U ,
V , and W , respectively. We
have [PVD]/[ABC] = x2,
[PWE]/[ABC] = y2,
and [PUF ]/[ABC] = z2.
Also, [PDE] = [PDC] =
[PDCW ]/2. Likewise,
[PEF ] = [PEAU ]/2 and
[PFD] = [PFBV ]/2. There-
fore

[DEF ] = [PDE]+ [PEF ]+ [PFD]

= [ABC]− [PVD]− [PWE]− [PUF ]

2

= [ABC]

2

(
1− x2 − y2 − z2) ≤ [ABC]

3
,

with equality if and only if P is the centroid of triangle ABC.

(b) Since ∠BAA′ = ∠PED and ∠A′AC = ∠EDP , applying the law of sines in �PDE
we get sin∠BAA′/ sin∠A′AC = PD/PE. Multiplying this by the other two analogous
equations, we have

sin∠BAA′
sin∠A′AC ·

sin∠CBB ′
sin∠B ′BA ·

sin∠ACC ′
sin∠C ′CB =

PD

PE
· PE
PF
· PF
PD
= 1.

Therefore, by the trigonometric form of Ceva’s theorem, AA′, BB ′, and CC ′ concur at
some point Q.

(c) Let a = BC, b = CA, and c = AB. Notice that PD = bx, PE = cy, and PF =
az. Also, AE = UP = bz, DC = PW = ay, and EC = EW + PD = by + bx. From
A′D/AE = DC/EC we have A′D = ayz/(x + y). Likewise, B ′E = bzx/(y + z) and
C ′F = cxy/(z+ x). The AM–GM inequality now yields

PD · PE · PF
A′D · B ′E · C ′F =

(x + y)(y + z)(z+ x)
xyz

≥ 8.

Equality holds if and only if x = y = z = 1/3, that is, exactly when P is the centroid of
triangle ABC.

Editorial comment. The problem statement here corrects a typographical error in the orig-
inal statement of the problem.

Also solved by M. Bataille (France), H. Chen (China), C. Curtis, G. Fera (Italy), K. Gatesman, O. Geupel
(Germany), O. Kouba (Syria), O. P. Lossers (Netherlands), C. Petalas (Greece), C. R. Pranesachar (India),
V. Schindler (Germany), R. Stong, L. Zhou, Davis Problem Solving Group, and the proposer. Parts (a) and (b)
also solved by J. P. Grivaux.
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CLASSICS

C20. Due to Peter Freyd, suggested by the editors. Given a positive integer m, let f (m) be
the period of the Fibonacci sequence taken modulo m. Prove f (m) ≤ 6m and that equality
holds for infinitely many m.

Conway’s Solitaire Army

C19. Due to John H. Conway, suggested by the editors. A battlefield is modeled by an
infinite grid of unit squares, whose centers are indexed by {(a, b) : a, b ∈ Z}. The soldiers
are modeled by pegs, which are placed initially at a finite number of squares (a, b) with
b ≤ 0. The soldiers advance by jumping in the style of peg solitaire: A jump is permitted
when there are three squares in the grid forming a 1-by-3 rectangle with one end square
of this rectangle empty while the other two squares are occupied by pegs. Where this
configuration exists, the peg on the end may jump over the peg in the middle and move to
the empty end, while the peg in the middle is removed. How many pegs are needed in an
initial configuration to allow a peg to advance to the square (0, 5)?

A possible initial configuration A possible initial jump

Solution. It is impossible to advance a peg to the square (0, 5), no matter how many pegs
are in the initial configuration. To see this, assign to the square (a, b) the weight λ|a|−b,
where λ = (√5 − 1)/2. This λ is chosen so that 0 < λ < 1 and λ + λ2 = 1. For any
position of pegs on the grid, define the weight of the position to be the sum of the weights
of the squares that are occupied by pegs. The weight of the entire halfplane with b ≤ 0 is

∞∑
a=−∞

0∑
b=−∞

λ|a|−b =
∞∑
a=0

λa
∞∑
b=0

λb +
∞∑
a=1

λa
∞∑
b=0

λb

= 1

1− λ
1

1− λ +
λ

1− λ
1

1− λ =
1+ λ
(1− λ)2 =

1+ λ
λ4
= 1

λ5
.

Since there are only finitely many soldiers at the start, the weight of the original configu-
ration is strictly less than 1/λ5.

Any jump involves eliminating pegs in squares of weight λn and λn+1, respectively,
for some n, and adding a peg to an empty square of weight λn−1 or λn+1 or λn+2. Since
λn + λn+1 = λn−1, while λn+1 and λn+2 are smaller, we see that no jump can increase the
weight of the position. Yet the weight of the target square (0, 5) is 1/λ5, which exceeds the
weight of the original configuration. Thus no finite number of initial pegs allows a peg to
reach the square (0, 5).

Editorial Comment: The number of pegs required in an initial configuration to advance a
peg to the square (0, n) for n = 1, 2, 3, and 4 is 2, 4, 8, and 20, respectively. The problem
has seen many reincarnations and generalizations. It originated with John H. Conway in
1961 and appears in R. Honsberger (1976), A problem in checker jumping, in Mathemati-
cal Gems II, Mathematical Association of America, pp. 23–28.
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SOLUTIONS

Two Cyclic Quadrilaterals

12294 [2022, 86]. Proposed by Tran Quang Hung, Hanoi, Vietnam. Let A1A2A3A4 be a
quadrilateral inscribed in a circle with center O. Let B1B2B3B4 be the quadrilateral that
contains A1A2A3A4 in its interior such that, for 1 ≤ i ≤ 4 and with subscripts taken cycli-
cally, BiBi+1 is parallel to AiAi+1 and at distance |AiAi+1| from it. Because B1B2B3B4

has the same angles as A1A2A3A4, there is a circle in which it is inscribed. Let P be the
center of that circle. Show that A1A3, A2A4, and OP are concurrent.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. Lay
down complex coordinates with the circumcircle of A1A2A3A4 as the unit circle and
A1A2A3A4 oriented clockwise. The coordinate of the circumcenter O is 0. We use low-
ercase letters to denote the coordinates of the corresponding uppercase points. Hence the
complex numbers ai , for 1 ≤ i ≤ 4, have modulus one, so their complex conjugates are
their respective inverses.

Let X be the intersection point of the diagonals A1A3 and A2A4. Its coordinate can be
found by treating the equation

x = ta1 + (1− t)a3 = ua2 + (1− u)a4

and its complex conjugate as two linear equations in the (real) unknowns t and u. The
result is

t = a1(a2 − a3)(a3 − a4)

(a1 − a3)(a1a3 − a2a4)
, u = a2(a3 − a4)(a4 − a1)

(a2 − a4)(a2a4 − a1a3)
.

Hence

x = a1a2a3 + a1a3a4 − a1a2a4 − a2a3a4

a1a3 − a2a4
.
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The line parallel to A1A2, at a distance |a2 − a1| from A1A2 and outside A1A2A3A4,
can be parametrized (by real t) as

�12(t) = ta1 + (1− t)a2 + i(a2 − a1),

and symmetrically for the other sides. Treating the equation b1 = �12(t) = �41(u) and its
complex conjugate as two linear equations in the unknowns t and u, we get

b1 = a1a2 − a1a4 + 2a1a2i + 2a1a4i − 4a2a4i

a2 − a4
,

and symmetrically for the other points.
Since P is equidistant from B1, B2, and B3, we have

(p − b1)(p − b1) = (p − b2)(p − b2) = (p − b3)(p − b3).

This gives two linear equations in the two unknowns p and p, and solving these equations
we find the coordinate of P to be

p = −4i(a1a2a3 + a1a3a4 − a1a2a4 − a2a3a4)

(a1 − a3)(a2 − a4)
= −4i(a1a3 − a2a4)

(a1 − a3)(a2 − a4)
· x.

The coefficient of x in the last equation is easily checked to be its own complex conjugate,
so it is real. Thus X and P lie on the same line through the origin O, as desired.

Editorial comment. Using a similar argument, Roberto Tauraso showed that the same con-
clusion holds if each BiBi+1 is at a distance r|AiAi+1| from AiAi+1, for any r > 0.

Also solved by J.-P. Grivaux (France), C. R. Pranesachar (India), A. Stadler (Switzerland), R. Tauraso (Italy),
and the proposer.

A Geometric Progression as a Sum of Two Squares

12295 [2022, 86]. Proposed by Koopa Tak Lun Koo, Chinese STEAM Academy, Hong
Kong, China.
(a) Show that when n is an odd positive integer, 1+ 7n + 72n + 73n + 74n + 75n + 76n is a
sum of two squares.
(b)∗ Show that when n is even, the expression in part (a) is not a sum of two squares.

Solution by Michael Reid, University of Central Florida, Orlando, FL. (a) The expression
equals (7n − 1)6 + 7n+1(72n − 7n + 1)2.When n is odd, 7n+1 is a square, so the number is
the sum of a sixth power and a square.
(b) When n is even, the expression is congruent to 7 modulo 8, so it is not even the sum of
three squares.

Editorial comment. Several solvers used quadratic reciprocity to solve (b), which yields a
generalization. For a prime p congruent to 3 modulo 4,

1+ pn + p2n + · · · + p(p−1)n

is the sum of two squares if and only if n is odd. As in the proof above, for even n the sum
is congruent to p mod 8, so it is not the sum of two squares. Conversely, factor

ppn − 1 = (pn − 1)(1+ pn + p2n + · · · + p(p−1)n).

For a prime q dividing the first factor, the second factor is pmodulo q, so the two factors are
relatively prime. Thus for a prime q dividing the second factor, the multiplicative order of
p modulo q is divisible by p. By Lagrange’s theorem, p divides q − 1, so q ≡ 1 (mod p)
and q is a square modulo p. Since p has odd order modulo q, it further follows that p is
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a square modulo q. Therefore quadratic reciprocity yields (−1)(p−1)(q−1)/4 = 1, implying
q ≡ 1 (mod 4). Such primes q are the sum of two squares, as are the products of sums of
two squares. See, for instance, G. H. Hardy and E. M. Wright (2008), An Introduction to
the Theory of Numbers, 6th ed., Oxford University Press, for an explanation of quadratic
reciprocity and the needed facts about sums of two squares.

Other solvers used a theorem of Aurifeuille, Le Lasseur, and Lucas from the 1870s
to give another existence proof for (a). The theorem implies that, for m odd and square-
free, the cyclotomic polynomial�m(x)may be expressed as p2(x)− (−1)(m−1)/2mxq2(x),
where the polynomials p and q have integer coefficients. See A. Schinzel (1962), On prim-
itive prime factors of an − bn, Proc. Cambridge Phil. Soc., 58(4), 555–562. When m ≡ 3
(mod 4) and n is odd, setting x = mn generalizes (a).

Also solved by M. Chamberland, R. Dietmann & M. Widmer (UK), A. Dixit (India), S. Fan, N. Fellini
(Canada), P. Lalonde (Canada), O. P. Lossers (Netherlands), J. Manoharmayum (UK), R. Martin (Germany),
J. P. Robertson, J. Silverberg, A. Stenger, R. Stong, Eagle Problem Solvers, and the proposer. Part (a) also
solved by C. Curtis and O. Geupel (Germany). Part (b) also solved by C. Degenkolb, B. Finkel, N. Hodges
(UK), and B. Sury (India).

Coloring the Complement of a Matching

12296 [2022, 86]. Proposed by David A. Kalarkop and R. Rangarajan, University of
Mysore, Mysuru, India, and Douglas B. West, University of Illinois, Urbana, IL. For t ≤
n/2, let H(n, t) be the graph obtained from the complete graph on n vertices by deleting
t pairwise disjoint edges. Determine the number of ways to assign each vertex of H(n, t)
a color from a set of k available colors so that vertices forming an edge receive distinct
colors.

Solution by Oliver Geupel, Brühl, Germany. Such a coloring of vertices is known as a
proper coloring of a graph. We show that the number of proper colorings of H(n, t) from
k available colors is

t∑
r=0

(
t

r

)
k(n−t+r),

where x(m) denotes the falling factorial
∏m−1
i=0 (x − i).

Let e1, . . . , et denote the deleted edges, which we view as pairs of vertices. The set
of vertices of H(n, t) is then the disjoint union of the sets e1, . . . , et and a set U of size
n− 2t . An induced subgraph consisting of all of U and exactly one vertex from each ej is
the complete graph on its n− t vertices. Hence the vertices of any such subgraph require
distinct colors. Given a proper coloring ofH(n, t), let C1, . . . , Ct and C denote the disjoint
sets of colors assigned to vertices in e1, . . . , et and U , respectively. Note that |Cj | ∈ {1, 2}
for each j and |C| = |U | = n− 2t . For 0 ≤ r ≤ t , there are

(
t

r

)
ways to choose r among

C1, . . . , Ct to have two elements. Each such choice defines a partition of the vertices into
n− (t − r) sets receiving distinct colors, and then there are k(n−t+r) ways to assign colors
to these sets. Summing over r counts all the proper colorings using k available colors.

Also solved by N. Caro-Montoya (Brazil), K. Gatesman, O. Geupel (Germany), S. C. Locke, O. P. Lossers
(Netherlands), R. Martin (Germany), J. H. Nieto (Venezuela), E. Schmeichel, A. Stadler (Switzerland),
R. Stong, R. Tauraso (Italy), Missouri State University Problem Solving Group, and the proposers.

A Hyperbolic Trigonometric Integral

12297 [2022, 86]. Proposed by Narendra Bhandari, Bajura District, Nepal. Prove∫ π/2

0

(
sinh−1(sin x)

)2

sin2 x
dx = π

2

(π
2
− ln 2

)
.
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Solution by John E. Kampmeyer III, Springfield, PA. We first use integration by parts and
the identities

sinh−1 x = tanh−1

(
x√

1+ x2

)
and tanh−1 z = 1

2
ln

(
1+ z
1− z

)
=
∫ 1

0

z

1− z2y2
dy

to compute

∫ π/2

0

(
sinh−1(sin x)

)2

sin2 x
dx = 2

∫ π/2

0

cos2 x sinh−1(sin x)

sin x
√

1+ sin2 x
dx −

(
sinh−1(sin x)

)2

tan x

∣∣∣∣∣
π/2

0

= 2
∫ π/2

0

cos2 x

sin x
√

1+ sin2 x
tanh−1

(
sin x√

1+ sin2 x

)
dx

= 2
∫ π/2

0

∫ 1

0

cos2 x

1+ (1− y2) sin2 x
dy dx = 2

∫ 1

0

∫ π/2

0

1

1+ (2− y2) tan2 x
dx dy.

Using the substitutions t = tan x and then u = t√2− y2 we obtain

∫ π/2

0

(
sinh−1(sin x)

)2

sin2 x
dx = 2

∫ 1

0

∫ ∞
0

1

1+ (2− y2)t2
· 1

1+ t2 dt dy

= 2
∫ 1

0

((
1− 1

y2 − 1

)∫ ∞
0

dt

1+ (2− y2)t2
+ 1

y2 − 1

∫ ∞
0

dt

1+ t2
)
dy

= 2
∫ 1

0

((
1− 1

y2 − 1

)
1√

2− y2

∫ ∞
0

du

1+ u2
+ 1

y2 − 1

∫ ∞
0

dt

1+ t2
)
dy

= π
∫ 1

0

((
1− 1

y2 − 1

)
1√

2− y2
+ 1

y2 − 1

)
dy

= π
(∫ 1

0

dy√
2− y2

+
∫ 1

0

1

y2 − 1

(
1− 1√

2− y2

)
dy

)
. (∗)

The first integral
∫ 1

0 dy/
√

2− y2 in (∗) is equal to sin−1
(
y/
√

2
)∣∣∣1

0
= π/4. For the second

we use the substitution u = y/√2− y2 to compute∫ 1

0

1

y2 − 1

(
1− 1√

2− y2

)
dy = lim

t→1−

(∫ t

0

dy

y2 − 1
−
∫ t

0

dy

(y2 − 1)
√

2− y2

)

= lim
t→1−

⎛
⎝∫ t

0

dy

y2 − 1
−
∫ t/
√

2−t2

0

du

u2 − 1

⎞
⎠

= 1

2
lim
t→1−

(
ln(1− t)− ln(1+ t)− ln

(
1− t√

2− t2
)
+ ln

(
1+ t√

2− t2
))

= 1

2
lim
t→1−

(
ln

(
1− t

1− t/√2− t2
)
− ln

(
1+ t

1+ t/√2− t2
))
= −1

2
ln 2.

Substituting these values into (∗) yields the desired result.

Editorial comment. Many solvers used the Maclaurin series for (sinh−1 x)2 and then
reversed the order of the integration and summation.
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Also solved by A. Berkane (Algeria), P. Bracken, H. Chen (US), B. E. Davis, S. Fan, G. Fera (Italy),
M. L. Glasser, H. Grandmontagne (France), F. Holland (Ireland), O. Kouba (Syria), J. Magliano, J. Manohar-
mayum (UK), M. Omarjee (France), K. Sarma (India), V. Schindler (Germany), A. Stadler (Switzerland),
A. Stenger, S. M. Stewart (Saudi Arabia), M. S̆tofka (Slovakia), R. Stong, R. Tauraso (Italy), M. Vowe
(Switzerland), M. Wildon (UK), UM6P Math Club (Morocco), and the proposer.

A Disappearing Root of Unity

12298 [2022, 87]. Proposed by George Stoica, Saint John, NB, Canada. Let n be a positive
integer, Sn be the group of all permutations of {1, 2, . . . , n}, and z be a primitive complex
nth root of unity. Prove

∑
τ∈Sn

n∏
j=1

(
1− xj zτ(j)

) = n!

(
1−

n∏
i=1

xi

)

for any x1, . . . , xn ∈ C.

Solution by José Heber Nieto, University of Zulia, Maracaibo, Venezuela. Since

xn − 1 =
n∏
j=1

(x − zj ) = xn +
n∑
k=1

(−1)kxn−k
∑

1≤i1<···<ik≤n
zi1+···+ik ,

we have ∑
1≤i1≤n

zi1 =
∑

1≤i1<i2≤n
zi1+i2 = · · · =

∑
1≤i1<···<in−1≤n

zi1+···+in−1 = 0

and ∑
1≤i1<···<in≤n

zi1+···+in = z1+···+n = (−1)n−1.

Hence for any nonempty set J ⊆ {1, . . . , n},∑
τ∈Sn

z
∑
j∈J τ(j) =

∑
1≤i1<···<i|J |≤n

∑
τ(J )={i1,...,i|J |}

zi1+···+i|J |

=
∑

1≤i1<···<i|J |≤n
|J |! (n− |J |)! zi1+···+i|J | =

{
(−1)n−1n!, if J = {1, . . . , n},
0, otherwise.

We can now compute
n∏
j=1

(
1− xj zτ(j)

) = 1−
∑

1≤i1≤n
xi1z

τ(i1) +
∑

1≤i1<i2≤n
xi1xi2z

τ(i1)+τ(i2) − · · ·

+ (−1)n
∑

1≤i1<i2<···<in≤n
xi1 · · · xinzτ(i1)+τ(i2)+···+τ(in),

and therefore∑
τ∈Sn

n∏
j=1

(
1− xj zτ(j)

) = n!−
∑

1≤i1≤n
xi1

∑
τ∈Sn

zτ(i1) +
∑

1≤i1<i2≤n
xi1xi2

∑
τ∈Sn

zτ(i1)+τ(i2) − · · ·

+ (−1)n
∑

1≤i1<···<in≤n
xi1 · · · xin

∑
τ∈Sn

zτ(i1)+···+τ(in)

= n!+ (−1)2n−1n! x1 · · · xn = n!

(
1−

n∏
i=1

xi

)
.

November 2023] PROBLEMS AND SOLUTIONS 867



Also solved by N. Caro-Montoya (Brazil), R. Dietmann (UK) & M. Widmer (Switzerland), K. Gatesman,
O. Geupel (Germany), E. A. Herman, N. Hodges (UK), Y. J. Ionin, O. Kouba (Syria), P. Lalonde (Canada),
J. H. Lindsey II, O. P. Lossers (Netherlands), F. Gesmundo (Germany) & T. M. Mazzoli (Austria), T. Amde-
berhan & V. H. Moll, M. Omarjee (France), D. Pinchon (France), G. Plumpton (Canada), M. Reid, K. Sarma
(India), A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), T. Wiandt, UM6P Math Club
(Morocco), and the proposer.

Wait Till You See Them All Together

12299 [2022, 87]. Proposed by Erik Vigren, Swedish Institute of Space Physics, Uppsala,
Sweden. For n a positive integer, let x0,n = x1,n = 1 and, for integers k with 2 ≤ k ≤ n− 1,

let xk,n =
(
nxk−1,n −∑k−1

j=1 xj,n

)
/k. Let Tn = n2xn−1,n − n+ 1. The first few values of

Tn are 1, 3, 7, 47/3, 427/12, 416/5. Prove that Tn is the expected number of throws of an
n-sided die until the last n throws contain all possible face values. For example, if throws
of a 6-sided die give the sequence 12345266426351, then it took 14 throws for the event to
occur.

Solution by Haoran Chen, Xi’an Jiaotong–Liverpool University, Suzhou, China. We prove
that Tn and the expected value both equal Un, where

Un = 1+
n−1∑
j=1

nj∏j

i=1(n− i)
.

For n = 1, the assertion is true, so we assume n ≥ 2.
Say that the process is in state Sk when the maximum number of distinct throws at the

end of the current list is k. For 0 ≤ k ≤ n, let ek be the expected number of additional
throws when in state Sk until the event occurs. Note that en = 0 and e0 is the desired
expected number of throws. Also e0 = e1 + 1, since there must be a throw to reach S1

from S0.
We derive a recurrence for ek . When in Sk with 1 ≤ k ≤ n− 1, if the next throw differs

from the previous k, then the process moves to Sk+1. This event occurs with probability
(n− k)/n. On the other hand, if the next throw equals one of the previous k numbers (each
with probability 1/n), then the process enters one of S1, . . . , Sk . Hence for 1 ≤ k ≤ n− 1,

ek = 1+ 1

n

k∑
j=1

ej + n− k
n

ek+1.

We solve this recurrence by considering differences:

ek−1 − ek = n− k
n

(ek − ek+1), for 1 ≤ k ≤ n− 1.

From e0 − e1 = 1, we derive ek − ek+1 =∏k
j=1 n/(n− j). By summing these differences

up to k = n− 1, the telescoping sum yields the desired result e0 = Un.
We next obtain the same formula for Tn. Keeping n fixed, we simplify notation by

writing xj for xj,n. Let s0 = 0 and sk =∑k
j=1 xj for k ≥ 1, so

sk = sk−1 + xk. (1)

We rewrite the given recurrence for xk as

kxk = nxk−1 − sk−1. (2)

Multiplying (1) by k and combining that with (2) yields

ksk = (k − 1)sk−1 + nxk−1. (3)
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Writing (3) with index j instead of k and then summing produces

k∑
j=2

jsj =
k∑
j=2

(j − 1)sj−1 +
k∑
j=2

nxj−1 =
(k−1∑
j=1

jsj

)
+ nsk−1,

and hence

ksk = s1 + nsk−1 = 1+ nsk−1. (4)

We now prove

sk = 1

n

k∑
j=1

nj

k(k − 1) · · · (k + 1− j) ,

by induction on k. This formula holds for k = 1 since s1 = 1. For k ≥ 2, (4) yields

sk = 1

k
+ 1

k

k−1∑
j=1

nj

(k − 1) · · · (k − j) =
1

k
+ 1

n

k−1∑
j=1

nj+1

k(k − 1) · · · (k − j)

= 1

n
· n
k
+ 1

n

k∑
j=2

nj

k(k − 1) · · · (k + 1− j) =
1

n

k∑
j=1

nj

k(k − 1) · · · (k + 1− j) .

Rewriting (3) and (4) as ksk + nxk = (k + 1)sk+1 = 1+ nsk , we have

xk = 1

n
+ n− k

n
sk = 1

n2

⎛
⎝n+ (n− k) k∑

j=1

nj

k(k − 1) · · · (k + 1− j)

⎞
⎠ .

Setting k = n− 1 yields Tn = Un.
Also solved by P. Lalonde (Canada), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), and the proposer.

Forbidden Permutations

12300 [2022, 186]. Proposed by H. A. ShahAli, Tehran, Iran. Let n be an integer such that
n ≥ 3. Prove that there is no permutation π of {1, 2, . . . , n} such that π(1), 2π(2), . . . ,
nπ(n) are distinct modulo n.

Solution by Allen Stenger, Boulder, CO. Assume that π is such a permutation. Note that
nπ(n) ≡ 0 (mod n), so π(k) �= n for k < n. Thus π fixes n. Now restrict k so that
1 ≤ k ≤ n − 1. Define r(k) by kπ(k) ≡ r(k) (mod n) with 1 ≤ r(k) ≤ n − 1. Both π
and r permute {1, . . . , n− 1}.

Write gcd(a, b) for the greatest common divisor of a and b. Note that ab ≡ c (mod n)
implies gcd(a, n) | gcd(c, n). Applying this observation when {a, b} = {k, π(k)} and c =
r(k) yields

gcd(k, n) | gcd(r(k), n) and gcd(π(k), n) | gcd(r(k), n).

The first divisibility gives gcd(k, n) ≤ gcd(r(k), n). Summing over k and observing that k
and r(k) run through the same values yields

n−1∑
k=1

gcd(k, n) ≤
n−1∑
k=1

gcd(r(k), n) =
n−1∑
k=1

gcd(k, n).
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Thus we have gcd(k, n) = gcd(r(k), n) for each k. Applying the same argument to π(k)
and r(k) yields

gcd(k, n) = gcd(π(k), n) = gcd(r(k), n). (∗)
We now prove that n is squarefree. Suppose that p2 | n for some prime p. When k = p,

we have gcd(k, n) = p, and then (∗) implies also gcd(π(k), n) = p and gcd(r(k), n) = p.
Now π(k) is a multiple of p, so kπ(k) is a multiple of p2. Since p2 | n and kπ(k) ≡ r(k)
(mod n), we have p2 | r(k). Thus p2 | gcd(r(k), n) = p, a contradiction.

Since n ≥ 3 and n is squarefree, n cannot be a power of 2. Thus n is divisible by some
odd prime p, and p is relatively prime to n/p. Let S = {n/p, 2n/p, . . . , (p − 1)n/p}. The
set S is the set of values of k such that gcd(k, n) = n/p.

By (∗), {k : k ∈ S} = {π(k) : k ∈ S} = {r(k) : k ∈ S}. Writing A for
∏
k∈S k, we then

have

A =
∏
k∈S
r(k) ≡

∏
k∈S
kπ(k) =

(∏
k∈S
k

)(∏
k∈S
π(k)

)
= A2 (mod p).

However,A = (n/p)p−1(p− 1)! ≡ 1 · (−1) (mod p),where we have used Fermat’s little
theorem in the first factor and Wilson’s theorem in the second factor. NowA ≡ A2 becomes
−1 ≡ 1 (mod p), which is false when p is an odd prime.

Also solved by C. P. Anil Kumar (India), T. Beran & F. Fürnsinn & F. Lang & S. Schneider & M. Reibnegger
& S. Yurkevich (Austria), J. Boswell & C. Curtis, N. Caro-Montoya (Brazil), W. Chang, A. De la Fuente,
C. Farnsworth, N. Fellini (Canada), K. Gatesman, O. Geupel (Germany), N. Hodges (UK), Y. J. Ionin,
W. Janous (Austria), Y. Kim (Korea), O. P. Lossers (Netherlands), J. Manoharmayum (UK), M. Reid, T. Song,
A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Velásquez (Colombia), and the proposer.

A Skew-Symmetric Determinant of Sines

12302 [2022, 186]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let
n be a positive integer, and let A be the 2n-by-2n skew-symmetric matrix with (j, k)-entry
sin(j − k)/ sin(j + k). Prove

det (A) =
∏

1≤j<k≤2n

(
sin(j − k)
sin(j + k)

)2

.

Solution by Pierre Lalonde, Plessisville, QC, Canada. We have

sin(j − k)
sin(j + k) =

ei(j−k) − e−i(j−k)
ei(j+k) − e−i(j+k) =

e2ij − e2ik

e2ij e2ik − 1
.

For j, k ≥ 1 define aj,k = (xj − xk)/(xjxk − 1), where each x� is an indeterminate. For
a positive integer r , let Ar = (aj,k)rj,k=1, which we observe is skew-symmetric. We prove
the more general result

det(A2n) =
∏

1≤j<k≤2n

a2
j,k,

which yields the desired conclusion when x� is set to e2i� for all �.
We prove the claim by induction on n. The case n = 1 is easily checked. Elementary

algebra yields

aj,k + ak,m + am,j = − (xj − xk)(xk − xm)(xm − xj )
(xjxk − 1)(xkxm − 1)(xmxj − 1)

= −aj,kak,mam,j .
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We now operate on Ar for r = 2n with n > 1. Subtract the last row from every other row.
Subtract the resulting last column from every other column. This does not change the value
of the determinant. The (j, k)-entry for j, k < r becomes

(aj,k − ar,k)− (aj,r − ar,r ) = aj,k + ak,r + ar,j = −aj,kak,rar,j = aj,kak,raj,r .
Hence for j < r , each element of row j contains aj,r as a factor and, for k < r , every
element of column k contains ak,r (which equals −ar,k) as a factor. Thus

det(Ar) = det

⎡
⎢⎢⎢⎣

1

Ar−1
...

1
−1 . . . −1 0

⎤
⎥⎥⎥⎦
∏

1≤j<r
a2
j,r .

Continuing the process, we subtract the penultimate row from rows 1 to r − 2 and the
penultimate column from columns 1 to r − 2. Again, this does not change the determinant.
We have

det(Ar) = det

⎡
⎢⎢⎢⎢⎢⎣

1 0

Ar−2
...

...

1 0
−1 . . . −1 0 1
0 . . . 0 −1 0

⎤
⎥⎥⎥⎥⎥⎦

∏
1≤j<r−1

a2
j,r−1

∏
1≤j<r

a2
j,r .

Expansion of the determinant along the last row and the last column yields

det(Ar) = det(Ar−2)
∏

1≤j<r−1

a2
j,r−1

∏
1≤j<r

a2
j,r .

With r = 2n, the induction hypothesis completes the proof.

Also solved by T. Amdeberhan & S. B. Ekhad, N. Caro-Montoya (Brazil), O. P. Lossers (Netherlands), B. Ly,
A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), and the proposer.

CLASSICS

C19. Due to John H. Conway, suggested by the editors. A battlefield is modeled by an
infinite grid of unit squares, whose centers are indexed by {(a, b) : a, b ∈ Z}. The soldiers
are modeled by pegs, which are placed initially at a finite number of squares (a, b) with
b ≤ 0. The soldiers advance by jumping in the style of peg solitaire: A jump is permitted
when there are three squares in the grid forming a 1-by-3 rectangle with one end square
of this rectangle empty while the other two squares are occupied by pegs. Where this
configuration exists, the peg on the end may jump over the peg in the middle and move to
the empty end, while the peg in the middle is removed. How many pegs are needed in an
initial configuration to allow a peg to advance to the square (0, 5)?
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Guessing Which of Two Numbers is Larger

C18. Due to Thomas Cover; suggested by Richard Stanley. Alice chooses two distinct
numbers and writes each of them on a slip of paper. Bob selects one of the two slips
at random and looks at the number on it. He must then choose to either keep that slip or
switch to the other slip. Bob wins if he ends up with the slip with the larger number. Is there
anything Bob can do to ensure that, no matter what numbers Alice chooses, his probability
of winning is greater than 1/2?

Solution. Yes, there is a randomized strategy that achieves Bob’s goal. Let f : R→ (0, 1)
be a strictly increasing function. For example, f could be defined by

f (x) = 1

π
arctan x + 1

2
.

If Bob sees the number x, he keeps his initial selection with probability f (x) and switches
to the other slip with probability 1− f (x).

To see that this works, suppose Alice chooses numbers a and b, with a < b. Bob ends
up with the larger number if he either chooses a initially and switches or chooses b initially
and keeps it. Therefore his probability of success is (1/2)(1− f (a))+ (1/2)f (b), which
equals 1/2+ (1/2)(f (b)− f (a)). This is strictly larger than 1/2.

Editorial Comment. One way to understand Bob’s strategy is to imagine that f is the
cumulative distribution function of some continuous random variable whose support is the
entire real line. Bob selects a real number at random according to the cumulative distribu-
tion function. He then imagines that this number is on the other slip and acts accordingly,
keeping the first slip if the number on the slip exceeds the random real and switching if the
random real exceeds the number on the slip. If the random real is less than both of Alice’s
numbers, then no matter which slip Bob selects initially, he keeps it, so he wins with prob-
ability 1/2. Similarly, if the random real is greater than both of Alice’s numbers, then Bob
always switches, again winning with probability 1/2. But if the random real lands between
Alice’s numbers, an event of positive probability, then Bob wins no matter which slip he
selects first.

How Alice chooses her numbers is irrelevant. Bob’s strategy triumphs for all choices
that Alice can make. The probability mentioned in the problem statement is not to be
misread as a probability over Alice’s possible choices.

If one does not permit Bob to randomize his responses—that is to say, if Bob’s space of
possible actions is limited to deterministic strategies governed by a choice function from R
to {keep, switch}—then the answer to the question is negative. This illustrates the power
of randomized strategies and also may explain why the affirmative answer seems to be
paradoxical.

The fact that f is strictly increasing means that the larger the number that Bob sees, the
more likely he is to keep it. This is an intuitively reasonable guideline for Bob to follow if
he wants to end up with the larger number.

Notice that limx→∞(f (x + 1)− f (x)) = 0. Thus for every positive ε, if Alice chooses
the numbers x and x + 1 for sufficiently large x, then Bob’s probability of success will be
less than 1/2+ ε.

An extensive review of this problem appears in A. Gnedin (2016), Guess the larger
number, Mathematica Applicanda, 44(1): 183–207, where it is suggested that the phrasing
of the problem as a guessing game is due to T. M. Cover (1987), Pick the largest number,
Open Problems in Communication and Computation, New York, NY: Springer, p. 152.
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12417. Proposed by Mohsen Maesumi, Lamar University, Beaumont, TX. Consider the
sphere S given by x2 + y2 + (z− 1)2 = 1, with north poleN at (0, 0, 2). The stereographic
projection of a point P at (x, y, 0) is the point, different from N , that is on the intersection
of NP with S. Consider the region H in the xy-plane given by 0 ≤ xy ≤ c2, where c > 0.
What is the area of the stereographic projection of H to S?

12418. Proposed by Vladimir Lucic, Imperial College, London, UK. Let � be the cumu-
lative distribution function of a standard normal random variable, defined by �(x) =
(1/
√

2π)
∫ x
−∞ e

−t2 dt .
(a) For positive real numbers σ1, . . . , σn and w1, . . . , wn with

∑n
i=1wi = 1, determine

lim
x→∞

1

x
�−1

(
n∑
i=1

wi�

(
x

σi

))
.

(b) Let L be the limit in (a). Determine

lim
x→∞ x

2

(
1

x
�−1

(
n∑
i=1

wi�

(
x

σi

))
− L

)
.

SOLUTIONS

Commuting Orthogonal Projections

12283 [2021, 856]. Proposed by Yongge Tian, Shanghai Business School, Shanghai, China.
Let A and B be two n-by-n matrices that are orthogonal projections, that is, A2 = A = A∗
and B2 = B = B∗. Let

√
A+ B denote the positive semidefinite square root of A + B.

Prove

trace(A+ B)−(2−√2)rank(AB) ≤ trace
√
A+ B

≤ (√2− 1)trace(A+ B)+ (2−√2)rank(A+ B),
and show that equality holds simultaneously if and only if AB = BA.

Solution by Kyle Gatesman, student, Johns Hopkins University, Baltimore MD. For an n-
by-n Hermitian matrix H and an integer k ∈ {1, . . . , n}, let λk(H) be the kth smallest
eigenvalue of H , with repetitions according to algebraic multiplicity. All eigenvalues of
a Hermitian matrix are real, by the spectral theorem, so the ordering of these eigenvalues
is well defined. Extend this notation to all integers k by letting λk(H) = ∞ for k > n

and λk(H) = −∞ for k < 1. The spectral theorem also says that Hermitian matrices are
diagonalizable, so algebraic and geometric multiplicity are the same for all eigenvalues.
Thus the rank of a Hermitian matrix H equals |{k ∈ {1, . . . , n} : λk(H) �= 0}|.

A projection matrix P satisfies P 2 − P = 0, so any eigenvalue λ of P satisfies
λ2− λ= 0, which implies λ ∈ {0, 1}. The matrices A and B are Hermitian with solely
nonnegative eigenvalues, so they are positive semidefinite. The sum of any two n-by-n
positive semidefinite matrices is also positive semidefinite, so A+ B is positive semidefi-
nite.

For an n-by-n orthogonal projection matrix P and an x ∈ Cn,

(Px)∗(x − Px) = x∗P ∗x − x∗P ∗Px = x∗(P − P 2)x = 0,

so (Px) ⊥ (x − Px), and thus ‖Px‖2 =
√
‖x‖2

2 − ‖x − Px‖2
2 ≤ ‖x‖2. All eigenvalues of

A+ B are at most 2 because, for any nonzero vector x ∈ Cn,

‖(A+ B)x‖2 ≤ ‖Ax‖2 + ‖Bx‖2 ≤ ‖x‖2 + ‖x‖2 = 2‖x‖2.
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The next few lemmas build up to a critical theorem about the eigenvalues of (A+ B)
that are strictly between 0 and 2.
Lemma 1. If (x, λ) is an eigenvector-eigenvalue pair for A + B with 0 < λ < 2, then
((A− B)x, 2− λ) is also an eigenvector-eigenvalue pair for A+ B.

Proof. Given Ax + Bx = λx, multiplying on the left by A yields A2x + ABx = A(λx),
which implies Ax + ABx = λAx, or ABx = (λ − 1)Ax. Similarly, multiplying on the
left by B yields BAx + B2x = B(λx), which implies BAx + Bx = λBx, or equivalently
BAx = (λ− 1)Bx. Letting y = (A− B)x, we obtain

(A+ B)y = (A+ B)(A− B)x = (A− B + BA− AB)x
= (A− B)x + (BAx − ABx) = y + ((λ− 1)Bx − (λ− 1)Ax)
= y − (λ− 1)(A− B)x = y + (1− λ)y = (2− λ)y,

so ((A− B)x, 2− λ) is an eigenvector-eigenvalue pair. Note that (A− B)x cannot be the
zero vector, because (A− B)x = �0 ⇐⇒ Ax = Bx ⇐⇒ λx = (A+ B)x = 2Ax, and
the only possible eigenvalues of 2A are 0 and 2, which by assumption cannot equal λ. �
Definition: For eigenvectors x and y ofA+B associated with eigenvalues strictly between
0 and 2, let y be a dual of x if y is a nonzero scalar multiple of (A− B)x. By Lemma 1, if
y is a dual of x, then the associated eigenvalues of x and y sum to 2.

Lemma 2. For any two eigenvectors x and y ofA+ B associated with eigenvalues strictly
between 0 and 2, if y is a dual of x, then x is a dual of y.

Proof. Let λ be the eigenvalue associated with x. If y is a dual of x, then for some nonzero
scalar γ we have y = γ · (A− B)x. From the proof of Lemma 1, (A+ B)x = λx implies
ABx = (λ− 1)Ax and BAx = (λ− 1)Bx. Now

(A− B)y = γ (A− B)2x = γ
(
(A2 + B2)x − (AB + BA)x)

= γ ((A+ B)x − (λ− 1)(A+ B)x)
= γ (λx − (λ− 1)λx) = γ λ(2− λ)x.

Since λ /∈ {0, 2}, the quantity γ λ(2 − λ) is nonzero. Thus x equals 1/
(
γ λ(2 − λ))

(A− B)y and is a dual of y. �
Lemma 3. Let u1, . . . , uN and v1, . . . , vN be eigenvectors of A + B corresponding to
eigenvalues strictly between 0 and 2, such that uk and vk are duals of each other for all
k ∈ {1, . . . , N}. The vectors u1, . . . , uN are linearly independent if and only if v1, . . . , vN
are linearly independent.

Proof. By the symmetry of the duality relationship between uk and vk , it suffices to show
that if u1, . . . , uN are linearly dependent, then v1, . . . , vN are also linearly dependent.
Given u1, . . . , uN and v1, . . . , vN , let r1, . . . , rN be the (unique) nonzero scalars satisfying
vk = rk · (A − B)uk for all k ∈ {1, . . . , N}. Suppose some nonzero vector (c1, . . . , cN)

expresses dependence by
∑N

k=1 ckuk = �0. At least one entry in (c1/r1, . . . , cN/rN) is
nonzero, and

N∑
k=1

ck

rk
· vk =

N∑
k=1

ck

rk
· rk · (A− B)uk = (A− B)

N∑
k=1

ckuk = �0,

so v1, . . . , vN are linearly dependent. �
Let m = min{k ∈ Z : λk(A + B) > 0}, and let s = max{k ∈ Z : λk(A + B) < 2}.

Since the rank of a positive semidefinite matrix equals the number of positive eigenvalues
(counted with multiplicity), rank(A + B) = n − m + 1. This implies that the nullity of
A+ B is m− 1.
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Theorem 1. If m ≤ k ≤ s, then λk(A+ B)+ λm+s−k(A+ B) = 2.

Proof. Let W be the span of the eigenvectors of A + B corresponding to eigenvalues in
(0, 2), and let I denote the interval of integers from m to s. Given a basis {um, . . . , us} of
W whose members are eigenvectors of A + B, for k ∈ I let vk be any dual of uk . Since
um, . . . , us are linearly independent eigenvectors of A+ B, by Lemma 3, vm, . . . , vs are
also linearly independent eigenvectors and thus also form a basis of W .

For an eigenvector x of A+ B, let λ(x) denote the eigenvalue of A+ B associated with
x. Index {um, . . . , us} so that λ(uk) = λk(A+B) for k ∈ I . For indices j, k ∈ I with j < k,
we have λ(uj ) ≤ λ(uk), so

λ(vj ) = 2− λ(uj ) ≥ 2− λ(uk) = λ(vk).
Thus the list (λ(vm), . . . , λ(vs )) is precisely the reverse of the list (λ(um), . . . , λ(us )). We
conclude λ(vk) = λ(um+s−k) for k ∈ I , so

2 = λ(uk) + λ(vk) = λ(uk) + λ(um+s−k) = λk(A+ B)+ λm+s−k(A+ B). �

Corollary 1.
∑s

k=m λk(A+ B) = s −m+ 1.

Proof. By Theorem 1,

2
s∑

k=m
λk(A+B) =

s∑
k=m

(λk(A+B)+λm+s−k(A+B)) =
s∑

k=m
2 = 2(s−m+1). �

By Corollary 1,

trace(A+ B) =
n∑

k=s+1

2+
s∑

k=m
λk(A+ B)+

m−1∑
k=1

0

= 2(n−s)+ (s−m+1) = (n−s)+ (n−m+1)

= (n− s)+ rank(A+ B).
Similarly,

trace
√
A+B =

n∑
k=s+1

√
2+ 1

2

s∑
k=m

(√
λk(A+B)+

√
λm+s−k(A+B)

)

= √2(n− s)+ 1

2

s∑
k=m

(√
λk(A+B)+

√
2− λk(A+B)

)
.

Also,

(
√

2− 1)trace(A+ B)+ (2−√2)rank(A+ B)
= (√2− 1)

(
(n− s)+ rank(A+ B)+√2 rank(A+ B)

)
= (√2− 1)(n− s)+ (√2− 1)(

√
2+ 1)rank(A+ B)

= (√2− 1)(n− s)+ rank(A+ B)
= √2(n− s)− (n− s)+ (n−m+ 1) = √2(n− s)+ s −m+ 1.

Hence the inequality on the right in the problem statement is equivalent to
s∑

k=m

√
λk(A+ B)+√2− λk(A+ B)

2
≤ s −m+ 1.
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Because the square root function is strictly concave over (0,∞), we in fact have the
stronger inequality

√
λk(A+ B)+√2− λk(A+ B)

2
≤
√

1

2
λk(A+ B)+ 1

2

(
2− λk(A+ B)

) = 1

for m ≤ k ≤ s. Thus the inequality on the right is true, and equality occurs if and only if
λk(A+ B) = 1 for m ≤ k ≤ s, which holds if and only if all eigenvalues of A+ B belong
to the set {0, 1, 2}.

We next prove the inequality on the left. We use the well-known fact that if X and Y
are n-by-n complex matrices, then XY and YX have the same characteristic polynomial
and therefore the same spectrum. (See W. V. Parker (1953), The matrices AB and BA, this
Monthly, 60(5): 316.)

Lemma 4. All eigenvalues of AB are nonnegative real numbers.

Proof. Since A is positive semidefinite,
√
AB is well-defined. Since AB = √A(√AB),

we know that AB and (
√
AB)
√
A have the same eigenvalues. Since

√
A is also positive

semidefinite,
√
A = √A∗. Hence for x ∈ Cn,

x∗(
√
AB
√
A)x = (√Ax)∗B(√Ax) ≥ 0,

where the last step follows from the fact that B is positive semidefinite. Thus
√
AB
√
A

is positive semidefinite, so all its eigenvalues are nonnegative real numbers. Hence all
eigenvalues of AB are also nonnegative real numbers. �

Even if AB is not Hermitian, Lemma 4 implies that all eigenvalues of AB are real and
thus have a well-defined ordering. Hence we can designate the kth smallest eigenvalue of
the matrix AB as λk(AB).

Lemma 5. All eigenvalues of AB are at most 1.

Proof. We showed earlier that ‖Px‖2 ≤ ‖x‖2 for any n-by-n orthogonal projection matrix
P and vector x ∈ Cn. Thus for nonzero x ∈ Cn with Bx �= �0,

‖ABx‖2

‖x‖2
= ‖A(Bx)‖2

‖(Bx)‖2
· ‖Bx‖2

‖x‖2
≤ 1 · 1 = 1.

IfBx = �0, then ‖ABx‖2/‖x‖2 = 0 ≤ 1. For any eigenvector-eigenvalue pair (x, λ) ofAB,
we know ‖ABx‖2/‖x‖2 = ‖λx‖2/‖x‖2 = λ, so λ ≤ 1. �
Lemma 6. rank(AB) ≥ trace(AB).

Proof. The nullity of AB is the geometric multiplicity of 0 as an eigenvalue, which
is at most its algebraic multiplicity. Letting m′ = min{k ∈ Z : λk(AB) > 0}, we have
rank(AB) = n− nullity(AB) ≥ n−m′ + 1. By Lemma 5,

n−m′ + 1 ≥
n∑

k=m′
λk(AB) =

n∑
k=1

λk(AB) = trace(AB),

so rank(AB) ≥ trace(AB). Equality holds if and only if the geometric and algebraic mul-
tiplicities of the eigenvalue 0 of AB are equal and all eigenvalues of AB are 0 or 1. �

By Lemma 6, the result trace(A + B) − (2 −√2)rank(AB) ≤ trace
√
A+ B follows

from the stronger

(2−√2)trace(AB) ≥ trace(A+ B)− trace
√
A+ B, (1)
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which we now prove. Our expressions for trace(A+ B) and trace
√
A+ B yield

trace(A+B)− trace
√
A+B = (2−√2)(n− s)+

s∑
k=m

(
λk(A+B)−

√
λk(A+B)

)

= (2−√2)(n− s)+ 1

2

s∑
k=m

(
2−√λk(A+ B)−√2− λk(A+ B)

)

= (2−√2)(n− s)+ 1

2

s∑
k=m

(
2−√1+ αk −

√
1− αk

)
,

where αk = λk(A+ B)− 1 ∈ (−1, 1) for m ≤ k ≤ s. Since trace(AB) = trace(BA) and
(A+ B)2 = A2 + B2 + AB + BA = A+ B + AB + BA , we have

trace(AB) = 1

2

(
trace((A+B)2)− trace(A+B)) = 1

2

n∑
k=1

(
λk(A+B)2 − λk(A+B)

)

= 1

2

(
(22−2)(n−s)+

s∑
k=m

λk(A+B)2 −
s∑

k=m
λk(A+B)+ (02−0)(m−1)

)

= (n− s)+ 1

4

s∑
k=m

(
λk(A+ B)2 + (2− λk(A+ B))2 − 2

)

= (n− s)+ 1

4

s∑
k=m

(
(1+ αk)2 + (1− αk)2 − 2

) = (n− s)+ 1

2

s∑
k=m

α2
k ,

where the third line follows from the second by Lemma 1. Thus (1) is equivalent to

(2−√2)(n− s)+ 2−√2

2

s∑
k=m

α2
k ≥ (2−

√
2)(n− s)+ 1

2

s∑
k=m

(
2−√1+αk−

√
1−αk

)
,

which in turn is equivalent to
s∑

k=m

(
(2−√2)α2

k +
√

1+ αk +
√

1− αk − 2
)
≥ 0.

It suffices to prove the stronger inequality (2 −√2)α2 +√1+ α +√1− α − 2 ≥ 0
for α ∈ (−1, 1). This stronger inequality is equivalent to√

2+ (2−√2)(1− α2) ≤ √1+ α +√1− α.
Since both sides of this new inequality are nonnegative, we can square both sides to obtain
the equivalent 2

√
2(2−√2)β2 + (2−√2)2β4 ≤ 2β, where β = √1− α2 ∈ (0, 1]. Since

β is positive, we can divide by β to reduce to the equivalent inequality

2
√

2(2−√2)β + (2−√2)2β3 ≤ 2. (2)

The function mapping β to 2
√

2(2−√2)β + (2−√2)2β3 is strictly increasing on [0, 1],
and at β = 1 the value is 2, so (2) holds. Thus the desired inequality

(2−√2)trace(AB) ≥ trace(A+ B)− trace
√
A+ B

holds for all orthogonal projection matrices A and B, with equality if and only if αk = 0
form ≤ k ≤ s, which happens if and only if all eigenvalues ofA+B lie in the set {0, 1, 2}.

This implies the original inequality on the left in the problem statement,

trace(A+ B)− (2−√2)rank(AB) ≤ trace
√
A+ B,
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with equality if and only if (a) all eigenvalues ofA+B lie in {0, 1, 2}, (b) all eigenvalues of
AB lie in {0, 1}, and (c) 0 has equal algebraic and geometric multiplicity as an eigenvalue
of AB. As we showed earlier, the original inequality on the right holds with equality if
and only if (a) holds. We now show that (a) is equivalent to AB = BA. Finally, we show
that AB = BA implies (b) and (c) to complete the proof that AB = BA is necessary and
sufficient for equality in each inequality in the problem statement.

We analyze the three subspaces {x : (A+ B)x = λx} for λ ∈ {0, 1, 2}. First, consider
λ = 0. Since A + B is positive semidefinite, (A + B)x = �0 implies 0 = x∗(A + B)x =
x∗Ax + x∗Bx, which implies 0 = x∗Ax = (Ax)∗(Ax) and 0 = x∗Bx = (Bx)∗(Bx), or
Ax = Bx = �0. Thus {x : (A+ B)x = �0} = kerA ∩ kerB.

Next, consider λ = 2. If (A+ B)x = 2x, then x satisfies equality in both halves of

‖(A+ B)x‖2 ≤ ‖Ax‖2 + ‖Bx‖2 ≤ ‖x‖2 + ‖x‖2,

which occurs if and only if Ax = Bx = x. Thus {x : (A+ B)x = 2x} = imA ∩ imB.
Finally, consider λ = 1. Note that

(A+ B)x = x ⇐⇒ Bx = (I − A)x
=⇒ A(Bx) = (A− A2)x = �0 ⇐⇒ Bx ∈ kerA.

Similarly, (A+B)x = x impliesAx ∈ kerB. Thus a necessary condition for (A+ B)x = x
is the existence of vectors xA ∈ imA∩ kerB and xB ∈ imB ∩ kerA satisfying xA + xB = x.
This condition is also sufficient, since if x admits such a decomposition, then

(A+ B)x = (A+ B)(xA + xB)
= AxA + BxA + AxB + BxB = xA + �0+ �0+ xB = x.

Thus {x : (A + B)x = x} is the direct sum of the orthogonal subspaces imA ∩ kerB
and kerA ∩ imB. The orthogonality of these subspaces crucially means that the subspace
{x : (A + B)x = x} has an orthonormal basis that can be partitioned into orthonormal
bases of imA ∩ kerB and kerA ∩ imB.

Since A + B is unitarily diagonalizable (by the spectral theorem), A + B admits an
orthonormal basis of n eigenvectors, so the eigenvectors of A+ B are all associated with
eigenvalues in the set {0, 1, 2} if and only if there is an orthonormal basis of Cn that
partitions into orthonormal bases of the pairwise orthogonal subspaces kerA ∩ kerB,
imA ∩ imB, imA ∩ kerB, and kerA ∩ imB. This condition holds if and only if there is an
n-by-n unitary matrix U whose columns all lie in (kerA ∪ imA) ∩ (kerB ∪ imB), which
is equivalent to saying that the columns of U are eigenvectors of both A and B.

Thus the eigenvalues of A+ B all belong to {0, 1, 2} if and only if A and B are simul-
taneously unitarily diagonalizable, meaning that there are diagonal matrices DA and DB

and a single unitary matrix U satisfying A = UDAU
∗ and B = UDBU

∗. This holds if
and only if AB = BA, by a well-known result in matrix analysis stating that two diag-
onalizable matrices commute if and only if they are simultaneously diagonalizable. (See
R. A. Horn and C. R. Johnson (2013), Matrix Analysis, 2nd ed., Cambridge University
Press.)

It remains to show that AB = BA implies the conditions (b) and (c) stated earlier.
As just mentioned, AB = BA implies the existence of diagonal matrices DA and DB

and a single unitary matrix U satisfying A = UDAU
∗ and B = UDBU

∗, so AB =
(UDAU

∗)(UDBU
∗) = U(DADB)U

∗. Thus the matrix DADB displays the eigenvalues of
AB along its main diagonal, which is the elementwise product of the main diagonals ofDA

and DB . Since all entries in DA and DB are 0 or 1, all such elementwise products are also
0 or 1, so all eigenvalues of AB belong to {0, 1}, which implies (b). Finally, AB = BA
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implies that AB is diagonalizable, which means that every eigenvalue of AB has equal
algebraic and geometric multiplicity, implying (c).

Also solved by E. A. Herman, R. A. Horn, and the proposer.

Alternating Coefficients of Powers of Polynomials

12286 [2021, 946]. Proposed by Ira Gessel, Brandeis University, Waltham, MA. Let p be a
prime number, and let m be a positive integer not divisible by p. Show that the coefficients
of (1+ x + · · · + xm−1)p−1 that are not divisible by p are alternately 1 and −1 modulo p.
For example, (1+ x + x2 + x3)4 ≡ 1− x + x4 − x6 + x8 − x11 + x12 (mod 5).

Solution by Jayanta Manoharmayum, University of Sheffield, Sheffield, UK. Consider a
formal power series with coefficients in Zp given by f (x) = ∑∞k=0 akx

k with a0 = 1.
Letting (1 − x)−1f (x) = ∑∞n=0 bnx

n, we have bn = ∑n
k=0 ak . Hence b0 = 1 and bn =

bn−1 + an for n ≥ 1. We conclude that the nonzero coefficients of f alternate between 1
and −1 if and only if each coefficient of (1− x)−1f (x) is 0 or 1.

It therefore suffices to show that each nonzero coefficient in the expansion of

(1− x)−1(1+ x + · · · + xm−1)p−1

is 1. Using (a + b)p = ap + bp (modulo p), we compute

(1+ x + · · · + xm−1)p−1 =
(

1− xm
1− x

)p
· 1− x

1− xm =
(1− xpm)(1− x)
(1− xp)(1− xm) ,

and thus

(1− x)−1(1+ x + · · · + xm−1)p−1 = 1+ xm + · · · + xm(p−1)

1− xp

=
p−1∑
k=0

xkm
(
1+ xp + x2p + · · · ) .

Since m and p are relatively prime, the exponents 0,m, 2m, . . . , (p − 1)m are distinct
modulo p. It follows that each power of x appears in the series at most once, so each
coefficient is either 0 or 1.

Editorial comment. The proof generalizes directly to show that, for m and n relatively
prime, the nonzero coefficients of

(1− xmn)(1− x)
(1− xn)(1− xm)

alternate between 1 and −1.

Also solved by T. Amdeberhan & V. H. Moll, N. Caro-Montoya (Brazil), J.-P. Grivaux (France), N. Hodges
(UK), Y. J. Ionin, J. H. Lindsey II, P. W. Lindstrom, O. P. Lossers (Netherlands), A. Pathak (India), M. Reid,
A. Stadler (Switzerland), A. Stenger, R. Stong, B. Sury (India), R. Tauraso (Italy), M. Tetiva (Romania),
M. Wildon (UK), L. Zhou, and the proposer.

An Application of the Jacobi Triple Product

12289 [2021, 946]. Proposed by George E. Andrews, Pennsylvania State University, Uni-
versity Park, PA, and Mircea Merca, University of Craiova, Craiova, Romania. Prove

∞∑
n=0

2 cos

(
(2n+ 1)π

3

)
qn(n+1)/2 =

∞∏
n=1

(1− qn)(1− q6n−1)(1− q6n−5),

when |q| < 1.
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Solution by Rishabh Sarma, University of Florida, Gainesville, FL. Let L denote the left
side of the desired identity. With ω = e2πi/3, we have

ωn−1 + ω−(n−1)

2
= cos

(
2π(n− 1)

3

)
= cos

(
π − (2n+ 1)π

3

)
= − cos

(
(2n+ 1)π

3

)
.

When m = −n− 1, we have 2m+ 1 = −(2n+ 1) and m(m+ 1)/2 = n(n+ 1)/2. This
and the computation above yield

L =
∞∑

n=−∞
cos

(
(2n+ 1)π

3

)
qn(n+1)/2 = −1

2

∞∑
n=−∞

(
ωn−1 + ω−(n−1)) qn(n+1)/2. (1)

For z �= 0 and |q| < 1, the Jacobi triple product identity states
∞∑

n=−∞
znqn

2 =
∞∏
n=0

(1− q2n+2)(1+ zq2n+1)(1+ z−1q2n+1). (2)

Writing (2) using q
1
2 instead of q and then letting z = ωq 1

2 and multiplying by ω−1, we
obtain

∞∑
n=−∞

ωn−1qn(n+1)/2 = ω−1
∞∏
n=0

(1− qn+1)(1+ ωqn+1)(1+ ω−1qn)

= ω−1(1+ ω−1)

∞∏
n=0

(1− qn+1)(1+ ωqn+1)(1+ ω−1qn+1). (3)

Similarly, writing (2) using q
1
2 instead of q and then letting z = ω−1q

1
2 and multiplying

by ω yields
∞∑

n=−∞
ω−(n−1)qn(n+1)/2 = ω

∞∏
n=0

(1− qn+1)(1+ ω−1qn+1)(1+ ωqn)

= ω(1+ ω)
∞∏
n=0

(1− qn+1)(1+ ω−1qn+1)(1+ ωqn+1). (4)

Note that ω−1(1+ ω−1)+ ω(1+ ω) = −2. In addition,

(1+ ωxn)(1+ ω−1xn) = 1− xn + x2n = (1+ x3n)/(1+ xn).
Thus substituting (3) and (4) into (1) yields

L = −1

2

(
ω−1(1+ ω−1)+ ω(1+ ω)) ∞∏

n=0

(1− qn+1)(1+ ω−1qn+1)(1+ ωqn+1)

=
∞∏
n=0

(1− qn+1)(1+ ω−1qn+1)(1+ ωqn+1) =
∞∏
n=1

(1− qn)1+ q3n

1+ qn .

Finally, the claimed identity follows from
∞∏
n=1

1+ q3n

1+ qn =
∞∏
n=1

(1− q6n)(1− qn)
(1− q3n)(1− q2n)

=
∞∏
n=1

1− q2n−1

1− q6n−3
=
∞∏
n=1

(1− q6n−1)(1− q6n−5),
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where in the second line we have in two stages canceled common factors in the numerator
and denominator.

Also solved by T. Amdeberhan & V. H. Moll, K. Banerjee & M. G. Dastidar (Austria), A. Berkane (Algeria),
H. Chen (US), R. Hemmecke (Austria), N. Hodges (UK), W. P. Johnson, P. Lalonde (Canada), K.-W. Lau
(China), J. Manoharmayum (UK), R. Molinari, M. Omarjee (France), Z. Shen (China), A. Stadler (Switzer-
land), A. Stenger, R. Stong, R. Tauraso (Italy), M. Wildon (UK), L. Zhou, and the proposer.

Analytic Solutions of a Functional Equation

12290 [2021, 946]. Proposed by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.
Find all analytic functions f : C→ C that satisfy

|f (x + iy)|2 = |f (x)|2 + |f (iy)|2
for all real numbers x and y.

Solution by Raymond Mortini, Université du Luxembourg, Esch-sur-Alzette, Luxembourg,
and Rudolf Rupp, Technische Hochschule Nürnberg, Nürnberg, Germany. We show that
the solutions are given by f (z) = az, f (z) = a sin(kz), and f (z) = a sinh(kz), where
a ∈ C and k ∈ R. It is easy to check that each of these satisfies the given equation, using
the identities

sin(x + iy) = sin x cosh y + i cos x sinh y

and

sinh(x + iy) = sinh x cos y + i cosh x sin y.

Conversely, suppose that f is an analytic function satisfying the given equation. By
setting x = y = 0 we see that f (0) = 0. Now let h(x + iy) = |f (x + iy)|2 = (f f )
(x + iy). Note that

hxy(x + iy) = ∂2

∂y∂x

(|f (x)|2 + |f (iy)|2) = 0.

Also, fx = f ′, fy = ifx = if ′, fxy = (f ′)y = if ′′, and f y = (fy) = ifx = −if x . Hence

0 = hxy = fxyf + f f xy + fxf y + fyf x = 2 Re(fxyf ) = −2 Im(f ′′f ).

Since |f |2 = f f is a real-valued function, it follows that the meromorphic function
f ′′/f = f ′′f /|f |2 is real-valued where defined. If we assume that f is not identically
zero, then this can happen only when f ′′/f is a real constant λ.

The differential equation f ′′ = λf in C has solutions az+ d if λ = 0, αe
√
λz + βe−

√
λz

if λ > 0, and αei
√|λ|z + βe−i√|λ|z if λ < 0. Since f (0) = 0, we have d = 0 or β = −α.

Setting k = √|λ| yields the claimed expressions for f (z).

Also solved by O. Kouba (Syria), J. Manoharmayum (UK), R. Stong, and the proposer.

A Perpendicularity Involving the Incenter and Nagel Point

12291 [2021, 947]. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania, and
Petru Braica, Satu Mare, Romania. The Nagel point of a triangle is the point common to
the three segments that join a vertex of the triangle to the point at which an excircle touches
the opposite side. Let ABC be a triangle with incenter I and Nagel point J . Prove that AJ
is perpendicular to the line through the orthocenters of triangles IAB and IAC.

Solution by Li Zhou, Polk State College, Winter Haven, FL. Suppose that the incircle ω of
�ABC is tangent to BC at D and AB at E. Extend DI to intersect ω again at K , and let
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AK intersect ω again at L. The tangent line to ω atK is parallel to BC, and therefore there
is a homothety centered at A that sends this tangent line to BC. The image of ω under
this homothety is the excircle tangent to BC, and the image of K is the point where this
excircle is tangent to BC. Since the image ofK is on the line AL, it follows that the Nagel
point J lies on AL.

Let H be the intersection point
of EI and LD. Since KD is a
diameter of ω, KL ⊥ LD, and
since AB is tangent to ω at E,
EI ⊥ AB. It follows that A,
E, L, and H lie on the circle
with diameter AH . Therefore
∠AHE = ∠ALE = ∠KDE,
and since �IDE is isosce-
les, ∠KDE = ∠DEH . Thus
AH ‖ ED. Since BI is the

B H

C

D
L

I

E K

A

perpendicular bisector of DE, we have BI ⊥ AH . Combining this with IH ⊥ AB, we
conclude that H is the orthocenter of triangle IAB. Likewise, the orthocenter of �IAC is
on LD as well, completing the proof.

Also solved by M. Bataille (France), C. Chiser (Romania), N. S. Dasireddy (India), I. Dimitrić, G. Fera
(Italy), O. Geupel (Germany), J.-P. Grivaux (France), N. Hodges (UK), W. Janous (Austria), O. Kouba (Syria),
J. H. Lindsey II, N. Osipov (Russia), C. G. Petalas (Greece), C. R. Pranesachar (India), V. Schindler (Germany),
A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt, T. Zvonaru (Romania), Davis Problem Solv-
ing Group, UM6P Math Club (Morocco), and the proposer.

The Congruence Class of a Trigonometric Power

12292 [2021, 947]. Proposed by Nikolai Osipov, Siberian Federal University, Krasnoyarsk,
Russia. Let p be a prime number, and let r = 1/(2 cos(4π/7)). Evaluate �rp+2� modulo
p.

Solution by UM6P Math Club, Mohammed VI Polytechnic University (UM6P), Ben Guerir,
Morocco. For p /∈ {2, 7}, when p is congruent to ±1, ±2, or ±3 modulo 7, the value of
�rp+2� is congruent modulo p to −12, −5, or 2, respectively. For the exceptions, �r4� ≡ 1
(mod 2) and �r9� ≡ 2 (mod 7).

Let θ = 2π/7, so r = 1/(2 cos 2θ). Also let s = 1/(2 cos θ) and t = 1/(2 cos 4θ). For
x ∈ {θ, 2θ, 4θ}, we have 3x ≡ −4xmod 2π , so sin 3x + sin 4x = 0. Using the multiple-
angle formulas sin 3x = 3 sin x − 4 sin3 x and

sin 4x = 2 sin 2x cos 2x = 4 sin x cos x(cos2 x − sin2 x),

we compute

0 = sin 3x + sin 4x

sin x
= 3− 4 sin2 x + 4 cos3 x − 4 cos x sin2 x

= 8 cos3 x + 4 cos2 x − 4 cos x − 1.

Thus r , s, and t satisfy z−3 + z−2 − 2z−1 − 1 = 0 and hence z3 + 2z2 − z − 1 = 0. Let
Sn = rn + sn + tn. From the equation in z satisfied by r , s, and t , we obtain the recurrence
Sn+3 = −2Sn+2 + Sn+1 + Sn. Since (z − r)(z − s)(z − t) = z3 + 2z2 − z − 1, the initial
conditions are S0 = 3, S1 = −2, and

S2 = S2
1 − 2(rs + st + tr) = 4− 2(−1) = 6.
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The recurrence then implies that Sn is an integer for n ≥ 0. Since s ≈ 0.80 and t ≈ −0.55,
we have sn + tn ∈ (0, 1) and �rn� = Sn − 1 when n ≥ 1.

Let ω = e2πi/7. Since cos x = (eix + e−ix)/2, we have

1/r = ω2 + ω−2, 1/s = ω + ω−1, and 1/t = ω4 + ω−4.

In the ring Fp[ω] for prime p, we have (x + y)p = xp + yp, so

1/rp = ω2p + ω−2p, 1/sp = ωp + ω−p, and 1/tp = ω4p + ω−4p.

In order to compute Sp+2, we need the pth powers of r , s, and t . These are obtained by
first “rationalizing the denominator” to express these quantities as polynomials in ω. For
example,

s = 1

ω + 1/ω
= ω

ω2 + 1
= ω(ω2 − 1)

ω4 − 1
= ω(ω2 − 1)(ω4 + 1)

ω8 − 1
= ω(ω2 − 1)(ω4 + 1)

ω − 1
.

Cancelingω− 1 and expanding yields s = ω6 + ω5 + ω2 + ω. Similarly, or by substituting
ω2 or ω4 for ω in the expression for s, we have r = ω5 + ω4 + ω3 + ω2 and t = ω6 + ω4 +
ω3 + ω.

Raising these expressions to the pth power multiplies the exponents by p, and the expo-
nents then reduce modulo 7. We need only consider three cases, since negating the expo-
nents in these polynomials does not change the values.

(i) If p ≡ ±1 (mod 7), then rp ≡ r , sp ≡ s, and tp ≡ t modulo p, reducing the computa-
tion to Sp+2 ≡ S3 = −2S2 + S1 + S0 = −12− 2+ 3 = −11 and �rp+2� ≡ −12.

(ii) If p ≡ ±2 (mod 7) with p �= 2, then rp ≡ t , sp ≡ r , and tp ≡ s modulo p, reducing
the computation to Sp+2 ≡ tr2 + rs2 + st2 = −4 (see comment below) and �rp+2� ≡ −5.

(iii) If p ≡ ±3 (mod 7), then rp ≡ s, sp ≡ t , and tp ≡ r modulo p, reducing the compu-
tation to Sp+2 ≡ sr2 + ts2 + rt2 = 3 (see comment below) and �rp+2� ≡ 2.

Finally, if p = 2, then �r4� = S4 − 1 = 25 ≡ 1 modp, and if p = 7, then �r9� =
S9 − 1 = −1461 ≡ 2 modp.

Editorial comment. The sums of powers of roots of a polynomial f (denoted Sk above)
are called Newton sums owing to Newton’s identities, which compute them in terms of
the coefficients of f . In particular, Sk = −(kck +∑k−1

i=1 ciSk−i ), where f (x) =∑ ckx
n−k

with c0 = 1 and ck = 0 for k > n. More than half a dozen proofs are known; those in this
Monthly include 75 (1968), 396–397, 99 (1992), 749–751, and 110 (2003), 232–234. For
further discussion, see artofproblemsolving.com/wiki/index.php/Newton’s Sums.

As in the solution above, most solvers needed to calculate α and β, where α = rs2 +
st2 + tr2 and β = rt2 + sr2 + ts2. Richard Stong noted that α + β = S1S2 − S3 = −1 and
αβ = (rs + st + tr)3 + rst · S3

1 = 12, yielding {α, β} = {−4, 3}. Allen Stenger noted that
α and β must be integers and computed them to the nearest integer. Michael Reid expanded
them in terms of ω. Roberto Tauraso noted that the sequence {Sn} (OEIS A094648) is
related to Catalan’s constant.

Also solved by G. Fera (Italy), K. T. L. Koo (China), O. P. Lossers (Netherlands), M. Omarjee (France),
M. Reid, A. Stenger, R. Stong, R. Tauraso (Italy), and the proposer.

A Real Identity

12293 [2022, 86]. Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Roberto Tauraso,
University of Rome Tor Vergata, Rome, Italy. Let n be a positive integer and r be a positive
real number. Prove

n∑
k=0

(−1)k

⎛
⎝ k∑
j=0

rj
(
n

j

)⎞⎠
⎛
⎝ k∑
j=0

(−r)j
(
n

j

)⎞⎠ = ( (r + 1)n + (r − 1)n

2

)2

.

776 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 130



Solution by Martin Widmer, University of London, London, UK. Let a0 = 0, let

ak =
(
n

0

)
+
(
n

2

)
r2 + · · · +

(
n

k − 1

)
rk−1

when 0 < k ≤ n+ 1 and k is odd, and let

ak =
(
n

1

)
r +

(
n

3

)
r3 + · · · +

(
n

k − 1

)
rk−1

when 0 < k ≤ n+ 1 and k is even. We compute

(−1)k

⎛
⎝ k∑
j=0

rj
(
n

j

)⎞⎠
⎛
⎝ k∑
j=0

(−r)j
(
n

j

)⎞⎠ = (ak+1 + ak)(ak+1 − ak) = a2
k+1 − a2

k .

Finally,
n∑
k=0

(a2
k+1 − a2

k ) = a2
n+1 =

(
(r + 1)n + (r − 1)n

2

)2

.

Also solved by T. Amdeberhan & V. H. Moll, A. Berkane (Algeria), N. Caro-Montoya (Brazil), C. Curtis,
K. Gatesman, O. Geupel (Germany), N. Hodges (UK), P. Lalonde (Canada), O. P. Lossers (Netherlands),
J. Manoharmayum (UK), J. H. Nieto (Venezuela), M. Omarjee (France), E. Schmeichel, A. Stadler (Switzer-
land), R. Stong, M. Wildon (UK), L. Zhou, Fejéntaláltuka Szeged Problem Solving Group (Hungary), UM6P
Math Club (Morocco), and the proposers.

Exploring a Planet, Revisited, Revisited

12342 [2022, 785]. Proposed by George Stoica, Saint John, NB, Canada. Let v1, . . . , vn
be unit vectors in Rd . Prove that if u maximizes

∏n
i=1 |vi · u| over all unit vectors u ∈ Rd ,

then for all i, |vi · u| ≥ sin(π/(2n)).

Editorial comment. Several readers pointed out that this problem was presented and solved
in Y. Zhao (2022), Exploring a planet, revisited, this Monthly 129(7): 678–680. As
Zhao’s note explains, the problem is connected to a conjecture of László Fejes Tóth (1973),
Research problems: Exploring a planet, this Monthly 80(9): 494–498. A preprint of
Zhao’s note was posted to arxiv.org before we received this submitted problem, and the
problem here is taken verbatim from Zhao’s note. We regret the repetition without proper
attribution.

CLASSICS

C18. Due to Thomas Cover; suggested by Richard Stanley. Alice chooses two distinct
numbers and writes each of them on a slip of paper. Bob selects one of the two slips
at random and looks at the number on it. He must then choose to either keep that slip or
switch to the other slip. Bob wins if he ends up with the slip with the larger number. Is there
anything Bob can do to ensure that, no matter what numbers Alice chooses, his probability
of winning is greater than 1/2?

Choosing n Numbers With Sum 0 Modulo n

C17. Due to Paul Erdős, Abraham Ginzburg, and Abraham Ziv; suggested by Gabriel
Carroll and Yuri Ionin, independently. Given 2n − 1 integers, show that it is possible to
choose n of them that sum to a multiple of n.

Solution. Let the integers be a1, . . . , a2n−1. We first address the case of prime n. For
I ⊂ {1, . . . , 2n − 1} with |I | = n, let SI =

(∑
i∈I ai

)n−1
, and let S =∑I SI . Thinking
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momentarily of {a1, . . . , a2n−1} as a set of indeterminates, the expressions SI and S are
homogenous polynomials of degree n − 1. Each monomial in S will have k of the inde-
terminates represented for some k with 1 ≤ k ≤ n − 1, and each such monomial will
arise with equal coefficient in SI for precisely

(2n−1−k
n−k

)
choices of I . Since

(2n−1−k
n−k

) ≡ 0
(mod n), the coefficient of each monomial in S when like terms are gathered is a multiple
of n. Hence S ≡ 0 (mod n).

On the other hand, if the result of the problem is false, then for every I , we have SI �≡ 0
(mod n) and so SI ≡ 1 (mod n) by Fermat’s little theorem. Since there are

(2n−1
n

)
such

sets I , and since(
2n− 1

n

)
≡ (2n− 1)(2n− 2) · · · (n+ 1)

(n− 1)(n− 2) · · · 1 ≡ 1 (mod n),

we conclude that S ≡ 1 (mod n), a contradiction. This proves the result when n is prime.
Finally, we extend the result to the case where n is any positive integer. We argue

by induction on n. Suppose that n = pm where p is prime, and suppose we are given
a multiset {a1, . . . , a2n−1}. Repeatedly applying the prime case of the result to p, we

extract sets I1, . . . , I2m−1 with Ij ⊂ {1, . . . , 2n − 1} \
(⋃j−1

s=1 Is

)
such that |Ij | = p and∑

i∈Ij ai ≡ 0 (mod p) for all j ∈ {1, . . . , 2m− 1}. The reason this is possible is that, as
long as j ≤ 2m− 1,

∣∣∣{1, . . . 2n− 1} \
(
j−1⋃
s=1

Is

)∣∣∣ = 2n− 1− (j − 1)p ≥ 2n− 1− (2m− 2)p = 2p − 1,

and so the result for p ensures a choice for Ij . Now, for j ∈ {1, . . . , 2m − 1}, let
bj = (1/p)∑i∈Ij ai . Applying the induction hypothesis to m and {b1, . . . , b2m−1}, we

obtain a set J ⊂ {1, . . . , 2m − 1} with |J | = m and
∑

j∈J bj ≡ 0 (mod m). The set
{ai : i ∈ Ij , j ∈ J } provides the subset of size n whose elements sum to a multiple of n.

Editorial comment. The result is from P. Erdős, A. Ginzburg, and A. Ziv (1961), Theorem
in the additive number theory, Bull. Res. Council Israel 10F, 41–43. The number 2n− 1
in the problem statement is optimal, as the multiset with n− 1 zeroes and n− 1 ones has
size 2n− 2 but no subset of size n summing to a multiple of n. Five separate proofs of the
result for prime n appear in N. Alon and M. Dubiner (1993), Zero-sum sets of prescribed
size, in Combinatorics, Paul Erdős is Eighty (Vol. 1), eds. D. Miklós, V. T. Sós, and T.
Szőnyi, Keszthely, 33–50, where the argument given here is attributed to N. Zimmerman.
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SOLUTIONS

Four Concyclic Points

12280 [2021, 856]. Proposed by Nguyen Duc Toan, Da Nang, Vietnam. Let ABC be an
acute scalene triangle with circumcenter O and orthocenter H . Let M and R be the mid-
points of segments BC and OH , respectively, let S be the reflection across BC of the
circumcenter of triangle BOC, and let T be the second point of intersection of the circum-
circle of triangle BHC and line OH . Prove that M , R, S, and T are concyclic.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
The line OM passes through S, and the line OH passes through both R and T , so by the
power law, to prove that the points M , S, R, and T are concyclic it suffices to show that
OR ·OT =OM ·OS and that O lies between R and T if and only if O lies between M
and S.

Let α, β, and γ be the angles
at vertices A, B, and C, respec-
tively, of 
ABC, and let a=BC.
By the inscribed angle theorem,
∠BOC= 2α, and therefore
∠BOM =α. Since ∠BMO is a
right angle, we have

OM = BM cot(∠BOM) = a

2
cotα.

Since CH is perpendicular to AB,
we have ∠BCH = π/2 − β. Like-
wise, ∠CBH = π/2− γ , so

∠BHC = π − (π/2− β)
− (π/2− γ ) = β + γ = π − α.
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Let P and Q be the intersection points of the circumcircle C of 
BHC and the line
OM , with P on the same side of BC as A and Q on the opposite side. Since ∠BPC =
∠BHC = π − α, we have ∠BPM = (π − α)/2 and

PM = a

2
cot

(
π − α

2

)
= a

2
tan

(α
2

)
.

Thus

OP = |OM − PM| = a

2

∣∣∣cotα − tan
(α

2

)∣∣∣ .
Similarly, ∠BQC = α, ∠BQM = α/2, QM = (a/2) cot(α/2), and

OQ = OM +QM = a

2

(
cotα + cot

(α
2

))
.

Thus by the power law for the circle C,

OR ·OT = 1

2
OH ·OT = 1

2
OP ·OQ = a2

8

∣∣∣cotα − tan
(α

2

)∣∣∣ (cotα + cot
(α

2

))
. (1)

Next, we claim that

OS = a

2
| cotα + cot(2α)|, (2)

and therefore

OM ·OS = a2

4
cotα | cotα + cot(2α)|. (3)

Let S ′ be the circumcenter of 
BOC, so that S is the reflection of S ′ across BC. The
calculation of OS depends on how α compares to π/4. Suppose first that α < π/4. In that
case, S ′ lies on the same side of BC as A, so S lies on the opposite side. By the inscribed
angle theorem, ∠BSC = ∠BS ′C = 2∠BOC = 4α and ∠BSM = 2α. Therefore SM =
BM cot(∠BSM) = (a/2) cot(2α), so

OS = OM + SM = a

2

(
cotα + cot(2α)

)
.

Since cotα and cot(2α) are positive in this case, this agrees with (2).
If α = π/4, then S = S ′ = M , so OS = OM = (a/2) cotα, which again agrees with

(2) because cot(2α) = 0. Finally, suppose α > π/4. In that case, S ′ lies on the opposite
side of BC from A and S lies on the same side. Therefore ∠BSC = ∠BS ′C = 2π − 4α,
∠BSM = π − 2α, SM = (a/2) cot(π − 2α) = −(a/2) cot(2α), and

OS = |OM − SM| = a

2
| cotα + cot(2α)|,

again confirming (2).
Combining (1) and (3), we see that establishingOR ·OT = OM ·OS reduces to show-

ing ∣∣∣cotα − tan
(α

2

)∣∣∣ (cotα + cot
(α

2

))
= 2 cotα | cotα + cot(2α)|.

After some rewriting (using 2 cot(2α) = cotα − tanα), we see that both sides are equal to
|3 cot2 α − 1|.

Finally, we must confirm the betweenness condition. For O to lie between R and T ,
it must be inside C, which happens if and only if ∠BOC > ∠BHC. Using the equations
∠BOC = 2α and ∠BHC = π − α, we see that this is equivalent to α > π/3. For O to
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lie between M and S, we must have S on the same side of BC as O and ∠BOC greater
than ∠BSC. By previous reasoning, this holds if and only if α > π/4 and 2α > 2π − 4α,
which again reduces to α > π/3, thus completing the proof.

Editorial comment. The requirements that 
ABC be acute and scalene are unnecessary,
as long as some exceptional situations are accounted for. For example, if AB = AC, then
the points M , R, S, and T are collinear, since all lie on the perpendicular bisector of BC.
If ∠BAC is a right angle, then O = M , H = A, the points M , R, and T are collinear, and
S is undefined.

Also solved by M. Bataille (France), H. Chen (China), K. Gatesman, O. Geupel (Germany), J.-P. Grivaux
(France), N. Hodges (UK), W. Janous (Austria), O. Kouba (Syria), K.-W. Lau (China), C. R. Pranesachar
(India), V. Schindler (Germany), A. Stadler (Switzerland), R. Stong, T. Wiandt, Davis Problem Solving Group,
and the proposer.

Generating the Positive Rational Numbers

12282 [2021, 856]. Proposed by George Stoica, Saint John, NB, Canada. Prove that the
multiplicative group generated by {√2n�/n : n ∈ Z+} is the group of positive rational
numbers.

Solution by Stephen M. Gagola Jr., Kent State University, Kent, OH. Let M be the multi-
plicative group generated by the set of rationals in the problem statement. We first show
that 3, 5, 7, 11, and 2 lie inM . To do this, we calculate here some small values of √2n�/n.

n 3 4 5 7 8 11

√2 n�/n 4/3 5/4 7/5 9/7 11/8 15/11

The product of the first four entries in the second row is 3, so 3 ∈ M . The equa-
tions 5 = 3(4/3)(5/4), 7 = 3(4/3)(5/4)(7/5), 11 = 3(3)(4/3)(5/4)(11/15), and 2 =
3(3)(4/3)(4/3)(11/8)(1/11) then show that 2, 5, 7, and 11 are also in M .

Let p be an odd prime number, and suppose that all primes less than p lie in M . Set
q = √2p�. Since p < q <

√
2p, if q is composite then all prime factors of q are less

than p and belong to M . Therefore q ∈ M and p = q/(√2p�/p) ∈ M .
Hence we may assume that q is an odd prime. The definition of q yields q <

√
2p <

q + 1, which implies
√

2 q/2 < p <
√

2 (q + 1)/2. Note that (q + 1)/2 is an integer.
Since the interval [

√
2 q/2,

√
2 (q + 1)/2] has length less than 1 and contains the integer

p, we conclude √2 (q + 1)/2� = p, and thus

p

(q + 1)/2
= 
√

2 (q + 1)/2�
(q + 1)/2

∈ M.

Since (q + 1)/2 < p, all prime factors of (q + 1)/2 belong to M , and it follows that so
does (q + 1)/2 itself. Therefore p ∈ M .

Since M contains all prime numbers, and 1 = √2�, it follows that M is the group of
all positive rationals.

Editorial comment. Gagola commented further that the set of “numerators,” namely
{√2 n� : n ∈ Z+}, also generates the group of positive rationals. First note inductively
that if n ∈ Z+ and (1 +√2)n = a + b√2, then a2 − 2b2 = (−1)n. Let p be prime, and
choose n odd and large enough so that b > p. We have a − √2 b = −1/(a + √2 b),
so a + ε = √2 b, where ε = 1/(a + √2 b) < 1/b. Therefore when k < b we have
ka + kε = √2 kb, where kε < 1. Thus √2 kb� = ka, and all these integers belong
to the group generated by the specified set. In particular, both a and pa belong to this
group, and hence so does p.
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Celia Schacht observed that the complete solution of this problem is the topic of I. Kátai
and B. M. Phong, On the multiplicative group generated by {[√2n]/n : n ∈ N}, Acta Math-
ematica Hungarica 145 (2015), no. 1, 80–87. She also cited two subsequent papers by the
same authors with the same title (II and III) dealing with deeper questions: (2015), Acta
Scientiarum Mathematicarum (Szeged) 81 no. 3–4, 431–436, and (2015), Acta Mathemat-
ica Hungarica 147 no. 1, 247–254.

Also solved by J. Boswell & C. Curtis, A. Dixit & S. Pathal (India), K. Gatesman, N. Hodges (UK),
O. P. Lossers (Netherlands), M. Reid, C. Schacht, A. Stadler (Switzerland), D. Terr, and the proposer.

A Triangle with Perimeter 2021

12284 [2021, 857]. Proposed by Zachary Franco, Houston, TX. Let ABC be a triangle
with circumcenter O, incenter I , orthocenter H , sides of integer length, and perimeter
2021. Suppose that the perpendicular bisector of OH contains A and I . Find the length of
BC.

Solution by José Heber Nieto, Universidad del Zulia, Maracaibo, Venezuela. We show that
BC = 679.

Let a, b, and c denote the lengths of sides BC, CA, and AB, respectively. We first show
that a2 = b2 + c2 ± bc.

Since either ∠ABC or ∠ACB is acute, by symmetry we may assume that ∠ABC is
acute. Let P be the foot of the altitude from A, and let M be the midpoint of AC. Let R
be the circumradius of
ABC, and let h = AP and u = BP . Note that since A lies on the
perpendicular bisector of OH , AH = AO = R.

We first consider the case in which 
ABC is acute. Triangles ABP , CHP , and AOM
are similar, since they all have a right angle and an angle equal to ∠ABC. Therefore

AP

BP
= CP

HP
and

AP

AB
= AM

AO
. (1)

Since 
ABC is acute, H is between A and P and P is between B and C, so CP = a − u
and HP = h− R. Hence the equations in (1) become

h

u
= a − u
h− R and

h

c
= b/2

R
. (2)

From the first of these equations we get hR + au = h2 + u2 = c2, and the second yields
hR = bc/2; combining these, we have au = c2 − bc/2.

Applying the Pythagorean theorem to
ACP yields h2 = b2 − (a − u)2, which implies
c2 − u2 = b2 − (a − u)2 and therefore a2 = b2 − c2 + 2au. Substituting au = c2 − bc/2,
we conclude a2 = b2 + c2 − bc.

If ∠ACB is obtuse, then similar reasoning can be used, except that now P is between
A and H and C is between B and P . Therefore CP = u − a and HP = R − h. The
equations in (2) still hold, so we again obtain a2 = b2 + c2 − bc.

If ∠ACB is a right angle, then H = C and O is the midpoint of AB, so c = 2R = 2b.
Thus by the Pythagorean theorem, a2 = c2 − b2 = b2 + c2 − 2b2 = b2 + c2 − bc.

It is not possible for ∠BAC to be a right angle, because that would imply H = A,
contradicting AH = R. Finally, we consider the case in which ∠BAC is obtuse. In this
case,A is between P andH and P is betweenB andC, soCP = a − u,HP = h+R, and
the first equation in (1) becomes h/u = (a − u)/(h + R). Imitating the earlier algebraic
reasoning then leads to the equation a2 = b2 + c2 + bc. This completes the proof that
a2 = b2 + c2 ± bc.

Since a + b+ c = 2021, we have (2021− b− c)2 = b2 + c2 ± bc, which simplifies to

tbc − 2 · 2021b − 2 · 2021c + 20212 = 0, (3)
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where t is either 1 or 3. We see that 2021 | tbc. Since 2021 = 43 · 47, either 47 | b and
43 | c or 43 | b and 47 | c (neither b nor c can be divisible by both 43 and 47, because b
and c are both less than 2021). By symmetry, we may assume b = 47x and c = 43y, where
0 < x < 43 and 0 < y < 47. Substituting into (3) gives

txy − 94x − 86y + 2021 = 0. (4)

If t = 1, then equation (4) can be rearranged to read

(x − 86)(y − 94) = 3 · 43 · 47.

Since 43 � x and 47 � y, we must have either x − 86 = ±3 · 47 or y − 94 = ±3 · 43. But
these are all inconsistent with 0 < x < 43 and 0 < y < 47, so this case is impossible.

Thus t = 3, and equation (4) is equivalent to

(3x − 86)(3y − 94) = 43 · 47.

In this case the only possibilities are 3x − 86 = ±47 and 3y − 94 = ±43. Since 3x − 86 =
47 does not give an integer value for x, we must have 3x − 86 = −47 and 3y − 94 = −43,
so x = 13, y = 17, b = 611, c = 731, and finally a = 2021− b − c = 679.

Editorial comment. An alternative proof of the equation a2 = b2 + c2 ± bc uses the well-
known equation AH = 2R| cosα|, where α denotes the measure of ∠BAC. This implies
that the perpendicular bisector ofOH passes throughA if and only if cosα = ±1/2, which
means α is either π/3 or 2π/3. The law of cosines then gives a2 = b2 + c2 ± bc.

Note that the condition that the perpendicular bisector of OH contains I was not used
in the solution above. In fact, this condition is implied by α = π/3 but contradicted by
α = 2π/3. To see this, let V be the midpoint of the arc BC of the circumcircle of 
ABC
that does not contain A. If α = π/3, then

−−⇀
OV = −−⇀AH , and therefore AHVO is a rhombus.

It follows that the perpendicular bisector ofOH isAV , which bisects ∠BAC and therefore

passes through I . On the other hand, if α = 2π/3, then
−−⇀
OV = −−−⇀AH . It follows that AV

is parallel to OH , and therefore the perpendicular bisector of OH , which passes through
A, does not pass through I .

Also solved by F. R. Ataev (Uzbekistan), M. Bataille (France), H. Chen (China), C. Chiser (Romania) &
N. Ivaschescu (Canada), G. Fera (Italy), K. Gatesman, O. Geupel (Germany), N. Hodges (UK), W. Janous
(Austria), K.-W. Lau (China), O. P. Lossers (Netherlands), C. R. Pranesachar (India), A. Stadler (Switzerland),
R. Stong, R. S. Tiberio, M. Vowe (Switzerland), T. Wiandt, H. Widmer (Switzerland), Davis Problem Solv-
ing Group, Eagle Problem Solvers, Fejéntaláltuka Szeged Problem Solving Group (Hungary), and the proposer.

A Sum and Integral That Cannot Be Interchanged

12285 [2021, 857]. Proposed by Atul Dixit, Indian Institute of Technology, Gandhinagar,
India. Prove

∞∑
m=1

∫ ∞
0

t cos t

t2 +m2u2
dt =

∫ ∞
0

(
− π

2u
cos t +

∞∑
m=1

t cos t

t2 +m2u2

)
dt

for u > 0.

Solution by Albert Stadler, Herrliberg, Switzerland. Integrating by parts twice, always tak-
ing the antiderivative that vanishes at 0, we get∫ ∞

0

t cos t

t2 +m2u2
dt =

∫ ∞
0

(t2 −m2u2) sin t

(t2 +m2u2)2
dt =

∫ ∞
0

2t (t2 − 3m2u2)

(t2 +m2u2)3
(1− cos t)dt.

Since this last integrand satisfies the bound∣∣∣∣2t (t2 − 3m2u2)

(t2 +m2u2)3
(1− cos t)

∣∣∣∣ ≤ 12t

(t2 +m2u2)2
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and
∞∑
m=1

∫ ∞
0

t

(t2 +m2u2)2
dt =

∞∑
m=1

1

2m2u2
<∞,

the dominated convergence theorem applies. Hence we can interchange summation and
integration to get

∞∑
m=1

∫ ∞
0

t cos t

t2 +m2u2
dt =

∫ ∞
0

∞∑
m=1

2t (t2 − 3m2u2)

(t2 +m2u2)3
(1− cos t) dt.

Next we integrate by parts twice “in the other direction,” this time choosing in each case
the antiderivative that vanishes as t →∞. To choose the right antiderivative in the second
integration by parts, we use the partial fraction decomposition of coth (see I. S. Gradshteyn
and I. M. Ryzhik (2007), Table of Integrals, Series, and Products, 7th ed., Burlington, MA:
Academic Press, p. 44, equation 1.421.4), to compute

lim
t→∞

∞∑
m=1

t

t2 +m2u2
= lim

t→∞

[
π

2u
coth

(
πt

u

)
− 1

2t

]
= π

2u
.

This leads to the calculation
∞∑
m=1

∫ ∞
0

t cos t

t2 +m2u2
dt =

∫ ∞
0
(1− cos t) d

(
−
∞∑
m=1

t2 −m2u2

(t2 +m2u2)2

)

=
∫ ∞

0
sin t

∞∑
m=1

t2 −m2u2

(t2 +m2u2)2
dt

=
∫ ∞

0
sin t d

(
π

2u
−
∞∑
m=1

t

t2 +m2u2

)

=
∫ ∞

0

(
− π

2u
cos t +

∞∑
m=1

t cos t

t2 +m2u2

)
dt.

Editorial comment. As the solution above shows, one integration by parts is sufficient to get
a situation where it is valid to pull the sum inside the integral, but to justify the interchange
one must give more careful bounds (as was done by O. P. Lossers). The proposer and
N. Hodges showed that the given integral I can be evaluated explicitly in terms of the
digamma function ψ as

I = 1

2
log

( u
2π

)
− 1

4

(
ψ

(
iu

2π

)
+ ψ

(
− iu

2π

))
.

This follows from identifying the final sum as in the solution above and using Gradshteyn
& Ryzhik (3.951.6).

Also solved by N. Hodges (UK), O. P. Lossers (Netherlands), J. Van Casteren & L. Kempeneers (Belgium),
and the proposer.

Another Consequence of Euler’s Identity

12287 [2021, 946]. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Univer-
sity of Cluj-Napoca, Cluj-Napoca, Romania. Prove

∞∑
n=1

⎛
⎝n

( ∞∑
k=n

1

k2

)2

− 1

n

⎞
⎠ = 3

2
− 1

2
ζ(2)+ 3

2
ζ(3),
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where ζ is the Riemann zeta function, defined by ζ(s) =∑∞k=1 1/ks .

Solution by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damas-
cus, Syria. Let Sn =∑∞k=n 1/k2. We rewrite the summand of the series in the form

nS2
n −

1

n
= Tn − Tn−1 + Un,

where T0 = 0 and we can evaluate both
∑
Un and limn→∞ Tn. By the telescoping of the

partial sums, the desired series converges to lim Tn +∑Un.
In order to obtain a suitable Tn, we define Tn in terms of the sequence S. Let Tn =

anS
2
n+1 + bnSn+1, where an and bn will be chosen later. Since Sn+1 = Sn − 1/n2,

Tn − Tn−1 = an
(
Sn − 1

n2

)2

+ bn
(
Sn − 1

n2

)
− an−1S

2
n − bn−1Sn

= (an − an−1)S
2
n +
−2an
n2

Sn + an
n4
+ (bn − bn−1)Sn − bn

n2
.

To make the coefficient on S2
n be n, set an = n(n+ 1)/2. Now

Tn − Tn−1 = nS2
n +
−(n+ 1)

n
Sn + n+ 1

2n3
+ (bn − bn−1)Sn − bn

n2

= nS2
n −

1

n
+ (bn − bn−1 − (1+ 1/n))Sn + En,

where En = (n+ 1)/(2n3)− bn/n2 + 1/n. To eliminate the coefficient on Sn, set b0 = 0
and bn = bn−1 + 1 + 1/n for n ≥ 1. Thus bn = n + Hn, where Hn is the nth harmonic
number

∑n
i=1 1/i. Now

Tn − Tn−1 = nS2
n −

1

n
+ 1

2n2
+ 1

2n3
− Hn
n2
.

Since T0 = 0, summing this identity yields

m∑
n=1

(
nS2

n −
1

n

)
= Tm +

m∑
n=1

Hn

n2
−

m∑
n=1

1

2n2
−

m∑
n=1

1

2n3
.

Letting m→∞ and using the Euler identity
∑∞

n=1Hn/n
2 = 2ζ(3), we obtain

∞∑
n=1

(
nS2

n −
1

n

)
= lim

m→∞ Tm + 2ζ(3)− 1

2
ζ(2)− 1

2
ζ(3).

Returning to the definition of Tm, we now have

Tm = m(m+ 1)

2
S2
m+1 + (m+Hm)Sm+1. (∗)

To compute the limit, we use 1/k − 1/(k + 1) < 1/k2 < 1/(k − 1) − 1/k to obtain
1/m < Sm < 1/(m− 1), and thus limm→∞mSm = 1. Hence the first term in (∗) tends to
12/2 and the second term in (∗) tends to 1 (since Hm/m→ 0). This gives limm→∞ Tm =
1/2+ 1 = 3/2, and the desired result follows.

Editorial comment. A simple proof of Euler’s formula for ζ(3) appears in an editorial
comment following problem 12091 [2019, 180; 2020, 853] in this Monthly. The solution
to problem 2136 from Mathematics Magazine by Kelly D. McLenithan (2023) Math. Mag.

686 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 130



96, 90–91 uses similar methods, in particular the same identity of Euler, which it observes
is the q = 2 case of Euler’s 1775 result

2
∞∑
k=1

Hk

kq
= (q + 2)ζ(q + 1)−

q−2∑
m=1

ζ(m+ 1)ζ(q −m).

Also solved by T. Amdeberhan & V. H. Moll, K. F. Andersen (Canada), M. Bataille (France), A. Berkane
(Algeria), O. Bordellés (France), P. Bracken, B. Bradie, B. S. Burdick, H. Chen, A. De la Fuente, G. Fera
(Italy), O. Geupel (Germany), E. A. Herman, N. Hodges (UK), M. Hoffman, K.-W. Lau (China), O. P. Lossers
(Netherlands), J. Manoharmayum (UK), C. Morin (France), M. Omarjee (France), C. Sanford, A. Stadler
(Switzerland), A. Stenger, S. M. Stewart (Saudi Arabia), R. Tauraso (Italy), T. Wiandt, UM6P Math Club
(Morocco), and the proposer.

The Dirichlet Integral in Disguise

12288 [2021, 946]. Proposed by Seán Stewart, Bomaderry, Australia. Prove∫ ∞
0

(
1− x2 sin2

(
1

x

))2

dx = π

5
.

Solution by Ming-Can Fan, Huizhou University, Guangdong, China. The substitution x =
1/t yields∫ ∞

0

(
1− x2 sin2

(
1

x

))2

dx =
∫ ∞

0

(
t2 − sin2 t

t3

)2

dt

=
∫ ∞

0

2t2 − 2 sin2 t

t4
dt +

∫ ∞
0

sin4 t − t4
t6

dt.

Using 2 sin2 t = 1− cos(2t) and integration by parts three times yields∫ ∞
0

2t2 − 2 sin2 t

t4
dt =

∫ ∞
0

2t2 − 1+ cos(2t)

t4
dt

= −2t2 − 1+ cos(2t)

3t3

∣∣∣∣
∞

0

+
∫ ∞

0

4t − 2 sin(2t)

3t3
dt

= −2t − sin(2t)

3t2

∣∣∣∣
∞

0

+
∫ ∞

0

2− 2 cos(2t)

3t2
dt

= −2− 2 cos(2t)

3t

∣∣∣∣
∞

0

+
∫ ∞

0

4 sin(2t)

3t
dt = 4

3
· π

2
= 2π

3
,

where in the last step we have used the well-known fact that
∫∞

0 sin(at)/t dt = π/2 for
all a > 0. (The case a = 1 is known as the Dirichlet integral, and the general formula
follows via the substitution u = at .) Similarly, using sin4 t = (3+ cos(4t)− 4 cos(2t))/8
and integration by parts five times, we get∫ ∞

0

sin4 t − t4
t6

dt =
∫ ∞

0

(3+ cos(4t)− 4 cos(2t))/8− t4
t6

dt

=
∫ ∞

0

2 sin(2t)− 16 sin(4t)

15t
dt = 2

15
· π

2
− 16

15
· π

2
= −7π

15
.

Hence ∫ ∞
0

(
1− x2 sin2

(
1

x

))2

dx = 2π

3
− 7π

15
= π

5
.
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Also solved by U. Abel & V. Kushnirevych (Germany), T. Amdeberhan & V. H. Moll, K. F. Andersen (Canada),
M. Bataille (France), A. Berkane (Algeria), P. Bracken, H. Chen, Ó. Ciaurri (Spain), G. A. Edgar, G. Fera
(Italy), M. L. Glasser, G. C. Greubel, J.-P. Grivaux (France), N. Grivaux (France), J. A. Grzesik, E. A. Herman,
N. Hodges (UK), F. Holland (Ireland), W. Janous (Austria), O. Kouba (Syria), K.-W. Lau (China), J. Londoño
& J. Quintero (Colombia), O. P. Lossers (Netherlands), J. Manoharmayum (UK), K. D. McLenithan, R. Mortini
(Luxembourg) & R. Rupp (Germany), A. Natian, M. Omarjee (France), A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), J. Van Casteren & L. Kempeneers (Belgium), E. I. Verriest, M. Wildon (UK), UM6P Math
Club (Morocco), and the proposer.

CLASSICS

C17. Due to Paul Erdős, Abraham Ginzburg, and Abraham Ziv; suggested by Gabriel
Carroll and Yuri Ionin, independently. Given 2n − 1 integers, show that it is possible to
choose n of them that sum to a multiple of n.

Parallel Mountain Climbers

C16. Suggested by the editors. Two hikers start together at the bottom of a mountain and
climb to the summit but along different trails, which may go up and down along the way.
Show that it is possible for them to complete their respective hikes in such a way that they
are at the same elevation at every moment.

Solution. Suppose that the length of the first trail is a and the length of the second trail
is b. For s ∈ [0, a], let f (s) represent the elevation of the first trail at distance s from the
start, and for t ∈ [0, b], let g(t) represent the elevation of the second trail at distance t from
the start. (We take “bottom” and “summit” in the problem statement to mean that neither
trail dips below the initial elevation or rises above the final elevation.) The ordered pair
(s, t) describes simultaneous positions of the two hikers. We require a plan that maintains
f (s) = g(t). The initial position is (0, 0), and we want to show that (a, b) can be reached.

When f (s) = g(t) but s is not a local extremum of f and t is not a local extremum of
g, the two hikers can both move higher or both move lower. Hence the crucial points are
those pairs (s, t) such that at least one coordinate is a local extremum of the corresponding
function. We call the local extrema other than (0, 0) or (a, b) internal.

We define a graph with these crucial points as its vertices. Two crucial points are adja-
cent if the hikers can move from one to the other without encountering any other crucial
point. In particular, if one hiker is at an internal local extremum, then that hiker can move
forward or backward while the other matches the change in elevation, until one of them
reaches another local extremum. Thus such vertices have degree 2 in the graph. If both
hikers are at an internal local extremum, then the degree is 0 or 4.

The vertices (0, 0) and (a, b) have degree 1 in the graph; they are the only vertices with
odd degree. Since every graph has an even number of vertices of odd degree, (0, 0) and
(a, b) must lie in the same component of the graph, and hence there is a path for the two
hikers to reach the summit while maintaining the same elevation.

Editorial Comment. It is necessary that the functions f and g achieve their common global
minimum at 0 and their common global maximum at a and b, respectively. If the trail for
one hiker but not the other dips below the starting elevation (or passes above the summit),
the hikers cannot achieve the required goal. In addition, we assume that f and g have only
finitely many critical points.

The problem has appeared in many places and in various forms. The earliest formulation
in terms of mountain climbers may be in J. V. Whittaker (1966), A mountain-climbing
problem, Canadian J. Math., 18: 873–882, but the essential idea appears in T. Homma
(1952), A theorem on continuous functions, Kodai Math. Sem. Reports, 4(1): 13–16.
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SOLUTIONS

Four Inequalities, One Proof

12275 [2021, 755]. Proposed by Yun Zhang, Xi’an, China. Let x, y, and z be positive real
numbers with x + y + z = 3. Prove each of the following inequalities.

(a) x5y5z5(x4 + y4 + z4) ≤ 3. (c) x11y11z11(x6 + y6 + z6) ≤ 3.

(b) x8y8z8(x5 + y5 + z5) ≤ 3. (d) x16y16z16(x7 + y7 + z7) ≤ 3.

Solution by Kyle Gatesman, Johns Hopkins University, Baltimore, MD. More generally,
we are interested in finding the maximum value of the function f defined by f (x, y, z) =
xpypzp(xq + yq + zq) subject to the constraints x, y, z > 0 and x + y + z = 3, where
we allow p and q to be arbitrary real numbers with p > 0 and q > 2. We prove that the
condition

(p + q)q(q − 1)q−1 ≤ (2p + q)pq−1(q + 1)q−1 (1)

is sufficient to guarantee that the unique optimal solution is (x, y, z) = (1, 1, 1), which
implies that the maximum value of f (x, y, z) is 3. The inequalities (a), (b), (c), and (d) in
the problem statement follow from this result.

Let S denote the closed simplex {(x, y, z) ∈ R3 : x, y, z ≥ 0 and x + y + z = 3}, so
that our optimization domain is the relative interior of S. By the extreme value theorem,
the continuous function f attains its supremum on S at one or more points in S. Since the
value of f is positive in the interior of S and zero on the boundary, the supremum of f over
S is attained in the interior. Therefore, any global maximizer (x, y, z) of f over S satisfies
∇f (x, y, z) = λ∇(x + y + z− 3) = (λ, λ, λ) for some λ. Letting α = xq + yq + zq , we
have

∇f (x, y, z) = xpypzp
(
qxq + pα

x
,
qyq + pα

y
,
qzq + pα

z

)
,
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so a necessary condition for optimality is

qxq + pα
x

= qyq + pα
y

= qzq + pα
z

. (2)

Temporarily fix α > 0, and let g(t) = (qtq + pα)/t . Since

g′′(t) = q(q − 1)(q − 2)tq−3 + 2pα/t3

and since p > 0 and q > 2, we have g′′(t) > 0 for all t > 0, so g is strictly convex over
(0,∞). Thus, for any constant c, the equation g(t) = c admits at most two distinct solu-
tions in t . The numbers x, y, and z must be solutions to such an equation, so x, y, and z
cannot all be distinct. By symmetry, we may assume that z = x.

Let u = y/x, so that α = xq(uq + 2). Condition (2) is equivalent to

qxq + pxq(uq + 2)

x
= quqxq + pxq(uq + 2)

ux
,

which simplifies to

puq+1 − (p + q)uq + (2p + q)u− 2p = 0.

This condition is satisfied when u = 1, which corresponds to y = x. To show that u = 1
is the only solution when (1) holds, it suffices to show that the function h defined by
h(u) = puq+1 − (p + q)uq + (2p + q)u− 2p is strictly increasing (and therefore injec-
tive) over (0,∞).

Observe that

h′(x) = p(q + 1)uq − (p + q)quq−1 + 2p + q and

h′′(x) = pq(q+1)uq−1−(p+q)q(q−1)uq−2 = pq(q+1)uq−2

(
u− (p + q)(q − 1)

p(q + 1)

)
.

Let u0 = (p+ q)(q − 1)/(p(q + 1)). Clearly h′′(u) is negative for u ∈ (0, u0) and positive
for u ∈ (u0,∞), so h′(u) attains its minimum value at u = u0. Therefore, h is strictly
increasing if and only if h′(u0) ≥ 0. This is equivalent to(

(p + q)(q − 1)

p(q + 1)

)q−1 (
(p + q)(q − 1)− (p + q)q)+ 2p + q ≥ 0,

which is equivalent to (1). Hence, when (1) holds, u = 1 is the only value of u for which
(x, ux, x) can be a maximizer of f over S. It follows that the only possible maximizer of
f over all of S is (1, 1, 1).

Editorial comment. It is not hard to show that, for fixed q > 2, inequality (1) holds for all
sufficiently large p. In fact, in each of (a)–(d), the value of p is the smallest positive integer
for which (1) holds.

There are several other ways to prove these inequalities. As indicated by multiple
solvers, one could use the pqr-method, which involves rewriting the inequalities in
terms of x + y + z, xy + yz + zx, and xyz (often denoted p, q, and r; see Chapter
14 in Z. Cvetkovski, (2012), Inequalities: Theorems, Techniques, and Selected Problems,
Berlin: Springer). Alternatively, one can rewrite all four inequalities in the form f ≥ 0,
where f (x, y, z) = (x + y + z)k+1 − 3k(xyz)p(xq + yq + zq). Assuming without loss
of generality that x ≥ y ≥ z, we can write x = u + v + w, y = u + v, and z = u for
u, v,w ≥ 0. For inequalities (a)–(d), taking k = 18, 28, 38, and 54, respectively, Albert
Stadler used Mathematica to verify that f (u+ v +w, u+ v, u) ≥ 0. These are the small-
est values of k for which Stadler’s method works.
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Also solved by P. Bracken, D. Henderson, N. Hodges (UK), W. Janous (Austria), K.-W. Lau (China),
P. W. Lindstrom, A. Stadler (Switzerland), R. Stong, J. Vukmirović (Serbia), J. Yan (China), L. Zhou,
and Fejéntaláltuka Szeged Problem Solving Group (Hungary).

A Complicated Way to Write 1

12276 [2021, 755]. Proposed by Joe Santmyer, Las Cruces, NM. Prove

∞∑
n=2

1

n+ 1

�n/2�∑
i=1

1

2i−1(i − 1)!(n− 2i)!
= 1.

Solution by Allen Stenger, Boulder, CO. Letting an denote the inner sum, we see that an is
the coefficient of xn−2 in the product( ∞∑

k=0

(x2/2)
k

k!

)( ∞∑
m=0

xm

m!

)
.

Since the product equals ex
2/2ex , we have

∞∑
n=2

anx
n = x2ex

2/2+ x.

Integrating both sides from 0 to 1 yields

∞∑
n=2

an

n+ 1
=
∫ 1

0
x2ex

2/2+ x dx = (x − 1)ex
2/2+ x

∣∣∣1
0
= 1,

justified by computing f ′(x) = x2ex
2/2+ x when f (x) = (x − 1)ex

2/2+ x .

Also solved by T. Amdeberhan & V. H. Moll, M. Bataille (France), A. Berkane (Algeria), C. Burnette, Ó. Ciau-
rri (Spain), A. De la Fuente, G. Fera (Italy), K. Gatesman, M. L. Glasser, J. W. Hagood, E. A. Herman,
N. Hodges (UK), W. Janous (Austria), O. Kouba (Syria), O. P. Lossers (Netherlands), D. Pinchon (France),
E. Schmeichel, A. Stadler (Switzerland), S. M. Stewart (Saudi Arabia), R. Stong, R. Tauraso (Italy), M. Vowe
(Switzerland), L. Zhou, and the proposer.

A Matrix Rank Restriction

12277 [2021, 756]. Proposed by Cristian Chiser, Elena Cuza College, Craiova, Romania.
Let A, B, and C be three pairwise commuting 2-by-2 real matrices. Show that if at least
one of the matrices A− B, B − C, and C − A is invertible, then the matrix

A2 + B2 + C2 − AB − AC − BC
cannot have rank 1.

Solution by Jacob Boswell & Chip Curtis, Missouri Southern State University, Joplin, MO.
SetM = A2 + B2 + C2 −AB −AC − BC,D = A− B, and E = A− C. By symmetry,
we may assume that D is invertible. All of the named matrices pairwise commute. Thus

M = D2 −DE + E2.

Multiplying on the left by (D−1)2 yields

N = I −X +X2, (∗)
where N = (D−1)2M and X = D−1E. Since D is invertible, M has rank 1 if and only if
N has rank 1.
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We conclude by showing that N cannot have rank 1. To the contrary, assume that N
has 0 as an eigenvalue with multiplicity 1. Let v be an eigenvector of N with eigenvalue
0. Since N and X commute, NXv = XNv = 0, so Xv must be a multiple of v, since
the eigenspace of 0 for N is one-dimensional. Thus, v is an eigenvector of X for some
eigenvalue λ. Multiplying both sides of (∗) on the right by v gives 0 = (1− λ+ λ2

)
v.

It follows that λ2 − λ + 1 = 0. Since X is a real matrix, its complex eigenvalues occur
in conjugate pairs, so both roots of the polynomial p given by p(x) = x2 − x + 1 are
eigenvalues ofX, and p is the characteristic polynomial ofX. This yields I −X+X2 = 0,
or N = 0, a contradiction.

Also solved by G. Bourgeois (France), S. M. Gagola Jr., K. Gatesman, J.-P. Grivaux (France), J. W. Hagood,
E. A. Herman, E. J. Ionaşcu, K. T. L. Koo (China), J. H. Lindsey II, O. P. Lossers (Netherlands),
K. D. McLenithan, M. Omarjee (France), A. Pathak, A. Stadler (Switzerland), R. Stong, J. Stuart & R. Horn,
R. Tauraso (Italy), L. Zhou, UM6P Math Club (Morocco), and the proposer.

An Equilateral Triangle and a Circle

12278 [2021, 756]. Proposed by Dao Thanh Oai, Thai Binh, Vietnam. Let ABC be a sca-
lene triangle, and let its external angle bisectors at A, B, and C meet BC, CA, and AB at
D, E, and F , respectively. Let l, m, and n be lines through D, E, and F that (internally)
trisect angles ∠ADB, ∠BEC, and ∠CFA, respectively, with the angle between l and AD
equal to 1/3 of ∠ADB, the angle betweenm and BE equal to 1/3 of ∠BEC, and the angle
between n and CF equal to 1/3 of ∠CFA.
(a) Show that l, m, and n form an equilateral triangle.
(b) The lines l,m, and n each intersect AD, BE, and CF . Of these nine points of intersec-
tion, three are the points D, E, and F . Show that the other six lie on a circle.

Solution by Li Zhou, Polk State College, Winter Haven, FL.
(a) We use A, B, and C to denote both
the vertices of �ABC and the interior
angles at those vertices. We may assume
A < B < C. We also use D and E

to denote ∠CDA and ∠BEC, respec-
tively. Let J be the intersection of AD
and BE, K the intersection of BE and
CF , and L the intersection of CF and
AD. Let P be the intersection of l and
m,Q the intersection ofm and n, and R
the intersection of n and l.

By construction, the three triangles
�JAB, �CKB, and �CAL are all
similar to �JKL, with interior angles
(π − C)/2, (π − A)/2, and (π − B)/2
at J , K , and L, respectively. Also,

D = π − ∠ACD − ∠DAC = π − (π − C)− π − A
2
= C − B + C

2
= C − B

2
,

and similarly E = (C − A)/2. Therefore,

∠RPQ = ∠LJK+D
3
+E

3
= π − C

2
+C − B

6
+C − A

6
= 3π − (A+B+C)

6
= π

3
.

Similarly, ∠PQR = ∠QRP = π/3, so �PQR is equilateral.

June–July 2023] PROBLEMS AND SOLUTIONS 591



(b) Suppose that l intersects BE at U and CF at X, m intersects CF at V and AD at Y ,
and n intersects AD at W and BE at Z. Applying the law of sines to �JBA, we get

JA

sin((π − B)/2) =
JB

sin((π − A)/2) , (1)

and applying it to �JBD and �JEA yields

JD

sin((π − B)/2) =
JB

sinD
,

JE

sin((π − A)/2) =
JA

sinE
. (2)

Also, ∠JUD = π −∠PUE = ∠EPU +∠UEP = (2π +E)/3, and similarly ∠EYJ =
(2π +D)/3. Therefore applying the law of sines to �JUD and �EYJ gives us

JU

sin(D/3)
= JD

sin((2π + E)/3) and
JY

sin(E/3)
= JE

sin((2π +D)/3) . (3)

Combining (1), (2), and (3) yields

JU

JY
= sinE sin(D/3) sin((2π +D)/3)

sinD sin(E/3) sin((2π + E)/3) .

By the triple-angle formula,

sinD = sin(D/3)(3 cos2(D/3)− sin2(D/3))

= 4 sin(D/3) sin((2π +D)/3) sin((π +D)/3),
and the same is true if angle D is replaced with angle E. Thus,

JU

JY
= sin((π + E)/3)

sin((π +D)/3) .

Finally,

∠ZWJ = π − ∠DWR = ∠WRD + ∠RDW = (π +D)/3,
and similarly ∠JZW = (π + E)/3. Therefore, the law of sines applied to �JZW yields

JW

sin((π + E)/3) =
JZ

sin((π +D)/3) ,

and hence

JW

JZ
= sin((π + E)/3)

sin((π +D)/3) =
JU

JY
.

We conclude that U , Y , W , and Z lie on a circle. Likewise, V , Z, U , and X lie on a
circle, and W , X, V , and Y lie on a circle. If the three circles are distinct, then the three
radical axes UZ, VX, andWY are concurrent. But these axes are JK ,KL, and LJ , which
are not concurrent. Therefore, two of the three circles are the same, so the six points are all
on the same circle.

Editorial comment. Zhou points out that applying Pascal’s theorem to the hexagon
UXVYWZ shows that D, E, and F are collinear. Thus, by the theorem of Desargues,
JP , KQ, and LR are concurrent.

Also solved by C. R. Pranesachar (India), R. Stong, and the proposer.
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A Stirling Identity

12279 [2021, 856]. Proposed by Brad Isaacson, Brooklyn, NY. Let S(m, k) denote the
number of partitions of a set with m elements into k nonempty blocks. (These are the
Stirling numbers of the second kind.) Let j and n be positive integers of opposite parity
with j < n. Prove

n∑
r=j

(−1)r (r − 1)!
(
r

j

)
S(n, r)

2r
= 0.

Solution I by Omran Kouba, Higher Institute for Applied Sciences and Technology, Dam-
ascus, Syria. Note that r!S(n, r) is the number of surjective mappings from a set with n
elements onto a set with r elements. Therefore, by inclusion-exclusion,

r!S(n, r) =
r∑
k=1

(−1)r−k
(
r

k

)
kn =

[
dn

dtn

r∑
k=0

(−1)r−k
(
r

k

)
ekt

]
t=0

=
[
dn

dtn
(et − 1)r

]
t=0

.

Let a(n, j) denote the sum in question. Since S(n, r) = 0 for r > n,

a(n, j) =
⎡
⎣ dn
dtn

∞∑
r=j

(−1)r

r2r

(
r

j

) (
et − 1

)r⎤⎦
t=0

=
⎡
⎣ dn
dtn

1

j

∞∑
r=j

(
r − 1

j − 1

)(
1− et

2

)r⎤⎦
t=0

.

(The interchange of the derivative and summation can be justified by showing that the series
of derivatives converges uniformly on an interval around 0.) From the negative binomial
expansion,

∑∞
r=j

(
r−1
j−1

)
xr = xj/(1− x)j . Hence,

a(n, j) = 1

j
·
[
dn

dtn

(
1− et
1+ et

)j]
t=0

.

Since (1− et )/(1+ et ) is odd, so is

dn

dtn

(
1− et
1+ et

)j
when j and n have opposite parity. Therefore, a(n, j) = 0 in this case.

Solution II by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans,
LA. Let a(n, j) denote the sum in question. We proceed by induction on n, beginning
with a(2, 1) = −1/2+ 2/4 = 0. Grouping the partitions by whether n is a part by itself,
S(n, r) = rS(n− 1, r)+ S(n− 1, r − 1). With the standard conventions that

(
r

j

) = 0 for
j < 0 or j > r and that S(n, r) = 0 for r > n, we use the recurrence and reindexing to
obtain

a(n, j) =
n∑
r=0

(−1)r (r − 1)!
(
r

j

)
S(n, r)

2r

=
n∑
r=0

(−1)r (r − 1)!
(
r

j

)(
rS(n− 1, r)+ S(n− 1, r − 1)

)
2r

=
n∑
r=0

(−1)r r!
((
r

j

)− (r+1
j

)
/2
)
S(n− 1, r)

2r
.
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Via three applications of the binomial recurrence,(
r

j

)
− 1

2

(
r + 1

j

)
=
(
r

j

)
− 1

2

(
r

j

)
− 1

2

(
r

j − 1

)

= 1

2

(
r − 1

j

)
+ 1

2

(
r − 1

j − 1

)
− 1

2

(
r − 1

j − 1

)
− 1

2

(
r − 1

j − 2

)
= 1

2

(
r − 1

j

)
− 1

2

(
r − 1

j − 2

)
.

Substituting this identity into the previous expression for the sum yields

a(n, j) =
n∑
r=0

(−1)r r!
((
r−1
j

)
/2− (r−1

j−2

)
/2
)
S(n− 1, r)

2r

=
n∑
r=0

(−1)r (r − 1)!
(
j+1

2

(
r

j+1

)− j−1
2

(
r

j−1

))
S(n− 1, r)

2r

= j + 1

2
a(n− 1, j + 1)− j − 1

2
a(n− 1, j − 1).

By convention a(n− 1, n) = 0, and the rightmost term is 0 when j = 1. In all other cases,
when j and n have opposite parity, the induction hypothesis implies a(n− 1, j ± 1) = 0.
We conclude a(n, j) = 0.

Also solved by U. Abel & V. Kushnirevych (Germany), A. Berkane (Algeria), A. De la Fuente, O. P. Lossers
(Netherlands), J. H. Nieto (Venezuela), A. Stadler (Switzerland), R. Tauraso (Italy), M. Wildon (UK),
UM6P Math Club (Morocco), and the proposer.

A Hyperbolic Logarithmic Integral

12281 [2021, 856]. Proposed by Paolo Perfetti, University of Rome Tor Vergata, Rome,
Italy. Evaluate ∫ ∞

0

(
cosh x

sinh2 x
− 1

x2

) (
ln x

)2
dx.

Solution by Michel Bataille, Rouen, France. Let I be the integral to be evaluated. We show
that I = (ln 2)(2γ − ln 2− 2 lnπ), where γ is Euler’s constant.

Suppose 0 < a < b. Integrating by parts gives∫ b

a

(
cosh x

sinh2 x
− 1

x2

)
(ln x)2 dx = F(b)− F(a)− 2

∫ b

a

ln x

x

(
1

x
− 1

sinh x

)
dx,

where F(x) = (ln x)2(1/x − 1/ sinh x). Since

lim
b→∞F(b) = lim

b→∞

(
(ln b)2

b
− 2(ln b)2

eb − e−b
)
= 0− 0 = 0

and

lim
a→0+

F(a) = lim
a→0+

a(ln a)2 · sinh a − a
a2 sinh a

= 0 · 1

6
= 0,

we conclude

I = −2
∫ ∞

0

ln x

x

(
1

x
− 1

sinh x

)
dx.

It is known that for x �= 0,

1

sinh x
= 1

x
+
∞∑
n=1

(−1)n
2x

x2 + n2π2
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(see I. S. Gradshteyn, I. M. Ryzhik (2007), Table of Integrals, Series, and Products, 7th
ed., Burlington, MA: Academic Press, p. 27, equation 1.217.2). Hence,

I =
∫ ∞

0

( ∞∑
n=1

4(−1)n ln x

x2 + n2π2

)
dx.

Next we show that we can reverse the order of the integration and summation in this
formula. For 0 < x ≤ 1 and N a positive integer, we have∣∣∣∣∣

N∑
n=1

4(−1)n ln x

x2 + n2π2

∣∣∣∣∣ ≤
N∑
n=1

∣∣∣∣4(−1)n ln x

x2 + n2π2

∣∣∣∣ ≤
N∑
n=1

−4 ln x

n2π2
≤ −4 ln x

π2

∞∑
n=1

1

n2
= −2 ln x

3
,

and
∫ 1

0 −(2/3) ln x dx <∞. It follows, by the dominated convergence theorem, that∫ 1

0

∞∑
n=1

4(−1)n ln x

x2 + n2π2
dx =

∞∑
n=1

∫ 1

0

4(−1)n ln x

x2 + n2π2
dx. (4)

Similarly, for x ≥ 1 and N a positive integer,∣∣∣∣∣
N∑
n=1

4(−1)n ln x

x2 + n2π2

∣∣∣∣∣ ≤ 4 ln x

x2 + π2
≤ 4 ln x

x2

and
∫∞

1 4(ln x)/x2 dx <∞, so∫ ∞
1

∞∑
n=1

4(−1)n ln x

x2 + n2π2
dx =

∞∑
n=1

∫ ∞
1

4(−1)n ln x

x2 + n2π2
dx. (5)

Combining (4) and (5), we have

I =
∫ ∞

0

∞∑
n=1

4(−1)n ln x

x2 + n2π2
dx = 4

∞∑
n=1

(−1)n
∫ ∞

0

ln x

x2 + n2π2
dx. (6)

To evaluate the integral on the right side of (6), we first use the substitution u = x/(nπ),
as follows: ∫ ∞

0

ln x

x2 + n2π2
dx = 1

n2π2

∫ ∞
0

ln x

(x/(nπ))2 + 1
dx

= 1

nπ

(∫ ∞
0

ln(nπ)

u2 + 1
du+

∫ ∞
0

ln u

u2 + 1
du

)

= ln(nπ)

2n
+ 1

nπ

∫ ∞
0

lnu

u2 + 1
du.

The last integral above vanishes, as can be seen by making the substitution t = 1/u:∫ ∞
0

ln u

u2 + 1
du =

∫ ∞
0

− ln t

1/t2 + 1
· 1

t2
dt = −

∫ ∞
0

ln u

u2 + 1
du.

Substituting into (6), we obtain

I = 4
∞∑
n=1

(−1)n
ln(nπ)

2n
= 2

( ∞∑
n=1

(−1)n ln n

n
+ lnπ

∞∑
n=1

(−1)n

n

)
.

Finally, we use the formulas
∑∞

n=1(−1)n−1/n = ln 2 and
∞∑
n=1

(−1)n−1(ln n)/n = (ln 2)2/2− γ ln 2
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(see the solution to problem 873 in Coll. Math. J. 40(2), March 2009, pp. 136–137) to
conclude

I = 2

(
γ ln 2− (ln 2)2

2
− lnπ ln 2

)
= (ln 2)(2γ − ln 2− 2 lnπ).

Also solved by U. Abel & V. Kushnirevych (Germany), T. Amdeberhan & V. H. Moll, A. Berkane (Alge-
ria), N. Bhandari (Nepal), K. N. Boyadzhiev, P. Bracken, H. Chen, G. Fera (Italy), M. L. Glasser, N. Hodges
(UK), J. E. Kampmeyer, L. Kempeneers & J. Van Casteren (Belgium), O. Kouba (Syria), M. Omarjee (France),
A. Stadler (Switzerland), A. Stenger, S. M. Stewart (Saudi Arabia), M. S̆tofka (Slovakia), R. Stong, R. Tauraso
(Italy), Fejéntaláltuka Szeged Problem Solving Group (Hungary), UM6P Math Club (Morocco), and the
proposer.

CLASSICS

C16. Suggested by the editors. Two hikers start together at the bottom of a mountain and
climb to the summit but along different trails, which may go up and down along the way.
Show that it is possible for them to complete their respective hikes in such a way that they
are at the same elevation at every moment.

Costly Positive Integers

C15. Suggested by Joel Spencer, New York University, New York, NY. A construction chain
for n is a sequence a1, . . . , ak where a1 = 1, ak = n, and each entry in the sequence
is either the sum or the product of two previous, possibly identical, elements from the
sequence. The cost of a construction chain is the number of entries that are the sum (but
not the product) of preceding entries. For example, 1, 2, 3, 6, 12, 144, 1728, 1729 is a con-
struction chain for 1729; its cost is 3, because the elements 2, 3, and 1729 require addition.
Let c(n) be the minimal cost of a construction chain for n. Prove that c is unbounded.

Solution. We show that, given n, the total number of construction chains for numbers less
than or equal to n and with cost K or less is at most K(1+ log2 n)

2K2
. Since this is less

than n for large n, some integer does not have a construction chain with cost K or less.
Suppose that a1, . . . , ak is a construction chain for m with m ≤ n having cost s, with

0 ≤ s ≤ K . Let b1, . . . , bs+1 be the subsequence of a1, . . . , ak with b1 = a1 = 1 consisting
of all entries that were produced using addition. For 2 ≤ i ≤ s + 1,

bi =
i−1∏
j=1

b
ej
j +

i−1∏
j=1

b
fj
j ,

where ej and fj are nonnegative integers. Note that ej and fj are in {0, 1, . . . , �log2 n�}.
Hence, the number of choices for bi with 2 ≤ i ≤ s + 1 is bounded above by
(1+log2 n)

2(i−1). This is at most (1+log2 n)
2s . Hence, the number of possible sequences

b1, . . . , bs+1 is at most (1 + log2 n)
2s2

, which in turn is bounded by (1 + log2 n)
2K2

.
Summing over all costs s from 1 to K yields at most K(1+ log2 n)

2K2
, as claimed.

Editorial Comment. We do not know the origin of this problem.
If the number of primes were finite, we could calculate them all with finitely many addi-

tions of 1, and then any composite could be computed with zero additional cost. Therefore
a corollary of the problem is that the number of primes is infinite. It is challenging to com-
pute c(n). Work of Joseph DeVincentis, Stan Wagon, and Alan Zimmermann has led to
results on the cost function for n beyond one million. For k ≥ 0, let Mk be the least n
such that c(n) = k. The sequence M0,M1, . . . begins 1, 2, 3, 7, 23, 719, 1169951. See
oeis.org/A355015 and also the related oeis.org/A354914.
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SOLUTIONS

A Recurrence Yielding Factorials

12265 [2021, 658]. Proposed by Ross Dempsey, student, Princeton University, Princeton,
NJ. For a fixed positive integer k, let a0 = a1 = 1 and an = an−1 + (k − n)2an−2 for n ≥ 2.
Show that ak = (k − 1)!.

Solution by Jovan Vukmirović, Belgrade, Serbia, and UM6P Math Club, Mohammed
VI Polytechnic University, Ben Guerir, Morocco, independently. Let
bn = an + (k − n − 1)an−1. Note bk−1 = ak−1. In general, an = an−1 + (k − n)2an−2

implies

bn = an − an−1 + (k − n)an−1 = (k − n)
(
(k − n)an−2 + an−1

) = (k − n)bn−1.

Therefore,
bn = (k − n)bn−1

= (k − n)(k − n+ 1)bn−2 = · · ·
= (k − n)(k − n+ 1) · · · (k − 2)b1.

In particular, bk = 0. Since b1 = k − 1,

ak = bk + ak−1 = ak−1 = bk−1 = (k − 1)!.

Also solved by M. R. Bacon & C. K. Cook, B. Bradie, A. C. Castrillón (Colombia), H. Chen (China),
A. De la Fuente, H. Y. Far, K. Gatesman, J. F. Gonzalez & F. A. Velandia (Colombia), J.-P. Grivaux (France),
E. A. Herman, N. Hodges (UK), E. J. Ionaşcu, O. Kouba (Syria), P. Lalonde (Canada), O. P. Lossers (Nether-
lands), R. Martin (Germany), A. Natian, M. Omarjee (France), C. R. Pranesachar (India), M. Reid, J. L. Guerra
& A. J. Rosenthal, K. Sarma (India), A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy),
M. Tetiva (Romania), J. Vinuesa (Spain), M. Wallner (Austria), H. Widmer (Switzerland), M. Wildon (UK),
L. Zhou, Davis Problem Solving Group, and the proposer.
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Arbitrarily Disconnectable Polyominos
12266 [2021, 658]. Proposed by Haoran Chen, Xi’an Jiaotong–Liverpool University,
Suzhou, China. A union of a finite number of squares from a grid is called a polyomino if
its interior is simply connected. Given a polyomino P and a subpolyomino Q, we write
c(P,Q) for the number of components that remain when Q is
removed from P . Let f (k) = maxP minQ c(P,Q), where the
maximum is taken over all polyominoes and the minimum is
taken over all subpolyominoes Q of P of size k. For example,
f (2) ≥ 3, because any domino removed from the pentomino at
right breaks the pentomino into 3 pieces. Is f bounded?

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We show
that f is unbounded. With any polyomino P we can associate a graphG by taking a vertex
for each square of P and making vertices adjacent when their squares share a side. We use
only polyominos P where the resulting graph G is a tree. The removed subpolyomino Q
will correspond to a subtreeH , so that the graph associated withQ− P will beG− V (H),
and they will have the same number of components.

We use a polyomino whose associated graph is a subdivision of a complete binary tree.
Let Gh,N be the subdivision of the complete binary tree with height h in which each edge
is replaced by a path of length N . For fixed h, we prove that Gh,N is the graph associated
with some polyomino when N is sufficiently large. It then suffices to show that when m is
fixed, for sufficiently large h and N there is a choice of k such that deleting the vertices of
any k-vertex subtree of Gh,N results in at least m components.

Let Th be the complete binary tree of height h, with 2h leaves. We initially represent a
subdivision of Th and can then lengthen paths appropriately to obtainGh,N . The vertices of
Th at distance j from the leaves will initially be on the line y = 2j , and the root will be at
(0, 2h). For h = 0, place the root at the origin. For h ≥ 1, having embedded a subdivision
of Th−1 with leaves on the horizontal axis (with consecutive leaves separated by 2), take
two copies and shift one rightward to have leaves at odd points (1, 0) through (2h − 1, 0),
and shift the other leftward to have leaves at odd points (−1, 0) through (−2h + 1, 0). The
roots of the two copies will now be at (2h−1, 2h− 2) and (−2h−1, 2h− 2). Place the root of
Th at (0, 2h). The edge from (0, 2h) to its right child is represented by a path from (0, 2h)
to (2h−1, 2h) and then down two steps to (2h−1, 2h− 2); the path to (−2h−1, 2h− 2) is the
reflection of this. Here is T3:

This construction requires N ≥ 2h−1 + 2. The vertical steps involved in a given level
can be lengthened by the same amount to produce an embedding of Gh,N associated with
a polyomino Ph,N . The vertical steps have length at least 2 to avoid unwanted edges in the
associated graph.

Let a 2-power sum be an integer of the form
∑

i εi2
ai , where εi ∈ {1,−1} and ai is

a nonnegative integer for all i. When we consider deleting the vertices of a subtree, the
following claim is helpful.
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Claim: Given a positive integer m, there is a positive integer t such that if |t − u| ≤ 2m,
then any expression of u as a 2-power sum has more than m terms.

To prove the claim, we show that when R is sufficiently large, there are congruence classes
modulo 2R that can serve as t . Powers of 2 and their negations take on only 2R + 1 distinct
values modulo 2R . Hence sums of m such terms take on at most (2R + 1)m values mod-
ulo 2R . Within 2m units of such values there are at most (4m+ 1)(2R + 1)m congruence
classes. Since a polynomial in R grows more slowly than 2R , when R is sufficiently large
we can pick t from any of the remaining congruence classes.

Fixm, and let t be an integer as guaranteed by the claim. Choose h so that 2h+1 − 2 > t .
Let G = Gh,N for some large N , and let k = tN . We claim that for any subtree H of G
with k vertices, G− V (H) has at least m components. Since m is arbitrary, this makes f
unbounded.

Let v be a vertex of H closest to the root of G. Let the distance from v to the leaves
below it be rN + s, where 0≤ s <N . The subtree ofG rooted at v has 1+ s+ (2r+1− 2)N
vertices. Let S be the set of vertices w in G such that w is not in H but the parent of w is
in H . Let riN + si be the distance from the ith vertex of S to the leaves below it, where
0 ≤ si < N . The vertices of H are precisely the descendants of v that are not descendants
of vertices in S. Thus

Nt = k = |V (H)| = 1+ s + (2r+1 − 2)N −
∑
i

(
1+ si + (2ri+1 − 2)N

)
.

Let u = 2r+1 −∑i 2ri+1. The difference between t and u is

(1+ s − 2N)/N −
∑
i

(1+ si − 2N)/N.

Since 0 ≤ si < N and 0 ≤ s < N , each term lies between −2 and 2. Hence |t − u| ≤ 2m
if |S| < m. Since u is a 2-power sum with |S| + 1 terms, the choice of t yields |S| ≥ m.
That is, G− V (H) has at least m components.

Also solved by the proposer.

Balanced Colorings of Graphs

12268 [2021, 658]. Proposed by Samina Boxwala Kale, Nowrosjee Wadia College, Pune,
India, Vas̆ek Chvátal, Concordia University, Montreal, Canada, Donald E. Knuth, Stanford
University, Stanford, CA, and Douglas B. West, University of Illinois, Urbana, IL.
(a) Show that there is an easy way to decide whether the edges of a graph can each be
colored red or green so that at each vertex the number of incident edges with one color
differs from the number having the other color by at most 1.
(b) Show that it is NP-hard to decide whether the vertices of a graph can each be colored
red or green so that at each vertex the number of neighboring vertices with one color differs
from the number having the other color by at most 1.

Solution by Edward Schmeichel, San Jose State University, San Jose, CA. In both (a) and
(b), we call a coloring of the specified type a balanced coloring. The existence of balanced
colorings in one component does not affect their existence in others, so we can apply the
criterion for connected graphs to each component.

(a) A connected graph G fails to have a balanced edge-coloring if and only if all vertices
have even degree and the number of edges is odd.

If all vertices have even degree andG has a balanced edge-coloring, then the subgraphs
in the two colors have the same degree at each vertex and hence the same number of edges,
which is impossible when the number of edges is odd.
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If the vertices have even degree and the number of edges is even, then assigning colors
alternately along an Eulerian circuit gives half of the edges at each vertex to each color.

If some vertex has odd degree, then the number of vertices with odd degree is even, and
adding one vertex v and making it adjacent to all the vertices of odd degree produces a
connected graph G′ with all vertex degrees even. In G′ there is an Eulerian circuit starting
and ending at v. Assigning colors alternately along the circuit gives each vertex other than
v the same number of edges of each color, and then deleting the edges at v produces a
balanced edge-coloring of G.

(b) We show that if there is a polynomial-time algorithm to test whether a balanced vertex
coloring exists, then there is a polynomial-time algorithm for the following well-known
NP-hard problem.

NOT-ALL-EQUAL 3SAT: Given variables x1, . . . , xn and clauses c1, . . . , cm, where
each clause is a set of three “literals” (variables or their complements), is there a truth
assignment to the variables so that each clause contains both a true literal and a false
literal?

Given an instance I of NOT-ALL-EQUAL 3SAT, we construct a graph G such that I
is satisfiable if and only if G has a balanced vertex coloring. For each clause ci , create a
set Si of three independent vertices labeled by the literals in ci , together with a vertex σi
adjacent to all three vertices in Si . Let S =⋃i Si . Note that S is an independent set of size
3m; labels may appear on more than one vertex.

Next we add vertices and edges to G to ensure that in a balanced vertex coloring, ver-
tices in S having the same label will have the same color, while vertices with comple-
mentary labels will have opposite colors. Think of green as representing TRUE and red as
representing FALSE.

For each instance of two vertices v and w in S with identical labels, add a star with four
edges, with each of v and w adjacent to two leaves of the star, giving those leaves degree
2. The leaves of the star need neighbors of opposite colors, so v and w must have the same
color in a balanced vertex coloring.

For each instance of two vertices v and w in S with complementary labels, add two new
vertices, with v and w adjacent to both. The new vertices have degree 2, and hence v and
w must have opposite colors in a balanced vertex coloring.

If G has a balanced vertex coloring, then the balance condition at each σi guarantees
that each clause has a vertex of each color. Thus a balanced vertex coloring of G converts
to a satisfying truth assignment for I .

Conversely, given a satisfying truth assignment for I , using green on vertices labeled
with true literals and red on vertices labeled with false literals fulfills the balance condition
at each σi . Each vertex of S is adjacent to an even number of added vertices, and we can
color the added vertices so that each vertex of S has the same number of neighbors of each
color among the added vertices. Since each vertex of S is adjacent to only one vertex of
the form σi , we can then color the vertices of that form arbitrarily to complete a balanced
vertex coloring of G.

Editorial comment. In G. P. Cornuéjols (1988), General Factors of Graphs, J. Comb. Th. B
45, 185–198, it is shown that for any nonnegative integer k, there is a polynomial-time
algorithm to decide whether the edges of a graph can be colored red or green so that
at each vertex the numbers of incident edges of the two colors differ by at most k. For
part (b), Mark Wildon reduced a variant of the Subset Sum problem to the given coloring
problem.

Also solved by R. Stong, M. Wildon (UK), and the proposers.
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Integrating an Absolute Value

12271 [2021, 659]. Proposed by Steven Deckelman, University of Wisconsin–Stout,
Menomonie, WI. Let n be a positive integer. Evaluate∫ 2π

0

∣∣∣sin
(
(n− 1)θ − π

2n

)
cos(nθ)

∣∣∣ dθ.
Solution by Jovan Vukmirović, Belgrade, Serbia. Let In denote the requested integral. We
show that

In =

⎧⎪⎪⎨
⎪⎪⎩

4n

2n− 1
cot

( π
2n

)
− 4(n− 1)

2n− 1
cot

(
π

2(n− 1)

)
, if n is even;

4n

2n− 1
csc

( π
2n

)
− 4(n− 1)

2n− 1
csc

(
π

2(n− 1)

)
, if n is odd.

Since the integrand is periodic with period π , the substitution θ = x − π/(2n) gives

In = 2
∫ π/2

−π/2

∣∣cos((n− 1)x) sin(nx)
∣∣ dx.

Let fn(x) = cos
(
(n− 1)x

)
sin(nx). Since |fn(x)| is an even function, we have

In = 4
∫ π/2

0
|fn(x)| dx.

Note that the function Fn defined by

Fn(x) = −1

2

(
cos x + 1

2n− 1
cos
(
(2n− 1)x

))

is an antiderivative of fn. When x ∈ [0, π/2] we have f1(x) ≥ 0, so

I1 = 4
∫ π/2

0
f1(x) dx = 4

(
F1(π/2)− F1(0)

) = 4.

Now suppose n ≥ 2. The positive values of x where cos
(
(n − 1)x

)
changes sign are

given by ck = (2k − 1)π/
(
2(n− 1)

)
, and the values where sin(nx) changes sign are given

by dk = kπ/n, for k = 1, 2, . . .. Setting m = 
n/2�, we have

0 < c1 < d1 < c2 < · · · < cm ≤ dm ≤ π
2
< dm+1 < cm+1,

so fn(x) is negative for ck < x < dk , k = 1, . . . , m, and nonnegative at all other points in
[0, π/2]. Hence∫ π/2

0
|fn(x)| dx = Fn(π/2)− Fn(0)− 2

m∑
k=1

(
Fn(dk)− Fn(ck)

)
,

and the desired integral is given by

In = 4n

2n− 1
+

m∑
k=1

(
8n

2n− 1
cos

(
kπ

n

)
− 8(n− 1)

2n− 1
cos

(
(2k − 1)π

2(n− 1)

))
.

To simplify the sum, we apply the identity

cos(a + b)+ cos(a + 2b)+ · · · + cos(a +mb) = sin
(
a + (2m+ 1)b/2

)− sin(a + b/2)
2 sin(b/2)
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(easily verified by induction on m) to get

In = 4n

2n− 1
· sin

(
(2m+ 1)π/(2n)

)
sin
(
π/(2n)

) − 4(n− 1)

2n− 1
· sin

(
mπ/(n− 1)

)
sin
(
π/(2(n− 1))

) .
Sincem is equal to n/2 if n is even and (n− 1)/2 if n is odd, we obtain the desired formula
for In.

Note that In→ 8/π as n→∞.
Also solved by G. Fera (Italy), D. Henderson, N. Hodges (UK), O. Kouba (Syria), O. P. Lossers (Netherlands),
A. Natian, A. Stadler (Switzerland), M. S̆tofka (Slovakia), R. Stong, E. I. Verriest, and the proposer.

Lists Whose Consecutive Terms Sum to Powers of 2

12272 [2021, 755]. Proposed by H. A. ShahAli, Tehran, Iran, and Stan Wagon, Macalester
College, St. Paul, MN.
(a) For which integers n with n ≥ 3 do there exist distinct positive integers a1, . . . , an such
that ai + ai+1 is a power of 2 for all i ∈ {1, . . . , n}? (Here subscripts are taken modulo n,
so that an+1 = a1.)
(b) What is the answer if the word “positive” is removed from part (a)?

Solution by Rory Molinari, Michigan. For (a) there is no such n, but for (b) there exist such
lists for all n except n = 4.

(a) Suppose that a1, . . . , an is such a list. By symmetry, we may assume a1 < a2. Let
ai + ai+1 = 2ci for all i. Since ai−1 �= ai+1, we have ci−1 �= ci . If ai−1 < ai and ai > ai+1,
then

ai > max{2ci−1/2, 2ci /2} ≥ min{2ci−1, 2ci },
from which min{ai−1, ai+1} is negative. Hence a1 < · · · < an < a1, a contradiction.

(b) Suppose that distinct integers a1, . . . , a4 exist such that ai + ai+1 = 2ci . By symmetry,
we may assume that a1 is the smallest. Now

0 < a3 − a1 = 2c2 − 2c1 = 2c3 − 2c4 .

Consequently, c1 and c4 are both the exponent of the greatest power of 2 dividing a3 − a1.
Hence c1 = c4, which yields a2 = a4, a contradiction.

For n = 3, one such list is (3,−1, 5).
Let αi = 1− 2i and βi = 3 · 2i − 1. For even n at least 6, with k = n/2, consider the

list

(1, 3, α1, β1, . . . , αk−2, βk−2, αk−1, 2k − 1).

Since 1+ 3= 4, 3+α1= 2, αi +βi = 2i+1, βi +αi+1= 2i , αk−1+ 2k − 1= 2k−1, and
2k − 1+ 1 = 2k , every sum of two cyclically consecutive elements is a power of 2. Since
0 > α1 > · · · > αk−1 and 3 < β1 < · · · < βk−2 < 2k − 1, the terms are distinct.

When n = 2k − 1 ≥ 5, it suffices to use the list for 2k with the term α1 deleted, since
3+ β1 = 8.

Editorial comment. Yuri Ionin strengthened the conclusion in part (a), using induction to
prove that positive integers a1, . . . , an chosen so that cyclically ai + ai+1 is always a power
of 2 has at most (n+ 1)/2� distinct elements and that this bound is sharp.
Also solved by C. Curtis & J. Boswell, S. M. Gagola Jr., K. Gatesman, O. Geupel (Germany), N. Hodges
(UK), Y. J. Ionin, M. D. Meyerson, M. Reid, A. Stadler (Switzerland), R. Tauraso (Italy), F. A. Velandia &
J. F. Gonzalez (Colombia), J. Yan (China), Fejéntaláltuka Szeged Problem Solving Group (Hungary), and the
proposer. Part (a) also solved by H. Chen (China), O. P. Lossers (Netherlands), R. Martin (Germany), L. Zhou,
and the UM6P Math Club (Morocco).
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Zeta Function Inequalities from Convexity

12273 [2021, 755]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let ζ be the Riemann
zeta function, defined by ζ(s) =∑∞k=1 1/ks . For s > 1, prove the following inequalities:

∑
prime p

1

ps − 0.5
< log ζ(s),

∑
prime p

1

ps
< log

ζ(s)√
ζ(2s)

,
∑

prime p

1

ps + 0.5
< log

ζ(s)

ζ(2s)
.

Composite solution by Allen Stenger, Boulder, CO, and Li Zhou, Polk State College, Winter
Haven, FL. We prove the more general inequality

∑
p

1

ps + α < log
ζ(s)

(ζ(2s))α+1/2 , (∗)

where −1/2 ≤ α ≤ 1/2 and the sum is over all primes. The three requested inequalities
are for α ∈ {−1/2, 0, 1/2}.

The Euler product formula for ζ(s) with s > 1 is ζ(s) = ∏p 1/(1 − p−s), where the
product is taken over all primes. Hence the right side of (∗) is the logarithm of

∏
p

1

1− p−s
/(∏

p

1

1− p−2s

)α+1/2

,

which simplifies to
∏
p(1− p−2s)α+1/2/(1− p−s), where the products are over all primes.

Letting R = log
(
(1 − p−2s)α+1/2/(1 − p−s)), we obtain the desired inequality term-by-

term by proving R > 1/(ps + α). We compute

R = (α + 1/2) log
(
(1− p−s)(1+ p−s))− log(1− p−s)

= (α − 1/2) log

(
ps − 1

ps

)
+ (α + 1/2) log

(
ps + 1

ps

)

= 1− 2α

2

(
logps − log(ps − 1)

)+ 1+ 2α

2

(
log(ps + 1)− logps

)

=
∫ ps

ps−1

1− 2α

2x
dx +

∫ ps+1

ps

1+ 2α

2x
dx.

We obtain lower bounds on these integrals using the left side of the Hermite–Hadamard
inequality

f

(
a + b

2

)
≤ 1

b − a
∫ b

a

f (x)dx ≤ f (a)+ f (b)
2

for convex f , with the inequalities being strict when f is strictly convex. Applying the
Hermite–Hadamard inequality to both integrals in the final expression for R yields

R >
1− 2α

2ps − 1
+ 1+ 2α

2ps + 1
.

Letting u = ps , it now suffices to prove

1/2− α
u− 1/2

+ 1/2+ α
u+ 1/2

≥ 1

u+ α
for −1/2 ≤ α ≤ 1/2 and u ≥ 2. Letting g(α) denote the left side minus the right side
in this inequality, we compute g′′(α) = −2/(u+ α)3 < 0. Thus g is a concave function,
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and its minimum on the interval [−1/2, 1/2] occurs at an endpoint. Since g(−1/2) =
g(1/2) = 0, we have g(α) ≥ 0 throughout the interval, and the result follows.

Editorial comment. The proof above uses only the left side of the Hermite–Hadamard
inequality. Applying the right side to the convex function ex yields

eb − ea
b − a <

eb + ea
2

.

For b = 2/u and a = 0, this reduces to e2/u − 1 < (e2/u + 1)/u. For u > 1, we can rear-
range and take logarithms to obtain 2/u < log

(
(u+ 1)/(u− 1)

)
. The proposer used this

last inequality to show that one can start from any of the specified sums in the problem and
build up to the desired expression in terms of the zeta function without a decrease at any
step of the process. For example,∑

p

2

2ps − 1
<
∑
p

log

(
2ps − 1+ 1

2ps − 1− 1

)
=
∑
p

log

(
ps

ps − 1

)
= log ζ(s).

This solution proceeds in the opposite direction from the solution presented above.
Also solved by H. Chen, D. Fleischman, K. Gatesman, O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers
(Netherlands), K. Nelson, M. Omarjee (France), D. Pinchon (France), A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), J. Vinuesa (Spain), M. Vowe (Switzerland), T. Wiandt, J. Yan (China), Fejéntaláltuka Szeged
Problem Solving Group (Hungary), UM6P Math Club (Morocco), and the proposer.

A Trigonometric Logarithmic Integral

12274 [2021, 755]. Proposed by Roberto Tauraso, University of Rome Tor Vergata, Rome,
Italy. Evaluate ∫ 1

0

arctan x

1+ x2

(
ln

(
2x

1− x2

))2

dx.

Solution by Michel Bataille, Rouen, France. Let I be the integral to be evaluated. We show
that I = π4/128.

The change of variables x = tan(u/2) readily leads to

I = 1

4

∫ π/2

0
u(ln tan u)2 du.

Using the substitution u = π/2− v we obtain∫ π/2

π/4
u(ln tan u)2 du =

∫ π/4

0

(π
2
− v

)
(ln(cot v))2 dv =

∫ π/4

0

(π
2
− v

)
(ln tan v)2 dv,

from which we deduce

I = 1

4

(∫ π/4

0
u(ln tan u)2 du+

∫ π/4

0

(π
2
− u

)
(ln tan u)2 du

)
= π

8

∫ π/4

0
(ln tan u)2 du.

Finally, the substitution u = arctan t gives

I = π

8

∫ 1

0

(ln t)2

1+ t2 dt =
π

8

∞∑
n=0

(−1)n
∫ 1

0
t2n(ln t)2 dt

= π

4

∞∑
n=0

(−1)n

(2n+ 1)3
= π

4
β(3) = π

4
· π

3

32
= π4

128
,

where β is the Dirichlet beta function.
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Editorial comment. Seán M. Stewart derived the more general formula∫ 1

0

arctan x

1+ x2

(
ln

(
2x

1− x2

))2n

dx = π

8
(2n)!β(2n+ 1).

The integral
∫ 1

0 (ln t)
2/(1 + t2) dt also made an appearance in the solution of Problem

12158 [2020, 86; 2021, 757] from this Monthly.

Also solved by T. Amdeberhan & V. H. Moll, K. F. Andersen (Canada), A. Berkane (Algeria), N. Bhandari
(Nepal), P. Bracken, J. V. Casteren & L. Kempeneers (Belgium), H. Chen (China), H. Chen, A. Dixit (India),
G. Fera (Italy), K. Gatesman, M. L. Glasser, H. Grandmontagne (France), N. Grivaux (France), J. A. Grzesik
(Canada), E. A. Herman, N. Hodges (UK), F. Holland (Ireland), W. Janous (Austria), J. E. Kampmeyer III,
O. Kouba (Syria), O. P. Lossers (Netherlands), J. Magliano, K. D. McLenithan & S. C. Mortenson, A. Natian,
M. Omarjee (France), D. Pinchon (France), A. Stadler (Switzerland), A. Stenger, S. M. Stewart (Saudi Arabia),
M. S̆tofka (Slovakia), R. Stong, M. Vowe (Switzerland), T. Wiandt, H. Widmer (Switzerland), J. Yan (China),
L. Zhou, Fejéntaláltuka Szeged Problem Solving Group (Hungary), Missouri Problem Solving Group, UM6P
Math Club (Morocco), and the proposer.

CLASSICS

C15. Suggested by Joel Spencer, New York University, New York, NY. A construction chain
for n is a sequence a1, . . . , ak where a1 = 1, ak = n, and each entry in the sequence
is either the sum or the product of two previous, possibly identical, elements from the
sequence. The cost of a construction chain is the number of entries that are the sum (but
not the product) of preceding entries. For example, 1, 2, 3, 6, 12, 144, 1728, 1729 is a con-
struction chain for 1729; its cost is 3, because the elements 2, 3, and 1729 require addition.
Let c(n) be the minimal cost of a construction chain for n. Prove that c is unbounded.

Coprimality in Pascal’s Triangle

C14. Due to Paul Erdős and George Szekeres; suggested by the editors. Show that no two
entries chosen from the interior of any row of Pascal’s triangle are relatively prime.

Solution. Suppose 0 < a < b < n. The identity(
n

a

)(
n− a
b − a

)
=
(
n

b

)(
b

a

)
(∗)

is easily verified (both sides count committees of size b with a subcommittee of size a
chosen from a set of n people). It follows that if

(
n

a

)
and

(
n

b

)
are relatively prime, then

(
n

a

)
divides

(
b

a

)
. This contradicts

(
b

a

)
<
(
n

a

)
.

Editorial Comment. The result is from Paul Erdős and George Szekeres (1978), Some num-
ber theoretic problems on binomial coefficients, Aust. Math. Soc. Gazette 597–99 (available
on-line at combinatorica.hu/∼p erdos/1978-46.pdf). There the following stronger result is
proved: If 0 < a < b ≤ n/2 and d = gcd

((
n

a

)
,
(
n

b

))
, then d ≥ 2a . To see this, note that (∗)

implies
(
n

a

)
/d divides

(
b

a

)
, which in turn implies d ≥ (n

a

)/(
b

a

)
. Since this last expression is

equal to (n
b

)(n− 1

b − 1

)
· · ·
(
n− a + 1

b − a + 1

)
,

and since each of these factors is at least 2, we have d ≥ 2a . This inequality is strict when
a > 1.
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SOLUTIONS

The Laplace Transform Simplifies an Integral

12260 [2021, 563]. Proposed by Seán M. Stewart, Bomaderry, Australia. Prove∫ ∞
0

sin2 x − x sin x

x3
dx = 1

2
− log 2.

Solution by Tewodoros Amdeberham, Tulane University, New Orleans, LA, and Akalu
Tefera, Grand Valley State University, Allendale, MI. The Laplace transform L defined
by L[f ](s) = ∫∞0 f (t)e−st dt has the property∫ ∞

0
f (x)g(x) dx =

∫ ∞
0

L[f ](s) · L−1[g](s) ds.

Applying this with f (x) = sin2 x − x sin x = 1/2− (1/2) cos(2x) − x sin x and g(x) =
1/x3 leads to∫ ∞

0

sin2 x − x sin x

x3
dx =

∫ ∞
0

L
[

1

2
− 1

2
cos(2x)− x sin x

]
(s) · L−1

[
1

x3

]
(s) ds

=
∫ ∞

0

(
1

2s
− 1

2

s

s2 + 4
− 2s

(s2 + 1)2

)
· s

2

2
ds

=
∫ ∞

0

s

s2 + 4
− s

s2 + 1
+ s

(s2 + 1)2
ds

=
[

log(s2 + 4)− log(s2 + 1)

2
− 1

2(s2 + 1)

]∞
0

= 1

2
− log 2.

Also solved by U. Abel & V. Kushnirevych (Germany), K. F. Andersen (Canada), M. Bataille (France),
A. Berkane (Algeria), G. E. Bilodeau, K. N. Boyadzhiev, P. Bracken, B. Bradie, A. C. Castrillón, H. Chen,
C. Degenkolb, A. De la Fuente, H. Y. Far, G. Fera (Italy), A. Garcia (France), M. L. Glasser, R. Gordon,
H. Grandmontagne (France), G. C. Greubel, N. Grivaux (France), P. Haggstrom (Australia), L. Han (US) &
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X. Tan (China), D. Henderson, E. A. Herman, N. Hodges (UK), F. Holland (Ireland), W. Janous (Austria),
W. P. Johnson, A. M. Karparvar (Iran), O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Netherlands),
J. Magliano, K. McLenithan, I. Mező (China), M. Omarjee (France), D. Pinchon (France), S. Sharma (India),
P. Shi (China), A. Stadler (Switzerland), J. L. Stitt, R. Stong, R. Tauraso (Italy), Y. Tsyban (Saudi Arabia),
J. Van Casteren & L. Kempeneers (Belgium), E. I. Verriest, M. Vowe (Switzerland), S. Wagon, T. Wiandt,
H. Widmer (Switzerland), M. Wildon (UK), L. Zhou, Fejéntaláltuka Szeged Problem Solving Group (Hun-
gary), UM6P Math Club (Morocco), and the proposer.

Counting Equilateral Triangles in Hypercubes

12261 [2021, 563]. Proposed by Albert Stadler, Herrliberg, Switzerland. Let an be the num-
ber of equilateral triangles whose vertices are chosen from the vertices of the n-dimensional
cube. Compute limn→∞ nan/8n.
Solution by Richard Stong, Center for Communications Research, San Diego, CA. The
limit is 1/(3

√
3π).

Let the n-dimensional hypercube have vertex set {0, 1}n. For vertices A, B, C chosen
from this set, let I be the set of coordinates whereA differs from both B and C, let J be the
set of coordinates where B differs from both A and C, and let K be the set of coordinates
where C differs from both A and B. Since ‖A− B‖2 = |I | + |J |, ‖B − C‖2 = |J | + |K|,
and ‖C − A‖2 = |K| + |I |, the vertices in {A,B,C} form an equilateral triangle if and
only if |I | = |J | = |K|. Conversely, choose a vertex A and three disjoint sets of indices
I , J , K , each of positive size k. Define B to differ from A in coordinates I ∪ J and C to
differ from A in coordinates I ∪ K . The resulting triangle ABC is equilateral, and each
equilateral triangle arises in 3! ways. Thus,

an = 2n

6

n/3�∑
k=1

(
n

3k

)
(3k)!

(k!)3
. (∗)

Stirling’s formula gives

(3k)!

(k!)3
=
√

3

2πk
· 33k

(
1+O

(
1

k

))
,

which we can write equivalently as

(3k)!

(k!)3
= 3

√
3

2π(3k + 1)
· 33k

(
1+O

(
1

k

))
.

Since
(
n

3k

) ≤ 2n and (3k)!/(k!)3 ≤ 33k , any term in the sum (∗) with k < n/6 contributes

less than 2n · 2n · 3n/2 to an. This value, which simplifies to (4
√

3)n, is o(8n). Therefore,
in computing limn→∞ nan/8n, the sum of the estimates has relative error O(1/n). Also,
starting the sum at k = 0 has no impact on the limit. Thus

nan

8n
= (n+ 1)an

8n

(
1+O

(
1

n

))
=
√

3

4n+1π

(n/3�∑
k=0

n+ 1

3k + 1

(
n

3k

)
33k

)(
1+O

(
1

n

))

= 1

4n+1
√

3π

(n/3�∑
k=0

(
n+ 1

3k + 1

)
33k+1

)(
1+O

(
1

n

))
.

Letting ω = e2πi/3 and using |3ω + 1| = |3ω−1 + 1| = √7 < 4, it follows that

nan

8n
= 1

4n+1
√

3π
· (3+ 1)n+1 + ω−1(3ω + 1)n+1 + ω(3ω−1 + 1)n+1

3

(
1+O

(
1

n

))

= 1

3
√

3π

(
1+O

(
1

n

))
.
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Therefore, the requested limit is 1/(3
√

3π).

Also solved by U. Abel & V. Kushnirevych (Germany), H. Chen (China), H. Chen (US), R. Dempsey, G. Fera
& G. Tescaro (Italy), N. Hodges (UK), M. Omarjee (France), D. Pinchon (France), R. Tauraso (Italy), L. Zhou,
and the proposer.

A Trigonometric Generating Function

12262 [2021, 563]. Proposed by Li Zhou, Polk State College, Winter Haven, FL. For a
nonnegative integer m, let

Am =
∞∑
k=0

(
1

(6k + 1)2m+1
− 1

(6k + 5)2m+1

)
.

Prove A0 = π
√

3/6 and, for m ≥ 1,

2Am +
m∑
n=1

(−1)nπ2n

(2n)!
Am−n = (−1)m(4m + 1)

√
3

2(2m)!

(π
3

)2m+1
.

Solution by Omran Kouba, Higher Institute for Applied Science and Technology, Damas-
cus, Syria. The sequence (Am)m≥0 is bounded, so for x ∈ (−1, 1) we may define

F(x) =
∞∑
m=0

Amx
2m =

∞∑
m=0

∞∑
k=0

(
x2m

(6k + 1)2m+1
− x2m

(6k + 5)2m+1

)

=
∞∑
k=0

∞∑
m=0

(
x2m

(6k + 1)2m+1
− x2m

(6k + 5)2m+1

)

=
∞∑
k=0

(
6k + 1

(6k + 1)2 − x2
− 6k + 5

(6k + 5)2 − x2

)
.

Setting α = (1+ x)/6 and β = (1− x)/6, we have

6k + 1

(6k + 1)2 − x2
− 6k + 5

(6k + 5)2 − x2

= 1

2

(
1

6k + 1+ x +
1

6k + 1− x −
1

6k + 5+ x −
1

6k + 5− x
)

= 1

12

(
1

α + k +
1

β + k +
1

β − k − 1
+ 1

α − k − 1

)
.

Next we use the partial fraction expansion of the cotangent, which is

π cot(πz) =
∞∑
k=0

(
1

z+ k +
1

z− k − 1

)
,

when z is not an integer. Applying this with z = α and z = β gives

F(x) = π

12

(
cot(πα)+ cot(πβ)

) = π

12
· sin

(
π(α + β))

sin(πα) sin(πβ)

= π

6
· sin(π(α + β))

cos
(
π(α − β))− cos

(
π(α + β)) = π

6
· sin(π/3)

cos(πx/3)− cos(π/3)

= π
√

3

6
· 1

2 cos(πx/3)− 1
.
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From (cos(2θ)+ cos θ)(2 cos θ − 1) = cos(3θ)+ 1, with θ = πx/3, we conclude

(
1+ cos(πx)

)
F(x) = π

√
3

6

(
cos

(
2πx

3

)
+ cos

(πx
3

))
,

and hence(
2+

∞∑
n=1

(−1)nπ2n

(2n)!
x2n

) ∞∑
n=0

Anx
2n = π

√
3

6

∞∑
m=0

(−1)m(4m + 1)π2m

32m(2m)!
x2m.

Comparing the coefficients of x2m on both sides, we get A0 = π
√

3/6 and, for m ≥ 1,

2Am +
m∑
n=1

(−1)nπ2n

(2n)!
Am−n = (−1)m(4m + 1)

√
3

2(2m)!

(π
3

)2m+1
,

as desired.

Editorial comment. Omran Kouba also noted that by using

(
2 cos

(πx
3

)
− 1

)
F(x) = π

√
3

6
,

we obtain the alternative recurrence

Am =
m∑
n=1

2(−1)n−1

(2n)!

(π
3

)2n
Am−n.

Also solved by K. F. Andersen (Canada), P. Bracken, H. Chen, G. Fera (Italy), M. L. Glasser, G. C. Greubel,
E. A. Herman, N. Hodges (UK), O. P. Lossers (Netherlands), K. Nelson, A. Stadler (Switzerland), M. S̆tofka
(Slovakia), R. Tauraso (Italy), and the proposer.

A Concurrency from A Conic Inscribed in A Triangle

12263 [2021, 564]. Proposed by Dong Luu, Hanoi National University of Education,
Hanoi, Vietnam. In triangle ABC, let D, E, and F be the points at which the incircle
of ABC touches the sides BC, CA, and AB, respectively. Let D′, E′, and F ′ be three
other points on the incircle with E′ and F ′ on the minor arc EF and D′ on the major arc
EF and such that AD′, BE′, and CF ′ are concurrent. Let X, Y , and Z be the intersections
of lines EF and E′F ′, lines FD and F ′D′, and lines DE and D′E′, respectively. Prove
that AX, BY , and CZ are either concurrent or parallel.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
It is well known that AD, BE, and CF intersect at a point G, the Gergonne point of
�ABC. We choose homogeneous coordinates such that A = (1 : 0 : 0), B = (0 : 1 : 0),
C = (0 : 0 : 1), and G = (1 : 1 : 1). It follows that D = (0 : 1 : 1), E = (1 : 0 : 1), and
F = (1 : 1 : 0), and the equation of the incircle is x2 + y2 + z2 − 2xy − 2xz− 2yz = 0.

Since the point of intersection of the lines AD′, BE′, and CF ′ lies in the interior of
�ABC, we can take its coordinates to be (a2 : b2 : c2), with a, b, c > 0. This gives D′ =
(x : b2 : c2) for some x satisfying the quadratic equation

x2 + b4 + c4 − 2xb2 − 2xc2 − 2b2c2 = 0.

Of its two solutions x = (b − c)2 and x = (b + c)2, we must choose x = (b − c)2 for D′
to be on the major arc EF . Note that since D �= D′, we have b �= c. In the same way we
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find E′ = (a2 : (c − a)2 : c2) and F ′ = (a2 : b2 : (a − b)2), and a, b, and c are distinct. A
somewhat tedious but elementary computation gives

X = (a(c − b) : b(c − a) : c(a − b)),
Y = (a(b − c) : b(a − c) : c(a − b)),
Z = (a(b − c) : b(c − a) : c(b − a)),

so the lines AX, BY , and CZ intersect at the point (a(b − c) : b(c − a) : c(a − b)).
Editorial comment. Lossers observed that the solution above works if the incircle is
replaced with any ellipse tangent to the sides of the triangle. Li Zhou generalized the prob-
lem further by showing that the result holds for any conic tangent to the lines containing
the sides of the triangle, with suitable adjustments to the restrictions on the positions of
D′, E′, and F ′.

Also solved by L. Zhou and the proposer.

Irreducible Polynomials in Two Variables

12264 [2021, 564]. Proposed by Navid Safaei, Sharif University of Technology, Tehran,
Iran. Let Pd be the set of all polynomials of the form

∑
0≤i,j≤d ai,j xiyj with ai,j ∈ {1,−1}

for all i and j . Prove that there is a positive integer d such that more than 99 percent of the
elements of Pd are irreducible in the ring of polynomials with integer coefficients.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. The
number 2 is a primitive root modulo the prime p when the smallest value of m such that p
divides 2m − 1 is p − 1. Hence the field F2p−1 is the extension of F2 of lowest degree that
contains a primitive pth root of unity modulo 2. It follows that the minimal polynomial
of any primitive pth root of unity modulo 2 has degree at least p − 1. Since the primitive
pth roots of unity are the roots of the polynomial (xp − 1)/(x − 1) (which equals xp−1 +
· · · + x + 1 and has degree p − 1) it follows that this polynomial is irreducible modulo
2. Thus all polynomials of the form a0 + a1x + · · · + ap−1x

p−1 with all ai ∈ {−1, 1} (or
indeed with all ai odd) are irreducible over Z.

If
∑

0≤i,j≤p−1 ai,j x
iyj ∈ Pp−1 is reducible, say as F(x, y)G(x, y), then

F(x, 0)G(x, 0) = a0,0 + a1,0x + · · · + ap−1,0x
p−1.

Since this polynomial in x is irreducible, F(x, 0) or G(x, 0) (we may assume F(x, 0))
has degree p − 1 as a polynomial in x. Looking at the term with highest degree in x in
F(x, y)G(x, y), we conclude thatG(x, y) is a constant polynomial in x, and hence we can
write G(x, y) as G(y). Swapping the roles of x and y, we find symmetrically that (since
G(y) cannot be constant), G(y) has degree p − 1 and F(x, y) is constant in y, so we
write it as F(x). Thus all reducible polynomials in Pp−1 have the form F(x)G(y). Since
F(0)G(0) = ±1, we conclude F(0),G(0) ∈ {−1, 1}, Looking at the terms with degree 0
in x and y yields that all coefficients of F(x) are in {1,−1}.

Finally, there are 2p choices for each of F andG, but this double counts the product FG
as the product (−F)(−G). Thus there are exactly 22p−1 reducible polynomials in Pp−1.

In particular, taking p = 5 and noting that 2 is a primitive root modulo 5, we see that
only 29 of the 225 elements of P4 are reducible, which is less than 1% of the total number
of polynomials in P4. The fraction only decreases as p increases.

Also solved by S. M. Gagola Jr., O. P. Lossers (Netherlands), D. Pinchon (France), and the proposer.
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Combining the Cauchy–Schwarz and AM–GM Inequalities

12267 [2021, 658]. Proposed by Michel Bataille, Rouen, France. Let x, y, and z be non-
negative real numbers such that x + y + z = 1. Prove

(1−x)√x(1−y)(1−z)+ (1−y)√y(1−z)(1−x)+ (1−z)√z(1−x)(1−y) ≥ 4
√
xyz.

Solution by Tamas Wiandt, Rochester Institute of Technology, Rochester, NY. It is clear that
the required inequality holds if any of x, y, or z is zero; it is an equality if two of them are
zero. Now suppose that x, y, and z are all positive. Dividing by

√
xyz and using the fact

that x + y + z = 1, we see that the inequality is equivalent to

(y + z)√(x + z)(x + y)√
yz

+ (x + z)
√
(x + y)(y + z)√
xz

+ (x + y)
√
(y + z)(x + z)√
xy

≥ 4.

The Cauchy–Schwarz inequality gives
√
(x + z)(x + y) ≥ x +√yz, and by the AM–

GM inequality, y + z ≥ 2
√
yz. Applying these, we obtain

(y + z)√(x + z)(x + y)√
yz

≥ (y + z)(x +√yz)√
yz

= (y + z)x√
yz

+ y + z ≥ 2x + y + z = x + 1.

Combining this with similar inequalities for the other two terms, we get

(y + z)√(x + z)(x + y)√
yz

+ (x + z)
√
(x + y)(y + z)√
xz

+ (x + y)
√
(y + z)(x + z)√
xy

≥ (x + 1)+ (y + 1)+ (z+ 1) = 4,

as required. When x, y, and z are positive, equality holds only if x = y = z = 1/3.

Also solved by A. Alt, F. R. Ataev (Uzbekistan), A. Berkane (Algeria), P. Bracken, H. Chen (China), H. Chen,
C. Chiser (Romania), N. S. Dasireddy (India), M. Dinc̆a (Romania), H. Y. Far, G. Fera (Italy), A. Garcia
(France), O. Geupel (Germany), P. Haggstrom (Australia), D. Henderson, N. Hodges (UK), F. Holland (Ire-
land), E. J. Ionaşcu, W. Janous (Austria), A. M. Karparvar (Iran), P. Khalili, K. T. L. Koo (Hong Kong),
O. Kouba (Syria), K.-W. Lau (Hong Kong), S. Lee (Korea), O. P. Lossers (Netherlands), J. F. Loverde,
A. Mhanna (Lebanon), M. Reid, V. Schindler (Germany), A. Stadler (Switzerland), R. Stong, R. Tauraso
(Italy), M. Tetiva (Romania), J. F. Gonzalez & F. A. Velandia (Colombia), M. Vowe (Switzerland), J. Vuk-
mirović (Serbia), H. Widmer (Switzerland), L. Wimmer (Germany), L. Zhou, UM6P MathClub (Morocco),
and the proposer.

A Triangle Inscribed in a Similar Triangle

12269 [2021, 659]. Proposed by Mehmet Şahin and Ali Can Güllü, Ankara, Turkey. Let
ABC be an acute triangle. Suppose that D, E, and F are points on sides BC, CA, and
AB, respectively, such that FD is perpendicular to BC, DE is perpendicular to CA, and
EF is perpendicular to AB. Prove

AF

AB
+ BD
BC
+ CE
CA
= 1.

Solution I by Michael Reid, University of Central Florida, Orlando, FL. For a polygon
PQ · · ·Z, let (PQ · · ·Z) denote its area. Let H be the orthocenter of �ABC. Since the
triangle is acute, H lies in its interior. Both CH and EF are perpendicular to AB, so they
are parallel, and therefore (CEF) = (HEF). Thus
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AF

AB
= (AFC)

(ABC)
= (AFE)+ (CEF)

(ABC)
= (AFE)+ (HEF)

(ABC)
= (HEAF)

(ABC)
.

Similarly, BD/BC = (HFBD)/(ABC) and CE/CA = (HDCE)/(ABC), so

AF

AB
+ BD
BC
+ CE
CA
= (HEAF)+ (HFBD)+ (HDCE)

(ABC)
= (ABC)

(ABC)
= 1.

Solution II by Li Zhou, Polk State College, Winter Haven, FL. By Miquel’s theorem, the
circumcircles of triangles AFE, BDF , and CED concur at a point, the Miquel point M .
Note that since ∠AFE is a right angle, AE is a diameter of the circumcircle of �AFE,
and therefore ∠AME is also a right angle. Similarly, ∠BMF and ∠CMD are right angles.

Since ∠MFE and ∠MAE are subtended by the same arc of the circumcircle of�AFE,
they are equal. Similarly, ∠MED = ∠MCD and ∠MDF = ∠MBF . Also, ∠MAE =
∠MED, since both are complementary to ∠MEA, and similarly ∠MCD = ∠MDF .
We conclude that all six of the angles ∠MFE, ∠MAE, ∠MED, ∠MCD, ∠MDF , and
∠MBF are equal. This means that M is a Brocard point of both �ABC and �DEF . Let
ω denote the measure of all six angles, which is the Brocard angle. It is well known that
cotω = cotA+ cotB + cotC.

Triangles MEF and MAB are similar, since corresponding sides are perpendicular.
Hence EF/AB = EM/AM , so

AF

AB
= AF

EF
· EF
AB
= cotA · EM

AM
= cotA tanω.

Similarly, BD/BC = cotB tanω and CE/CA = cotC tanω, so

AF

AB
+ BD
BC
+ CE
CA
= (cotA+ cotB + cotC) tanω = cotω tanω = 1.

Editorial comment. Several readers noted that the result can be extended to obtuse triangles
by allowing one of the points D, E, and F to lie on an extension of a side of �ABC and
using signed distances.

It was not required to construct �DEF , or even to show that such a triangle exists.
However, Solution II shows how to construct the unique such triangle. Let M be the Bro-
card point of �ABC such that ∠MAC, ∠MBA, and ∠MCB all have the same measure
ω. Triangle DEF is the image of triangle CAB under a rotation of π/2 radians about M
followed by a dilation centered at M with ratio tanω.

Also solved by M. Bataille (France), R. B. Campos (Spain), H. Chen (China), C. Chiser (Romania), M. Dincă,
G. Fera (Italy), D. Fleischman, K. Gatesman, O. Geupel (Germany), E. A. Herman, N. Hodges (UK),
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E. J. Ionaşcu, Y. J. Ionin, W. Janous (Austria), W. Ji (China), M. Goldenberg & M. Kaplan, A. M. Karpar-
var (Iran), P. Khalili, O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II, O. P. Lossers (Netherlands),
J. McHugh, M. D. Meyerson, J. Minkus, M. R. Modak (India), C. G. Petalas (Greece), C. R. Prane-
sachar (India), I. Retamoso, V. Schindler (Germany), A. Stadler (Switzerland), R. Stong, R. Tauraso
(Italy), M. Vowe (Switzerland), J. Vukmirović (Serbia), T. Wiandt, H. Widmer (Switzerland), L. Wimmer
(Germany), T. Zvonaru (Romania), Davis Problem Solving Group, Fejéntaláltuka Szeged Problem Solving
Group (Hungary), UM6P Math Club (Morocco), and the proposer.

A Refinement of a Putnam Problem

12270 [2021, 659]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let
a0 = 1, and let an+1 = an + e−an for n ≥ 0. Show that the sequence whose nth term is
ean − n− (1/2) ln n converges.

Solution by Kuldeep Sarma, Tezpur University, Tezpur, India. Define un = ean , and note
that un+1 = une1/un . Since the sequence {un} is positive and strictly increasing, it must
either converge to a positive limit or diverge to +∞. If the sequence converges to L,
then the recurrence relation gives L = Le1/L, which is impossible; therefore limn→∞ un =
+∞.

Note that limn→∞(un+1 − un) = limn→∞ un(e1/un − 1) = 1. Therefore, by the Stolz–
Cesàro theorem, limn→∞ un/n = 1. It follows that

lim
n→∞

un+1 − un − 1

1/n
= lim

n→∞
u2
n(e

1/un − 1− 1/un)

un/n
= 1/2

1
= 1

2
.

By the Stolz–Cesàro theorem again,

lim
n→∞

un − n
ln n

= lim
n→∞

(un+1 − (n+ 1))− (un − n)
ln(n+ 1)− ln n

= lim
n→∞

un+1 − un − 1

1/n
· 1/n

ln(1+ 1/n)
= 1

2
· 1 = 1

2
.

Combining the recurrence relation for un with the Maclaurin series for the exponential
function, for n ≥ 1 we have

un+1 = un + 1+ 1

2un
+O

(
1

u2
n

)
= un + 1+ 1

2n
− un − n

2nun
+O

(
1

u2
n

)
.

From previous observations, we know that

un − n
2nun

∼ ln n

4n2
and

1

u2
n

∼ 1

n2
,

so

un+1 = un + 1+ 1

2n
+O

(
ln n

n2

)
.

Since
∑∞

n=1 ln n/n2 converges, we conclude that
∑N−1

n=1 (un+1 − un − 1 − 1/(2n)) con-
verges as N →∞. For N ≥ 2,

N−1∑
n=1

(
un+1 − un − 1− 1

2n

)
= uN − u1 − (N − 1)− HN−1

2
,

where we write Hk for the kth harmonic number
∑k

i=1 1/i. Therefore

eaN −N − 1

2
lnN =

N−1∑
n=1

(
un+1 − un − 1− 1

2n

)
+ u1 − 1− 1

2N
+ 1

2
(HN − lnN).
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The desired result follows, since HN − lnN → γ as N →∞.

Editorial comment. Several solvers noted similarities between this problem and Monthly
Problem 11837 [2015, 391; 2017, 91], which asks for a proof that the sequence {an − ln n}
decreases monotonically to 0. The earlier Monthly problem is a refinement of Problem
B4 of the 73rd William Lowell Putnam Mathematical Competition, which simply asks
whether {an − ln n} has a finite limit. Indeed, since an − ln n = ln(un/n), it follows from
the above solution that limn→∞(an − ln n) = 0. This solves the Putnam problem and part
of the earlier Monthly problem.

Also solved by M. Bataille (France), A. Berkane (Algeria), P. Bracken, H. Chen, N. Grivaux (France), X. Tang
(China) & L. Han (US), E. A. Herman, N. Hodges (UK), E. J. Ionaşcu, O. Kouba (Syria), K.-W. Lau (China),
J. H. Lindsey II, O. P. Lossers (Netherlands), S. Omar (Morocco), E. Omey (Belgium), A. Stadler (Switzer-
land), A. Stenger, R. Stong, R. Tauraso (Italy), J. Vukmirović (Serbia), J. Yan (China), UM6P Math Club
(Morocco), and the proposer.

CLASSICS

C14. Due to Paul Erdős and George Szekeres; suggested by the editors. Show that no two
entries chosen from the interior of any row of Pascal’s triangle are relatively prime.

Visiting Every Region on a Sphere Exactly Once

C13. Due to Leo Moser; suggested by the editors. Let n be a multiple of 4, and consider an
arrangement of n great circles on the sphere, no three concurrent, dividing the sphere into
regions. Show that there is no path on the sphere that visits each region once and only once
and never passes through an intersection point of two of the great circles.

Solution. The great circles define a graph G: the vertices are the intersection points of the
circles, and the edges are the arcs of the circles joining vertices. Let H be the graph of the
corresponding map: the vertices are the regions of G, and edges connect adjacent regions
across an edge ofG. Because any two great circles intersect twice,G has n(n− 1) vertices.
Because every vertex ofG has four neighbors,G has 2n(n− 1) edges. By Euler’s formula
V −E + F = 2 relating the numbers of vertices, edges, and faces of a connected graph on
the sphere, G has n(n− 1)+ 2 faces. This is the number of vertices of H and is even.

Since every edge inH crosses a great circle, and every cycle inH must cross each great
circle an even number of times to return to the original region, every cycle in H has even
length. Hence H is bipartite, meaning that we can color each vertex of H red or blue in
such a way that all edges connect a red vertex and a blue vertex.

The regions of G containing diametrically opposite points on the sphere lie on opposite
sides of every great circle. Hence every path joining the vertices for these points crosses
every great circle an odd number of times. Since n is even, this implies that such a path has
even length, so the vertices representing antipodal regions are colored the same. It follows
that H has an even number of vertices of each color.

If H has a path that visits each vertex, then H must have the same number of vertices
of each color. Since the two color classes have the same even size, the number of vertices
in H is a multiple of 4. However, that number is n(n− 1)+ 2, which is not divisible by 4.

Editorial comment. This problem appeared in this Monthly as problem E788 [1947, 471;
1948, 366] and is due to Leo Moser. There is an essentially unique arrangement of n great
circle arcs on a sphere when n ≤ 5, and for n ∈ {2, 3, 5} each of these arrangements does
permit a Hamiltonian path, in fact a Hamiltonian circuit. When n = 6, some arrangements
permit Hamiltonian paths and some do not.
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SOLUTIONS

Two Zeta Sums that Sum to Zeta of Two

12246 [2021, 376]. Proposed by Seán Stewart, Bomaderry, Australia. Let ζ be the Rie-
mann zeta function, defined for n ≥ 2 by ζ(n) =∑∞k=1 1/kn. Let Hn be the nth harmonic
number, defined by Hn =∑n

k=1 1/k. Prove

∞∑
n=2

ζ(n)

n2
+
∞∑
n=2

(−1)n
ζ(n)Hn

n
= π2

6
.

Composite solution by Khristo N. Boyadzhiev, Ohio Northern University, Ada, OH, and
Stephen Kaczkowski, South Carolina Governor’s School for Science and Mathematics,
Hartsville, SC. The factor 1/n2 in the first sum suggests relevance of the dilogarithm func-
tion Li2, defined by Li2(x) =∑∞n=1 x

n/n2. Henceforth let L(x) = Li2(x). It is well known
that L(1) = π2/6.

For |x| ≤ 1/2, let

M(x) = L(x)+ L
( x

x − 1

)
+ 1

2

(
ln(1− x))2

.

From the power series expansions of ln(1− x), we find thatM ′(x) = 0 = M(0) whenever
|x| < 1/2. Thus we have the functional equation M(x) = 0, known as Landen’s identity.
For x = −1/k with k ≥ 2, this becomes

L
(
−1

k

)
+ L

( 1

k + 1

)
+ 1

2
ln2
(

1+ 1

k

)
= 0. (∗)

For the first sum in the desired statement, we obtain
∞∑
n=2

1

n2

∞∑
k=1

1

kn
=

∞∑
k=1

∞∑
n=2

1

n2

(1

k

)n = ∞∑
k=1

(
L
(1

k

)
− 1

k

)
.

Here the interchange of summations is valid since every summand is positive. Note that
the subtraction of 1/k is essential for the convergence.

If the second sum in the statement is the similarly convergent sum

∞∑
k=1

(
1

k
− L

( 1

k + 1

))
,

then the result follows, since the combined sum over k telescopes to L(1).
From the power series of − ln(1− x) and 1/(1− x), we have

− ln(1− x)
1− x =

∞∑
n=1

Hnx
n.
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Integration then yields
∞∑
n=1

(
Hn+1 − 1

n+ 1

)
xn+1

n+ 1
= 1

2
ln2(1− x),

which we rewrite as
∞∑
n=2

Hnx
n

n
= 1

2
ln2(1− x)+ L(x)− x.

Pending justification of the interchange of summations, we compute
∞∑
n=2

(−1)n
ζ(n)Hn

n
=

∞∑
n=2

Hn

n

∞∑
k=1

(
−1

k

)n = ∞∑
k=1

∞∑
n=2

Hn

n

(
−1

k

)n

=
∞∑
k=1

(
1

2
ln2
(

1+ 1

k

)
+ L

(
−1

k

)
+ 1

k

)
=

∞∑
k=1

(
1

k
− L

( 1

k + 1

))
.

Here the last step uses the functional equation (∗) for L.
It remains to justify the interchange of summations. The double summation with the

inner sum over k may be written as
∞∑
n=2

Hn

n
(−1)n +

∞∑
n=2

∞∑
k=2

Hn

n

(
−1

k

)n
.

Since Hn/n is decreasing, the first sum converges. Next,
∞∑
n=2

∞∑
k=2

Hn

n

(1

k

)n
<

∞∑
k=2

∞∑
n=2

(1

k

)n = ∞∑
k=2

(1

k

)2( k

k − 1

)
<∞.

Thus the double summation is absolutely convergent. It follows that the interchange is
valid, which completes the proof.
Editorial comment. Many solvers (including the proposer) relied on some version of the
known identity

ln�(1− x) = γ x +
∞∑
n=2

ζ(n)

n
xn,

where γ is Euler’s constant. The proposer also showed that the two sums are, respectively,
−γ + J and π2/6+ γ − J , where

J =
∫ 1

0

ln�(1− x)
x

dx.

T. Apostol famously proved ζ(2) = π2/6 by making a change of variable in a double
integral for ζ(2). Solvers Hervé Grandmontagne and Richard Stong, independently,
showed that each of the two sums here summing to π2/6 has a usable representation
as a double integral. Grandmontagne used well-known integrals for ζ(n), Hn, and 1/n2 to
write the two sums as

∞∑
n=2

∫ 1

0

∫ 1

0

yn−1 ln(1− y)(ln x)n−1

(1− x)(n− 1)!
dx dy

and
∞∑
n=2

∫ 1

0

∫ 1

0

(−y)n−1 ln(1/y)(ln x)n−1

(1− x)(n− 1)!
dx dy.
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After interchanging summation and integration, some simplification leads to∫ 1

0

∫ 1

0

(x1−y − 1) ln y

1− x dx dy +
∫ 1

0

∫ 1

0

(x−y − 1) ln(1/y)

1− x dx dy

=
∫ 1

0

∫ 1

0
x−y ln(1/y) dx dy.

The two double integrals on the left are the two sums in the posed problem, and the double
integral on the right equals ζ(2). However, while the interchange of summation and inte-
gration needed to complete this proof can be justified, it does require a fair amount of work,
especially for the first double integral.

Also solved by F. R. Ataev (Uzbekistan), A. Berkane (Algeria), P. Bracken, B. Bradie, B. S. Burdick, H. Chen
(US), G. Fera (Italy), M. L. Glasser, R. Gordon, H. Grandmontagne (France), G. C. Greubel, A. M. Karparvar
(Iran), O. Kouba (Syria), Z. Lin (China), C. Sanford, K. Sarma (India), A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), M. Wildon (UK), and the proposer.

An Angle Bisector That Bisects a Segment
12253 [2021, 467]. Proposed by Alexandru Gı̂rban, Constanţa, Romania, and Bogdan
D. Suceavă, Fullerton, CA. LetABC be a triangle, and letD andE be the contact points of
the incircle ofABC with the segments BC and CA, respectively. LetM be the intersection
of the line DE and the line through A parallel to BC. Prove that the bisector of ∠ABC
passes through the midpoint of DM .

Solution by Haoran Chen, Suzhou, China. Let F be the tangency point of the incircle with
AB, and letN be the intersection of the bisector of ∠ABC withAM . By three applications
of the tangent segment theorem, AE = AF , BF = BD, and CD = CE. Since AM is
parallel toBC,�CDE and�AME are similar, and thereforeAM = AE. Also, ∠ANB =
∠CBN = ∠ABN , so �ABN is isosceles and AN = AB > AF = AE = AM . Thus M
is between A and N , and MN = AN − AM = AB − AF = BF = BD. It follows that
BN and DM intersect at a point P such that �PBD and �PNM are congruent, and
hence PD = PM .

Also solved by M. Bataille (France), J. Cade, C. Chiser (Romania), P. De (India), C. de la Losa (France), I. Dim-
itrić, M. Dobrescu, G. Fera (Italy), D. Fleischman, K. Gatesman, O. Geupel (Germany), J.-P. Grivaux (France),
E. A. Herman, N. Hodges (UK), W. Janous (Austria), M. Getz & D. Jones, A. M. Karparvar (Iran), K. T. L. Koo
(China), O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Netherlands), E. Mika & I. Adams & L. Loprieno
& R. McMullen & D. Schmitz, J. Minkus, D. Pinchon (France), C. R. Pranesachar (India), V. Schindler (Ger-
many), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Vowe (Switzerland), T. Wiandt, L. Zhou,
T. Zvonaru (Romania), Davis Problem Solving Group, and the proposer.

Sum of Squares Modulo 6

12255 [2021, 467]. Proposed by Besfort Shala, student, University of Primorska, Koper,
Slovenia. Given a positive integer a0, define a1, . . . , an recursively by ai = 12 + 22 + · · · +
a2
i−1 for i ≥ 1. Is it true that, given any subset A of {1, . . . , n}, there is a positive integer a0

such that, for 1 ≤ i ≤ n, 6 divides ai if and only if i ∈ A?

Solution by Nigel Hodges, Cheltenham, UK. The answer is yes. We prove the following
more general result: Given a list b1, . . . , bn of integers, there is a positive integer a0 such
that ai ≡ bi (mod 6) for 1 ≤ i ≤ n. We may assume that each bi lies in {0, 1, . . . , 5}.
Since ai = ai−1(ai−1 + 1)(2ai−1 + 1)/6 for i ≥ 1, it is reasonable to extend the definition
by letting the sequence be identically 0 when a0 = 0. The identity

(ai−1 + 6r )(ai−1 + 6r + 1)(2ai−1 + 2 · 6r + 1)

6
− ai−1(ai−1 + 1)(2ai−1 + 1)

6

= 2 · 63r−1 + 62r−1(6ai−1 + 3)+ 6r−1(6a2
i−1 + 6ai−1 + 1)

288 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 130



describes the change in ai when ai−1 increases by 6r . Modulo 6r , the change is 6r−1. This
allows the following inductive algorithm to find a0 to satisfy the given conditions.

Start with a0 = 0, so a1 = 0 as well. Add 6 to a0 exactly b1 times, adding 6b1 overall.
Since 60 = 1, applying the identity with r = 1 yields a1 ≡ b1 (mod 6).

Recalculate a2 from the revised a0. Choose δ2 nonnegative so that δ2 ≡ b2 − a2

(mod 6), and then add 62 · δ2 to a0. This increases a1 by a multiple of 6, so still a1 ≡ b1

(mod 6). Also, a2 increases by δ2 modulo 6, so a2 ≡ b2 (mod 6).
Continue in this manner. At stage j , recalculate a1, . . . , aj from the revised a0. Choose

δj nonnegative so that δj ≡ bj − aj (mod 6), and add 6j · δj to a0. This increases each
of a1, . . . , aj−1 by a multiple of 6, so still ai ≡ bi (mod 6) for 1 ≤ i ≤ j − 1. Also, aj
increases by δj , so aj ≡ bj (mod 6).

Repeat this process until j = n. If the resulting value of a0 is still 0, set a0 = 6n+1 to
make it positive, as required. This does not affect any of a1, . . . , an modulo 6, so each
required congruence is still satisfied, finishing the proof.

Also solved by Y. J. Ionin, O. P. Lossers (Netherlands), D. Pinchon (France), M. A. Prasad (India), K. Sarma
(India), R. Stong, R. Tauraso (Italy), and the proposer.

An Integral Formula for Apéry’s Constant

12256 [2021, 468]. Proposed by Paul Bracken, University of Texas, Edinburg, TX. Prove∫ 1

0

log(1+ x) log(1− x)
x

dx = −5

8
ζ(3),

where ζ(3) is Apéry’s constant
∑∞

n=1 1/n3.

Solution by Giuseppe Fera, Vicenza, Italy. With A = log(1− x) and B = log(1+ x), the
algebraic identity AB = (1/4)((A+ B)2 − (A− B)2) yields

∫ 1

0

log(1+ x) log(1− x)
x

dx = 1

4

(∫ 1

0

log2(1− x2)

x
dx −

∫ 1

0

1

x
log2

(
1− x
1+ x

)
dx

)
.

To evaluate the first integral on the right side, we use the substitution y = 1− x2, obtaining∫ 1

0

log2(1− x2)

x
dx = 1

2

∫ 1

0

log2(y)

1− y dy = 1

2

∫ 1

0
log2(y)

∞∑
n=1

yn−1 dy

= 1

2

∞∑
n=1

∫ 1

0
yn−1 log2 y dy =

∞∑
n=1

1

n3
= ζ(3),

where the last integral is computed using integration by parts twice. Similarly, the substi-
tution y = (1− x)/(1+ x) in the second integral yields∫ 1

0

1

x
log2

(
1− x
1+ x

)
dx = 2

∫ 1

0

log2(y)

1− y2
dy = 2

∫ 1

0
log2(y)

∞∑
n=1

y2(n−1) dy

= 2
∞∑
n=1

∫ 1

0
y2n−2 log2 y dy = 4

∞∑
n=1

1

(2n− 1)3

= 4

( ∞∑
n=1

1

n3
−
∞∑
n=1

1

(2n)3

)
= 4

(
ζ(3)− 1

8
ζ(3)

)
= 7

2
ζ(3).
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Thus ∫ 1

0

log(1+ x) log(1− x)
x

dx = 1

4

(
ζ(3)− 7

2
ζ(3)

)
= −5

8
ζ(3).

Editorial comment. Several solvers pointed out that this integral appears in C. I. Vălean
(2019), (Almost) Impossible Integrals, Sums, and Series, Cham, Switzerland: Springer.
This integral played a role in some submitted solutions to problem 12206 [2020, 722;
2022, 492] from this Monthly.

Also solved by T. Amdeberhan & A. Tefera, F. R. Ataev (Uzbekistan), M. Bataille (France), A. Berkane (Alge-
ria), N. Bhandari (Nepal), B. Bradie, V. Brunetti & D. B. Malesani & A. Aurigemma (Denmark), H. Chen,
N. S. Dasireddy (India), B. E. Davis, J. Fu (China), A. Garcia (France), S. Gayen (India), M. L. Glasser, R. Gor-
don, H. Grandmontagne (France), G. C. Greubel, J.-P. Grivaux (France), R. Guadalupe (Philippines), L. Han
(US) & X. Tang (China), D. Henderson, E. A. Herman, N. Hodges (UK), F. Holland (Ireland), W. Janous (Aus-
tria), A. M. Karparvar (Iran), O. Kouba (Syria), O. P. Lossers (Netherlands), R. Mortini (France) & R. Rupp
(Germany), M. Omarjee (France), D. Pinchon (France), M. A. Prasad (India), C. Sanford, K. Sarma (India),
V. Schindler (Germany), S. Sharma (India), A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong,
R. Tauraso (Italy), J. Van Casteren & L. Kempeneers (Belgium), M. Vowe (Switzerland), T. Wiandt, H. Wid-
mer (Switzerland), T. Wilde (UK), M. Wildon (UK), FAU Problem Solving Group, The Logic Coffee Circle
(Switzerland), UM6P Math Club (Morocco), Westchester Area Math Circle, and the proposer.

A Saturated Arrangement of Equilateral Triangles

12257 [2021, 468]. Proposed by Erich Friedman, Stetson University, DeLand, FL, and
James Tilley, Bedford Corners, NY. An arrangement of equilateral triangles in the plane
is called saturated if the intersection of any two is either empty or is a common vertex
and every vertex is shared by exactly two triangles. What is the smallest positive integer n
such that there exists a saturated arrangement of n equilateral triangles with integer length
sides?

Solution by the Davis Problem Solving Group, Davis, CA. The smallest such n is 10, with
an example given by Figure 1.
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•

•

•

•

•

• •

• •

• •

•

• •

• •

• •

•

........................................................................................................................................................................................................................
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
.............
..........................................................................................................................................................................................................................................................

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.....


...................

...................
...................

...................
...................

...................
...................

.................
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....................................................................................................................................................................................................

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......................................................................................................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
....

.................................................................................................................................
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
............
................

................
................

................
................

................
................

................
................

................
.............................................................................................................................................................................................................................................................................................................................................................................................................................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.................................................................................................................................................................................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
.........................................................................................................................................................................

P

A

A′

B

B ′

C D

E F

Q

C′ D′

E′ F ′

Q′

112 128

91

65

91

91

65

91

39

39

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.
..
....
.....
...........

.....
.
..
..
..
..
.

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
......
...
.
..
..
..
..
.
..
..
.

..

..

..

..

..

..

.

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

.

..

..

..

.

..

..

.
..

......
.
..
.
..
..
..
..
.

..

..

.

..

..

..

..

..

..

.

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

.

..

..

..

.
..
..
...

......
.
..
..
.

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

.
..
....
......

......
.
..
..
.
..
..
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

....
.
.....

.....
.
..
....
..
..
..
..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

.

..

..

.

..

..

.
..
..
..
.....

.....
.
..
..
..
..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

.

..

..

.
..
..
.
..
....
.....

..

....
..
..
..
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

.

..

..

..

..

..

.
..
..
..
....
....
.
..
....

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

.

..

..

..

.

..

..

..

..

..

.
..
....
..
..
....
...
....

First, we show that n ≥ 10 for a saturated arrangement of n equilateral triangles,
whether or not the sides have integer lengths. The total number of vertices is 3n/2, so
n must be even. Consider the simple polygon consisting of the edges of the triangles
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bordering the unbounded region outside the arrangement. Because the triangles intersect
in at most a vertex, each interior angle of this polygon is greater than 120 degrees. Thus
the polygon has at least seven edges, corresponding to distinct boundary triangles in the
arrangement.

If no two boundary triangles share a vertex inside the polygon, then we have at least
seven interior vertices and hence at least three additional triangles. In this case n ≥ 7+ 3 =
10. If two boundary triangles have a common interior vertex, then they cannot be adjacent
on the polygon, so there must be an interior vertex on each side of their union. Hence there
must also be an interior triangle on each side of their union. Therefore, n ≥ 7+ 2 = 9 and
n is even, so n ≥ 10.

Returning to our example, we establish that such an arrangement does indeed exist.
We begin with two equilateral triangles as in Figure 2, where ∠APB = 120◦ and a ≤ b.
Applying the law of cosines to �ABP , we find AB2 = a2 + b2 + ab.

Figure 2

•

•
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•
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To obtain a saturated arrangement, we combine two copies of the configuration of four
equilateral triangles in Figure 3 (one upside down) with that in Figure 2 to obtain the satu-
rated configuration in Figure 1. Here ∠DQF = 120◦ and y ≤ x. There are three conditions
on the integers a, b, x, y, z that together are necessary and sufficient for the construction
to yield a saturated configuration. Applying the law of cosines to �DFQ yields the first:
x2 + y2 + xy = z2.

The second is that AB has the same length in both figures. To compute AB in Fig-
ure 3, observe that the quadrilateral BDQF has opposite angles summing to 180◦, so these
four points lie on a circle. Angles BDF and BQF subtend the same arc of the circle, so
∠BQF = ∠BDF = 60◦. Similarly ∠AQE = 60◦, so A, Q, and B are collinear. Apply-
ing the law of sines to �DFQ, we find

sin∠FDQ =
√

3y

2z
, and so cos∠FDQ =

√
1− 3y2

4z2
= 2x + y

2z
.

Applying the law of sines and the addition formula for sines to ∠BDQ, we find that BQ
and AQ have length x + y and AB has length 2x + 2y. Therefore, the second condition is
a2 + b2 + ab = 4(x + y)2.

The third and final condition is that the triangles do not overlap when we combine
the pieces. Because a ≤ b, it follows that ∠ABP ≤ ∠BAP . Thus, the requirement
becomes ∠FBQ < ∠ABP , which, because both angles are acute, is equivalent to
sin∠FBQ < sin∠ABP . Because BDQF is cyclic, also sin∠FBQ = √3y/(2z) =√

3/(2
√
(x/y)2 + 1+ x/y ). Applying the law of sines to �ABP yields sin∠ABP =√

3/(2
√
(1+ (b/a)2 + b/a ). We conclude that the third condition is equivalent to x/y >

b/a.
It is easy to check that the necessary and sufficient set of two equalities and one inequal-

ity holds when a = 112, b = 128, x = 65, y = 39, and z = 91.

Editorial comment. In the above solution, one can also prove that BQ = x + y geometri-
cally. Rotate �DFQ by 60◦ counterclockwise about Q. The image of F is a point R on
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BQ with QR = y. The image of D is C and CR = z. Therefore, BDCR is a parallelo-
gram and BR = CD = x.

Solvers presented several other constructions, including some with seven boundary
triangles and three interior triangles.

Also solved by T. Fujita & S. Kim, S. M. Gagola Jr., O. P. Lossers (Netherlands), A. Martin & R. Martin
(Germany), R. Stong, R. Tauraso (Italy), L. Zhou, and the proposer.

Factorials That Are Not the Sum of Three Squares

12258 [2021, 563]. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann Arbor,
MI. Let S be the set of positive integers n such that n! is not the sum of three squares.
Show that S has bounded gaps, i.e., there is a positive constant C such that for every
positive integer n, there is an element of S between n and n+ C.

Solution by Michael Reid, University of Central Florida, Orlando, FL. We prove that the
difference between any two consecutive elements of S is at most 77.

Legendre proved that a positive integer is not a sum of three squares if and only if it
has the form 4c(8q + 7) for some nonnegative integers c and q. We claim that for every
nonnegative integer m, there is an integer t with 1 ≤ t ≤ 14 such that 64m+ t ∈ S. Write
(64m)! uniquely as 2a(8q + r), where a is a nonnegative integer and r ∈ {1, 3, 5, 7}. When
r = 5 and a is odd, with a = 2b + 1, we take t = 3. This yields

(64m+ 3)! = 22b+2(8q + 5)(64m+ 1)(32m+ 1)(64m+ 3) = 4b+1(8k + 7)

for some positive integer k. Hence in this case (64m+ 3)! is not a sum of three squares.
When r = 1 and a is odd, with a = 2b + 1, we take t = 5. This yields

(64m+ 5)! = 22b+4(8q + 1)(64m+ 1)(32m+ 1)(64m+ 3)(16m+ 1)(64m+ 5)

= 4b+2(8k + 7)

for some positive integer k. Hence in this case (64m+ 5)! is not a sum of three squares.
Similar computations for the other six cases of the parity of a and the value of r yield

the following table of values of t such that 64m+ t ∈ S.

r = 1 r = 3 r = 5 r = 7
a odd 5 14 3 2
a even 10 6 7 1

This establishes that consecutive elements of S differ by at most 64+ 13.

Editorial comment. Michael Reid and John Robertson independently showed that the dif-
ference between consecutive elements of S never exceeds 42. To prove this, one can con-
sider 15 consecutive values of n, having the form 64m + 16j + t with 1 ≤ t ≤ 15 for
fixed m and fixed j ∈ {1, 2, 3}. Like (64m)! as discussed above, one writes (64m+ 16j)!
as 2a(8q + r) with eight cases for a and r . For each j in {1, 2, 3}, there is thus a table
like that above in whose cells are listed the values of t such that (64m+ 16j + t)! can be
expressed in the form 4c(8k + 7). If all cells were nonempty, then consecutive members of
S would differ by at most 16+ 14.

In fact, there are two empty cells, for 64m + 32 with (64m + 32)! = 22b+1(8q + 3)
and for 64m + 48 with (64m + 48)! = 22b(8q + 5). For these cases one must go farther
than t = 15. In the first case, 64m + 49 or 64m + 58 is in S, depending on the parity of
m. Since also 64m + 16 + t ∈ S for some t ≥ 5, these consecutive members of S differ
by at most 58 − 21, which equals 37. In the second case, 64m + 36 or 64m + 47 is in
S, depending on the parity of m. The chart above shows 64(m + 1) + t ∈ S for some t
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with 1 ≤ t ≤ 14. Thus in this case 78− 36 is an upper bound on the difference between
consecutive members of S, and hence in all cases the bound is at most 42.

Furthermore, differences of 42 occur infinitely often. A computer search shows that the
first such difference occurs for the 2932nd and 2933rd elements in S, which are 23268
and 23310. Using (2n)! = 2nn!

∏n
i=1(2i − 1), it is easy to show by induction that (9 · 2t )!

has the form 4b(8q + 1) for t ≥ 2. When t is sufficiently large and 1 ≤ j ≤ 23310, the
factors j and 9 · 2t + j are divisible by the same power of 2 and have odd parts that are
congruent modulo 8 (in fact, t ≥ �log2 23310� + 3 = 17 is sufficient). More precisely,
for j in this range, j ! = 2b(8q + r) and (9 · 2t + j)! = 2B(8Q+ R) with b ≡ B mod 2
and r ≡ R mod 8. Thus j ∈ S if and only if 9 · 2t + j ∈ S. Therefore, 9 · 2t + 23268 and
9 · 2t + 23310 are consecutive elements of S when t ≥ 17, differing by 42.

A proof that the density of S is 1/8 can be found in J.-M. Deshouillers and F. Luca, How
often is n! the sum of three squares?, K. Alladi, J. R. Klauder, and C. R. Rao, Eds. (2010),
The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, Springer, 243–251.

Also solved by R. Dietmann (UK), A. Goel, N. Hodges (UK), O. P. Lossers (Netherlands), R. Martin (Ger-
many), J. P. Robertson, C. Schacht, A. Stadler (Switzerland), R. Stong, M. Tang, R. Tauraso (Italy), L. Zhou,
and the proposer.

Supplementary Pairs of Heronian Triangles

12259 [2021, 563]. Proposed by Giuseppe Fera, Vicenza, Italy. A triangle is Heronian if
it has integer sides and integer area. A pair of noncongruent Heronian triangles is called a
supplementary pair if the triangles have the same perimeter and the same area and some
interior angle of one is the supplement of some interior angle of the other. Prove that there
are infinitely many supplementary pairs of Heronian triangles.

Solution by Eagle Problem Solvers, Georgia Southern University, Statesboro, GA, and
Savannah, GA. We claim that for each integer n ≥ 2, the triangles with side lengths
(a1, b1, c1) and (a2, b2, c2) given by

(a1, b1, c1) = (n4 + n2 + 1, n6 + n4 + 2n2 + 1, n6 + 2n4 + n2)

and

(a2, b2, c2) = (n4 + 2n2 + 1, n6 + n4 + n2, n6 + 2n4 + n2 + 1)

form a supplementary pair of Heronian triangles. Note that ai < bi < ci for i ∈ {1, 2}.
Also, ai + bi > ci , so there is indeed a triangle for each triple. Since c2 = c1 + 1, the two
triangles are not congruent.

Since a1 + b1 + c1 = 2(n6 + 2n4 + 2n2 + 1) = a2 + b2 + c2, the two triangles have the
same perimeter. Let s be the common semiperimeter; note that s = (n2 + 1)(n4 + n2 + 1).
By Heron’s formula, the area of the ith triangle is

√
s(s − ai)(s − bi)(s − ci). Thus the

area of the first triangle is√
(n2 + 1)(n4 + n2 + 1) · n2(n4 + n2 + 1) · n4 · (n2 + 1),

and the area of the second triangle is√
(n2 + 1)(n4 + n2 + 1) · n4(n2 + 1) · (n4 + n2 + 1) · n2.

Therefore, each triangle has area n3(n2 + 1)(n4 + n2 + 1).
Finally, let B1 be the angle opposite the side of length b1, and let C2 be the angle

opposite the side of length c2. By the law of cosines, after some calculation, we find

cosB1 = a2
1 + c2

1 − b2
1

2a1c1
= n2 − 1

n2 + 1
,
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and

cosC2 = a2
2 + b2

2 − c2
2

2a2b2
= −n

2 − 1

n2 + 1
= − cosB1.

Thus B1 and C2 are supplementary, and for n ≥ 2, we have a supplementary pair of Hero-
nian triangles. As n runs through the integers greater than 1, we obtain infinitely many
distinct values for cosB1, so this method produces infinitely many such pairs.

Also solved by J. Keadey & J. Boltz & S. Kompella & S. Vemuru, P. Lalonde (Canada), C. R. Pranesachar
(India), R. Stong, R. Tauraso (Italy), M. Vowe (Switzerland), and the proposer.

CLASSICS

C13. Due to Leo Moser; suggested by the editors. Let n be a multiple of 4, and consider an
arrangement of n great circles on the sphere, no three concurrent, dividing the sphere into
regions. Show that there is no path on the sphere that visits each region once and only once
and never passes through an intersection point of two of the great circles.

The Unilluminable Room

C12. Due to Lionel Penrose and Roger Penrose; suggested by the editors. Is there a plane
region bounded by a differentiable Jordan curve with the property that no matter where a
light source is placed inside it, some part of the region remains unilluminated? Assume
that the curve acts as a perfect mirror.

Solution. An unilluminable region is shown below. It has a horizontal line of symmetry.
The arc AD is the upper half of the ellipse with foci B and C. The remaining portion
of the boundary curve may be constructed from circular arcs, although any differentiable
curve with the approximate shape of the diagram will suffice. Any light ray that starts below
the segment BC might visit the part of the region
above BC, but to do so it will have to pass through
BC and strike the elliptical arc AD. By a well-
known property of the ellipse, a light ray from B

that strikes the elliptical arc AD will reflect back
to C. It follows that a ray that passes through BC
and strikes the elliptical arc will be reflected back
between B and C, and therefore it cannot visit the
two shaded parts of the region. Similarly, a light
ray that starts above the reflection of BC across
the line of symmetry will never visit the reflections
of the shaded regions across the line of symmetry.

Editorial comment. The question was raised by E. G. Straus in the early 1950s and solved in
L. S. Penrose and R. Penrose (1958), Puzzles for Christmas, The New Scientist, 1580–1581,
1597. Victor Klee, in V. Klee (1979), Some unsolved problems in plane geometry, Math.
Mag. 52, 131–145, asked if a polygonal solution was possible and, somewhat surprisingly,
the answer is yes. In G. W. Tokarsky (1995), Polygonal rooms not illuminable from every
point, this Monthly, 102, 867–879, a 26-gon is constructed that cannot be illuminated
from a point. This was later improved by D. Castro to a 24-gon. In the polygonal examples,
only a single point stays dark.
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∫

SOLUTIONS

Constructing a Tangent to a Circle

12245 [2021, 376]. Proposed by Jiahao Chen, Tsinghua University, Beijing, China. Sup-
pose that two circles α and β, with centers
P and Q, respectively, intersect orthogo-
nally at A and B. Let CD be a diameter
of β that is exterior to α. Let E and F be
points on α such that CE and DF are tan-
gent to α, with C and E on one side of PQ
and D and F on the other side of PQ. Let
S be the intersection of CF and QA, and
let T be the intersection of DE and QB.
Prove that ST is parallel to CD and is tan-
gent to α.

E

PA

S

C

F

T

B

D
Q

Solution by Davis Problem Solving Group, Davis, CA. Let Y be the intersection point of
lines BC and AD. We claim that Y lies on circle α and that the tangent line � to α at
Y is parallel to CD. To prove the claim, we assume for ease of exposition that A and
C are on the same side of PQ, with B and D on the other side, as in the figure that
accompanies the problem statement; however, the argument also works if the roles ofA and
B are switched, as long as we view all angles as directed. Note that ∠BYA = ∠CYD =
180◦ −∠DCB −∠ADC, while ∠APB = 180◦ −∠BQA = 2∠DCB + 2∠ADC. Thus
∠BYA is inscribed in circle α and Y lies on α. Now let Z denote the intersection of AQ
and �. Since ZA and ZY are both tangent to α, ∠ZYA = ∠YAZ = ∠DAQ = ∠QDA,
and therefore � is parallel to CD. This proves the claim.
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Now letD′ denote the second intersection point of line PD and circle β. Since inversion
in circle α preserves circle β, this inversion sendsD toD′. Since ∠DD′C = 90◦, it follows
that C is on the polar line d of pointD with respect to circle α. The circumcircle of�PDF
has diameter PD and thus maps to d under inversion in α. Thus line FC is the polar line
d of point D. Similarly, line ED is the polar line of point C with respect to α.

The polar lines of points A and B with respect to α are QA and QB, respectively, so S
is the intersection of the polar lines of A and D, and T is the intersection of the polar lines
of B and C. By duality, the polar lines of S and T are lines AD and BC, respectively. By
our initial claim, these polar lines intersect in Y . It follows that line ST is the polar line of
point Y , which is just the tangent line � to α at Y . Thus ST is parallel to CD and tangent
to α, as desired.

Also solved by M. Bataille (France), E. Bojaxhiu (Albania) & E. Hysnelaj (Australia), J. Cade, G. Fera (Italy),
D. Fleischman, K. Gatesman, N. Hodges (UK), A. M. Karparvar (Iran), K.-W. Lau (China), C. R. Pranesachar
(India), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), L. Zhou, and the proposer.

An Integral over the Sphere

12247 [2021, 377]. Proposed by Prathap Kasina Reddy, Bhabha Atomic Research Centre,
Mumbai, India. For positive real constants a, b, and c, prove∫ π

0

∫ ∞
0

a

π(x2 + a2)3/2

x√
x2 + b2 + c2 − 2cx cos θ

dx dθ = 1√
(a + b)2 + c2

.

Solution by Giuseppe Fera, Vicenza, Italy. Let f (a, b, c) be the left side of the desired
equation. With the substitution x = a tan(ϕ/2), we obtain

f (a, b, c) =
√

2

4π

∫ π

0

∫ π

0

sinϕ dϕ dθ√
a2 + b2 + c2 + (b2 + c2 − a2) cosϕ − 2ac cos θ sinϕ

.

Since the integrand is invariant under the substitution θ 
→ 2π − θ , we can write

f (a, b, c) =
√

2

8π

∫ 2π

0

∫ π

0

sinϕ dϕ dθ√
a2 + b2 + c2 + (b2 + c2 − a2) cosϕ − 2ac cos θ sinϕ

.

Interpret ϕ and θ as the spherical coordinates for a point

r = (cos θ sinϕ, sin θ sinϕ, cosϕ)

on the unit sphere S, and let v = (−2ac, 0, b2 + c2 − a2). We see that

f (a, b, c) =
√

2

8π

∫∫
S

1√
a2 + b2 + c2 + v · r dS.

To evaluate this integral, we write it in cylindrical coordinates z and θ , with the positive
z-axis aligned with the vector v. Setting t = a2 + b2 + c2 and

v = ‖v‖ =
√

4a2c2 + (b2 + c2 − a2)2 =
√
(a2 + b2 + c2)2 − 4a2b2 =

√
t2 − 4a2b2,

this yields

f (a, b, c) =
√

2

8π

∫ 1

−1

∫ 2π

0

dθ dz√
t + vz =

√
2

2v

(√
t + v −√t − v)

=
√

2

2v

√(√
t + v −√t − v)2 =

√
t −√t2 − v2

v
=
√
t − 2ab√
t2 − 4a2b2

= 1√
t + 2ab

= 1√
a2 + b2 + c2 + 2ab

= 1√
(a + b)2 + c2

.
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Also solved by M. L. Glasser, O. Kouba (Syria), M. Omarjee (France), K. Sarma (India), A. Stadler (Switzer-
land), R. Tauraso (Italy), and the proposer.

An Identity from the Pfaffian

12248 [2021, 377]. Proposed by Askar Dzhumadil’daev, Almaty, Kazakhstan. Let n be a
positive integer, and let xk be a real number for 1 ≤ k ≤ 2n. Let C be the 2n-by-2n skew-
symmetric matrix with i, j -entry cos(xi − xj ) when 1 ≤ i < j ≤ 2n. Prove

det(C) = cos2(x1 − x2 + x3 − x4 + · · · + x2n−1 − x2n).

Solution by Richard Ehrenborg, University of Kentucky, Lexington, KY. The determinant
of a skew-symmetric matrix A is equal to the square of the Pfaffian of the matrix A. The
Pfaffian Pf(A) of a 2n-by-2n skew-symmetric matrix A with entries ai,j for 1 ≤ i, j ≤ 2n
is defined by

Pf(A) =
∑
M

(−1)c(M) ·
∏

(i,j)∈M
aij .

Here the sum is over all perfect matchings M on the set {1, . . . , 2n}, where an edge (i, j)
is written with i < j . Also c(M) is the number of pairs of crossing edges in M , where
two edges (i ′, j ′) and (i ′′, j ′′) in M form a crossing if i ′ < i ′′ < j ′ < j ′′. The sign of a
matching M is (−1)c(M). Our goal is to prove

Pf(C) = cos(x1 − x2 + x3 − · · · − x2n).

Using the identity 2 cos(α) cos(β) = cos(α + β)+ cos(α − β) and the fact that cosine
is an even function, a straightforward induction yields

2n ·
n∏
i=1

cos(αi) =
∑

(ε1,...,εn)∈{±1}n
cos(ε1α1 + · · · + εnαn).

Thus we express Pf(C) as follows, where we denote the edges of a matching M by
(i1, j1), . . . , (in, jn).

2n · Pf(C) =
∑
M

∑
(ε1,...,εn)∈{±1}n

(−1)c(M) cos(ε1(xi1 − xj1)+ · · · + εn(xin − xjn)).

By reordering the terms in the argument to cos, we can express each term on the right
side in the form cos(±x1 ± · · · ± x2n), with n numbers weighted positively and n numbers
weighted negatively.

Consider a term for a matchingM in which xk and xk+1 have the same coefficients, that
is, cos(· · · + εxk + εxk+1 · · · ), where ε ∈ {±1}. Since any two indices forming an edge of
M are given different signs, k and k + 1 do not form an edge in M .

Hence we can obtain another matching M ′ by switching the mates of k and k + 1 in
M . Always |c(M ′)− c(M)| = 1, and hence this mapping τk is a sign-reversing involution
on the set of matchings. The fixed points of τk are exactly those matchings that pair k and
k + 1. Hence the contributions of M and M ′ to the coefficient of any term of the form
cos(· · · + εxk + εxk+1 + · · · ) cancel.

Thus for each M the only terms that remain uncanceled under all τk are the two terms
with alternating signs: cos(x1 − x2 + x3 − · · · − x2n) and cos(−x1 + x2 − x3 + · · · + x2n).
Since cosine is an even function, these two terms are equal. We conclude

Pf(C) = cn · cos(x1 − x2 + x3 − · · · − x2n), (∗)
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where cn is a constant depending on n. To determine cn, set x1 = · · · = x2n = 0. The left
side of (∗) is now the Pfaffian of a skew-symmetric matrix having all entries above the
diagonal equal to 1. Expressing it in terms of matchings reduces it to

∑
M(−1)c(M), where

the sum is over all matchings on {1, . . . , 2n}.
We prove

∑
M(−1)c(M) = 1 by induction on n. The base case n = 1 is easy: there

is exactly one matching on {1, 2}, with no crossings. For the induction step, define an
involution on the set of matchings on {1, . . . , 2n} by switching the elements 2n − 1 and
2n. If the result is a new matching, then the numbers of crossings in these two matchings
differ by 1, and the terms for these two matchings cancel in the sum. What remains are the
matchings where 2n− 1 and 2n form an edge. This edge crosses no other, so the sum for
these matchings is the same as the sum for all matchings on {1, . . . , 2n− 2}, which by the
induction hypothesis is 1.

Also solved by F. R. Ataev (Uzbekistan), H. Chen, N. Hodges (UK), P. Lalonde (Canada), O. P. Lossers
(Netherlands), M. Omarjee (France), C. R. Pranesachar (India), K. Sarma (India), A. Stadler (Switzerland),
M. Tang, R. Tauraso (Italy), J. Van hamme (Belgium), T. Wiandt, M. Wildon (UK), and the proposer.

Simplifying a Sum

12249 [2021, 377]. Proposed by Florin Stanescu, Serban Cioculescu School, Gaesti,
Romania. Prove

n−1∑
k=�n/2�

n−k∑
m=1

(−1)m−1 k +m
k + 1

(
k + 1

m− 1

)
2k−m = n

2

for any positive integer n.

Solution by Rory Molinari, Beverly Hills, MI. Call the desired sum T (n), and let S(n) =
2T (n)/n. We prove S(n) = 1 for n > 0. For n > 0 and �n/2� ≤ k ≤ n− 1, set

tm = (−1)m−1 k +m
k + 1

(
k + 1

m− 1

)
2k−m.

Letting

sm = −2(m− 1)

k +m tm = (−1)m
(

k

m− 2

)
2k−m+1,

it can easily be verified that tm = sm+1 − sm. Note that S(n) =∑n−1
k=�n/2� f (n, k), where

f (n, k) = (2/n)∑n−k
m=1 tm for n > 0 and �n/2� ≤ k ≤ n− 1. Using s1 = 0, we have

f (n, k) = 2

n
(sn−k+1 − s1) = 2sn−k+1

n
= (−1)n−k+1

n

(
k

n− k − 1

)
22k−n+1.

Noting that
(

k

n−k−1

)
is taken to be 0 unless �n/2� ≤ k ≤ n − 1, it is natural to extend

f (n, k) by letting it be 0 unless �n/2� ≤ k ≤ n− 1. Now

S(n) =
n−1∑

k=�n/2�
f (n, k) =

∑
k

f (n, k),

where k ranges over all integers. Let

R(n, k) = (2k − n+ 1)(2k − n)
2(n− k)(n+ 1)

,

and put g(n, k) = R(n, k)f (n, k). Direct manipulation yields

f (n+ 1, k)− f (n, k) = g(n, k + 1)− g(n, k)
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for all k and positive n. When summed over k, the right side telescopes to 0, so

S(n+ 1)− S(n) =
∑
k

f (n+ 1, k)−
∑
k

f (n, k) = 0.

Thus S(n) is constant, and S(1) = f (1, 0) = 1, as required.

Editorial comment. The factors−2(m− 1)/(k +m) andR(n, k) come from Gosper’s algo-
rithm and the WZ algorithm, respectively (see M. Petkovšek, H. S. Wilf, and D. Zeilberger
(1997), A=B, A K Peters). In particular, R(n, k) is the certificate showing that (f, g) is a
Wilf-Zeilberger pair, meaning that f and g satisfy the properties needed to ensure that the
sum of f over k telescopes.

Also solved by J. Boswell & C. Curtis, P. Bracken, G. Fera (Italy), K. Gatesman, G. C. Greubel, D. Henderson,
N. Hodges (UK), O. Kouba (Syria), O. P. Lossers (Netherlands), E. Schmeichel, A. Stadler (Switzerland),
R. Stong, R. Tauraso (Italy), and the proposer.

A Polygon Inequality

12250 [2021, 377]. Proposed by Dorin Mărghidanu, Colegiul National A. I. Cuza, Cora-
bia, Romania. With n ≥ 4, let a1, . . . , an be the lengths of the sides of a polygon.
Prove√

a1

−a1 + a2 + · · · + an +
√

a2

a1 − a2 + · · · + an + · · · +
√

an

a1 + a2 + · · · − an >
2n

n− 1
.

Solution by UM6P Math Club, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
Since the left side is unaffected when the ai are scaled by a constant factor, we may assume
that the perimeter of the polygon is 1. Therefore, we need to show

n∑
k=1

√
ak

1− 2ak
>

2n

n− 1
.

By the triangle inequality, each ak belongs to the interval (0, 1/2), so by the AM–GM
inequality,

√
ak

1− 2ak
=
√

a2
k

ak(1− 2ak)
≥
√

a2
k

(1− ak)2/4 =
2ak

1− ak .

Note that this inequality is strict unless ak = 1/3. Since n ≥ 4, the inequality is strict for
some k, and therefore it suffices to show

n∑
k=1

2ak
1− ak ≥

2n

n− 1
.

Let g(x) = 2x/(1− x). Since g is convex on (0, 1/2), by Jensen’s inequality

n∑
k=1

2ak
1− ak = n ·

∑n
k=1 g(ak)

n
≥ n · g

(∑n
k=1 ak

n

)
= n · g(1/n) = 2n

n− 1
,

as required.

Solution II by Nigel Hodges, Cheltenham, UK. Denote the left side of the inequality by
T (a1, . . . , an). Since n ≥ 4, we have 4(n − 1) ≥ 3n, so 2n/(n − 1) ≤ 8/3 < 2

√
2. We

prove the stronger result T (a1, . . . , an) ≥ 2
√

2.
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As in the first solution above, we may assume
∑n

j=1 aj = 1, and hence 0 < aj < 1/2

for all j . Set aj = (1/2) sin2 θj with θj ∈ (0, π/2). This yields√
aj

−2aj +∑n
t=1 at

=
√

aj

1− 2aj
= tan θj√

2
=
√

2 sin2 θj

sin(2θj )
≥ √2 sin2 θj = 2

√
2aj .

Therefore

T (a1, . . . , an) =
n∑
j=1

√
aj

−2aj +∑n
t=1 at

≥ 2
√

2
n∑
j=1

aj = 2
√

2.

It is easy to see that this result is the best possible in that no larger constant can replace
2
√

2. Set a1 = a2 = a3 = a4 = 1 and aj = ε for 5 ≤ j ≤ n, where ε is a small positive
constant. We have T (a1, . . . , an) = 2

√
2 + O(√ε), and so T (a1, . . . , an) can be made

arbitrarily close to 2
√

2 by choosing ε small enough.

Also solved by K. F. Andersen (Canada), M. Bataille (France), M. V. Channakeshava (India), H. Chen (China),
H. Chen (US), C. Chiser (Romania), K. Gatesman, C. Geon (Korea), W. Janous (Austria), O. Kouba (Syria),
S. S. Kumar, J. H. Lindsey II, O. P. Lossers (Netherlands), M. Lukarevski (North Macedonia), M. Omarjee
(France), E. Schmeichel, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), D. Văcaru (Romania), F. Vis-
escu (Romania), L. Zhou, Westchester Area Math Circle, and the proposer.

Forcing Monochromatic Convex Pentagons with Fixed Area

12251 [2021, 467]. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,”
Rome, Italy. Each point in the plane is colored either red or blue. Show that for any positive
real number S, there is a proper convex pentagon of area S all five of whose vertices have
the same color. (By a proper convex pentagon we mean a convex pentagon whose internal
angles are less than π .)

Solution by Michael Tang, University of Washington, Seattle, WA. Denote the area of a
polygon by placing brackets around a list of its vertices, and let XY denote both the seg-
ment with endpointsX and Y and its length. Let B and R be the sets of blue and red points,
respectively. We begin with three observations that follow from assuming that the coloring
yields no such pentagon.

(i) Both B and R are unbounded. If B is bounded, then we find five acceptable red
vertices; similarly for bounded R.

(ii) Both R and B are dense in the plane. If R is not dense in the plane, then B contains
a disk D of some radius r centered at some point O. Also, B contains a point P with
OP > 2S/r . Choose X, Y ∈ D such that XY contains O and XY ⊥ OP and OX =
OY = (S − ε)/OP . Thus OX = OY < r/2 and [PXY ] = S − ε. We choose ε small
enough to guarantee the existence of a chord WZ on the circumcircle of PXY close and
parallel to XY (but farther from P than XY is) so that the isosceles trapezoid XYZW has
area ε. Now XZWYP is a proper convex pentagon with area S.

(iii) Every line segment contains points of both colors. If segment X1X2 is all red, then
we construct such a pentagon. Choose Y,W,Z, V so that XYWZV is proper convex for
all X ∈ X1X2 and [X1YZWV ] < S < [X2YZWV ]. Since R is dense in the plane, we
may choose Y ′,W ′, Z′, V ′ in R arbitrarily close to Y,W,Z, V preserving convexity and
the inequality [X1Y

′Z′W ′V ′] < S < [X2Y
′Z′W ′V ′]. By continuity of the area function,

[XYZWV ] = S for some X ∈ R, and this is our desired pentagon.

Given X, Y ∈ B, take Z ∈ B from a parallel line segment on one side of XY at a
distance (2S − 4ε)/XY from it. Thus [XYZ] = S − 2ε. From the other side ofXY choose
W ∈ B. For sufficiently small ε, we can chose W inside the circumcircle of XYZ so that
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[XYW ] = ε. Similarly chose V inside the circumcircle of XYZ (but outside the triangle
XYZ near the edge XZ) so that [XVZ] = ε. Now [XVZYW ] = S, and the construction
guarantees that XVZYW is proper convex.

Editorial comment. Most solvers constructed a class of monochromatic quadrilaterals and
used casework to obtain a pentagon. The proposer started with a monochromatic rectangle
(similar to Problem 8.5 of the 1991 Colorado Math Olympiad). Many extended the result
to proper convex n-gons.

Also solved by J. Barát (Hungary), H. Chen (China), K. Gatesman, N. Hodges (UK), Y. J. Ionin, M. Reid,
C. Schacht, R. Stong, and the proposer.

Some Floors and Ceilings

12252 [2021, 467]. Proposed by Nguyen Quang Minh, Saint Joseph’s Institution, Singa-
pore. Let k, q, and n be positive integers with k ≥ 2, and let P be the set of positive integers
less than kn that are not divisible by k. Prove∑

p∈P

⌈�n− logk p�
q

⌉
=
⌊
kq−1(kn−1 − 1)(k − 1)

kq − 1

⌋
+ 1.

Solution by M. A. Prasad, Navi Mumbai, India. Write
∑

p∈P
⌈�n−logk(p)�

q

⌉
= T1 − T2,

where

T1 =
∑

0<p<kn

⌈⌊
n− logk(p)

⌋
q

⌉
=
⌈
n

q

⌉
+

n−1∑
j=0

kj+1∑
p=kj+1

⌈⌊
n− logk(p)

⌋
q

⌉

=
⌈
n

q

⌉
+

n−1∑
j=0

kj (k − 1)

⌈
n− j − 1

q

⌉

and

T2 =
∑

0<j≤kn−1

⌈⌊
n− logk(jk)

⌋
q

⌉
=

∑
0<j≤kn−1

⌈⌊
n− 1− logk(j)

⌋
q

⌉

=
⌈
n− 1

q

⌉
+

n−2∑
j=0

kj (k − 1)

⌈
n− j − 2

q

⌉
.

Combining these yields

T1 − T2 =
⌈
n

q

⌉
−
⌈
n− 1

q

⌉
+

n−2∑
j=0

kj (k − 1)

(⌈
n− j − 1

q

⌉
−
⌈
n− j − 2

q

⌉)
.

Let n− 2 = �q + r with 0 ≤ r < q. If r �= q − 1, then the only terms that contribute to
the right side are those with j ≡ r (mod q), so we obtain

T1 − T2 =
�∑
i=0

kiq+r (k − 1) = (k − 1)kr(k(�+1)q − 1)

kq − 1

= (k − 1)kq−1(kn−1 − 1)

kq − 1
+ (k − 1)(kq−1 − kr)

kq − 1
.

Since 0 < (k − 1)(kq−1 − kr)/(kq − 1) < 1, the result follows. If r = q − 1, we similarly
obtain

T1 − T2 = 1+
�∑
i=0

kiq+r (k − 1) = 1+ (k − 1)kq−1(kn−1 − 1)

kq − 1
.
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Since the sum is an integer, the right side is an integer, and again we have the desired value.

Also solved by N. Hodges (UK), Y. J. Ionin, O. P. Lossers (Netherlands), K. Sarma (India), A. Stadler (Switzer-
land), A. Stenger, R. Stong, R. Tauraso (Italy), and the proposer.

An Arctangent Integral Solves a Summation

12254 [2021, 467]. Proposed by Cezar Lupu, Texas Tech University, Lubbock, TX, and
Tudorel Lupu, Constanţa, Romania. Prove

∞∑
n=0

(
(−1)n

2n+ 1

n∑
k=1

1

n+ k

)
= 3π

8
log 2−G,

where G is Catalan’s constant
∑∞

k=0(−1)k/(2k + 1)2.

Composite solution by Michel Bataille, Rouen, France, and Omran Kouba, Higher Institute
for Applied Sciences and Technology, Damascus, Syria. Let S denote the requested sum.
We first compute

n∑
k=1

1

n+ k =
2n+1∑
k=1

1

k
− 2

n∑
k=1

1

2k
− 1

2n+ 1
=

2n+1∑
k=1

(−1)k−1

k
− 1

2n+ 1

=
∫ 1

0

2n+1∑
k=1

(−x)k−1 dx − 1

2n+ 1
=
∫ 1

0

1+ x2n+1

1+ x dx − 1

2n+ 1

=
∫ 1

0

x2n+1

1+ x dx + log 2− 1

2n+ 1
.

It follows that

S =
∞∑
n=0

∫ 1

0

(−1)nx2n+1

(2n+ 1)(1+ x) dx + log 2
∞∑
n=0

(−1)n

2n+ 1
−
∞∑
n=0

(−1)n

(2n+ 1)2

=
∞∑
n=0

∫ 1

0

(−1)nx2n+1

(2n+ 1)(1+ x) dx +
π

4
log 2−G. (∗)

To evaluate the last sum, first note that
∞∑
n=0

∫ 1

0

∣∣∣∣ (−1)nx2n+1

(2n+ 1)(1+ x)
∣∣∣∣ dx =

∞∑
n=0

∫ 1

0

x2n+1

(2n+ 1)(1+ x) dx

≤
∞∑
n=0

∫ 1

0

x2n+1

2n+ 1
dx =

∞∑
n=0

1

(2n+ 1)(2n+ 2)
<∞.

Hence we can reverse the order of the summation and integration to obtain
∞∑
n=0

∫ 1

0

(−1)nx2n+1

(2n+ 1)(1+ x) dx =
∫ 1

0

∞∑
n=0

(−1)nx2n+1

(2n+ 1)(1+ x) dx =
∫ 1

0

arctan x

1+ x dx.

Using the change of variables x = (1 − t)/(1 + t) and the fact that for 0 ≤ t ≤ 1,
arctan((1− t)/(1+ t)) = π/4− arctan t we get∫ 1

0

arctan x

1+ x dx =
∫ 1

0

π/4− arctan t

1+ t dt,

and therefore

2
∫ 1

0

arctan x

1+ x =
π

4

∫ 1

0

dt

1+ t =
π

4
log 2.
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We conclude that the sum in (∗) equals (π/8) log 2, and therefore S = (3π/8) log 2−G,
as required.

Also solved by A. Berkane (Algeria), N. Bhandari (Nepal), P. Bracken, B. Bradie, A. C. Castrillón (Colombia),
H. Chen, B. E. Davis, G. Fera (Italy), M. L. Glasser, R. Gordon, H. Grandmontagne (France), G. C. Greubel,
N. Grivaux (France), N. Hodges (UK), L. Kempeneers & J. Van Casteren (Belgium), O. P. Lossers (Nether-
lands), J. R. McCrorie (Scotland), M. Omarjee (France), D. Pinchon (France), M. A. Prasad (India), J. Song
(China), A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong, R. Tauraso (Italy), M. Vowe (Switzer-
land), T. Wiandt, M. Wildon (UK), FAU Problem Solving Group, and the proposer.

CLASSICS

C12. Due to Lionel Penrose and Roger Penrose; suggested by the editors. Is there a plane
region bounded by a differentiable Jordan curve with the property that no matter where a
light source is placed inside it, some part of the region remains unilluminated? Assume
that the curve acts as a perfect mirror.

Guessing When a Playing Card is Red

C11. Suggested by Richard Stanley, University of Miami, Coral Gables, FL. A standard
deck of cards has 26 red cards and 26 black cards. Deal out the cards in a shuffled standard
deck, one card at a time. At any point before the last card is dealt, you can guess that the
next card is red. For example, you may guess that the very first card is red, and your guess
will be correct with probability 1/2. Or you may watch some cards go by, noting their color
in order to decide when to guess. What strategy maximizes the probability that your guess
is correct?

Solution I. It is not possible to improve on 1/2. In fact, all stopping strategies have success
probability exactly 1/2. To see this, compare the game to a variant in which, after the guess
is made, the revealed card is the bottom card in the deck rather than the next card. When
any strategy is applied to this variant, the chance of success is clearly 1/2, since the bottom
card in a shuffled deck is red with probability 1/2. The key observation is that, no matter
when the guess is made, the next card has the same probability of being red as does the
bottom card. The probabilities are r/(r + b), where r and b are the number of red cards
and the number of black cards, respectively, in the deck following the specified position.
Since these probabilities determine the probability of success, the original game and the
variant have the same probability of success, independent of the strategy that is applied.

Solution II. We use induction on the size of the deck, proving the more general result that
any strategy wins with probability r/(b + r) when the deck starts with r red cards and b
black cards. If you guess that the first card is red, your probability of success is r/(b+ r). If
you don’t, then consider two cases depending on the color of the first card. With probability
b/(b + r), the first card is black, and you are facing b − 1 black cards and r red cards in
the remaining deck. With probability r/(b + r), the first card is red, and you are facing b
black cards and r − 1 red cards. By the induction hypothesis, the probability of success,
independent of how the strategy continues, is

b

b + r
r

b + r − 1
+ r

b + r
r − 1

b + r − 1
,

which equals r/(b + r).
Editorial comment. The problem is folklore, and appears on p. 67 of P. Winkler (2003),
Mathematical Puzzles, A Connoisseur’s Collection, A K Peters/CRC Press.

196 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 130



SOLUTIONS

Golden Eigenvalues of Special Matrices

12240 [2021, 276]. Proposed by Yue Liu, Fuzhou University, Fuzhou, China, and Fuzhen
Zhang, Nova Southeastern University, Fort Lauderdale, FL. We denote byA∗ the conjugate
transpose of the matrix A.
(a) Let x ∈ C

m be a unit column vector. Find the eigenvalues of the (m+ 1)-by-(m+ 1)
matrices [

x∗x x∗
x 0

]
and

[
xx∗ x

x∗ 0

]
.

(b) More generally, letX be anm-by-n complex matrix, and let ρ be any real number. Find
the eigenvalues of the (m+ n)-by-(m+ n) matrices[

X∗X X∗
X ρIm

]
and

[
XX∗ X

X∗ ρIn

]
.

Solution to part (a) by Jean-Pierre Grivaux, Paris, France. Let M and N be the two spec-
ified matrices. Since x is a unit vector, x∗x = 1. The rank of M is two. Thus it has two
nonzero eigenvalues λ1 and λ2, plus 0 with multiplicitym− 1. Note λ1 + λ2 = tr(M) = 1.
We calculate M2:

M2 =
[

2 x∗
x xx∗

]
.
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With the entries of x indexed as x1, . . . , xm, them-by-mmatrix xx∗ has diagonal entries
|x1|2 , . . . , |xm|2. Thus tr(M2) = 2 +∑ |xi |2 = 3, so λ2

1 + λ2
2 = 3. Substituting λ2 =

1− λ1 yields a quadratic equation, and we obtain {λ1, λ2} = {(1−
√

5)/2, (1+√5)/2}.
The argument for N is similar; it also has rank 2 and trace 1. Now

N2 =
[

2xx∗ xx∗x
x∗xx∗ 1

]
,

so tr(N2) = 3. Again the two nonzero eigenvalues are (1−√5)/2 and (1+√5)/2.

Solution to part (b) by Kuldeep Sarma, Tezpur University, Tezpur, India. Again letM andN
be the two specified matrices. We use the singular value decomposition (SVD). The SVD
factors the m-by-n complex matrix X as U�V ∗, where U is an m-by-m complex unitary
matrix, V is an n-by-n complex unitary matrix, and � is an m-by-n rectangular diagonal
matrix with nonnegative real numbers σ1, . . . , σs on the diagonal, where s = min{m, n}.
We can then write

M =
[
V�∗�V ∗ V�∗U ∗
U�V ∗ U [ρIm]U ∗

]
=
[
V 0
0 U

] [
�∗� �∗
� ρIm

] [
V ∗ 0
0 U ∗

]
.

Since multiplication by a unitary matrix does not change eigenvalues, it suffices to find the
eigenvalues of the matrix S given by

S =
[
�∗� �∗
� ρIm

]
.

We consider a simultaneous permutation of the rows and columns of S, which does not
change the eigenvalues. Since � is nonzero only on its diagonal, many entries in S are
0. Index the first n rows (and columns) of S as 1 through n, and index the last m rows
(and columns) as 1′ throughm′. Let s = min{m, n}. Reorder the rows (and columns) in the
order (1, 1′, 2, 2′, . . . , s, s ′), followed by the remainingm+ n− 2s rows (and columns) in
their original order. This converts S to a block-diagonal matrix S ′ in which the ith block,
for 1 ≤ i ≤ s, is the 2-by-2 matrix [

σ 2
i σi
σi ρ

]
,

and the finalm+ n− 2s blocks are 1-by-1 blocks that are all [ρ] ifm > n and are all [0] if
m < n (there are none of these 1-by-1 blocks if m = n). Note that m+ n− 2s = |m− n|.

The eigenvalues are the eigenvalues of the blocks: 0 or ρ with the stated multiplicity
|m− n|, plus

ρ + σ 2
i ±

√(
ρ − σ 2

i

)2 + 4σ 2
i

2

from the block for σi , where 1 ≤ i ≤ s. Note that if σi = 0, then the block for σi reduces
to two extra 1-by-1 blocks [0] and [ρ], but this is in fact described by the formula given
above for the eigenvalues of the block for σi .

The matrix N is generated in the same way as the matrix M , using X∗ instead of X.
It follows that the spectrum of N is the same as the spectrum of M , except that the mul-
tiplicities of 0 and ρ generated by the 1-by-1 blocks are, respectively, max{m− n, 0} and
max{n−m, 0}, obtained by interchanging the roles of m and n.

Also solved by D. Fleischman, K. Gatesman, L. Han (US) & X. Tang (China), E. A. Herman, C. P. A. Kumar
(India), O. P. Lossers (Netherlands), A. Stadler (Switzerland), R. Stong, E. I. Verriest, T. Wiandt, and the
proposer.
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An Integral Limit for This Year—Or, As It Turns Out, Any Year

12242 [2021, 277]. Proposed by Elena Corobea, Technical College Carol I, Constanţa,
Romania. For n ≥ 1, let

In =
∫ 1

0

(∑n
k=0 x

k/(2k + 1)
)2022

(∑n+1
k=0 x

k/(2k + 1)
)2021 dx.

Let L = limn→∞ In. Compute L and limn→∞ n(In − L).
Solution by Kyle Gatesman (student), Johns Hopkins University, Baltimore, MD. We show
that L = 2 ln 2 and limn→∞ n(In − L) = −1/2.

For integers n ≥ 1 and p ≥ 0, let

Sn(x) =
n∑
k=0

xk

2k + 1
and In(p) =

∫ 1

0

(Sn(x))
p+1

(Sn+1(x))p
dx.

For p ≥ 1,

In(p) =
∫ 1

0

(Sn(x))
p

(Sn+1(x))p−1
· Sn(x)
Sn+1(x)

dx

=
∫ 1

0

(Sn(x))
p

(Sn+1(x))p−1
·
(

1− xn+1

(2n+ 3)Sn+1(x)

)
dx

= In(p − 1)−
∫ 1

0

(
Sn(x)

Sn+1(x)

)p
· x

n+1

2n+ 3
dx.

For x ∈ [0, 1], we have

0 ≤
(
Sn(x)

Sn+1(x)

)p
· x

n+1

2n+ 3
≤ xn+1

2n+ 3
,

so

0 ≤ In(p − 1)− In(p) ≤
∫ 1

0

xn+1

2n+ 3
dx = 1

(n+ 2)(2n+ 3)
.

Therefore limn→∞(In(p − 1) − In(p)) = 0, and by a straightforward induction on p we
conclude that limn→∞(In(0) − In(p)) = 0 for all p ∈ Z

+. Moreover, for any constant
c ∈ R,

0 ≤ n(In(p − 1)− c)− n(In(p)− c) ≤ n

(n+ 2)(2n+ 3)
,

and so lim
n→∞(n(In(p− 1)− c)− n(In(p)− c)) = lim

n→∞(n(In(0)− c)− n(In(p)− c)) = 0.

Because

In(0) =
∫ 1

0
Sn(x) dx =

∫ 1

0

n∑
k=0

xk

2k + 1
dx =

n∑
k=0

1

(k + 1)(2k + 1)
,

we conclude

lim
n→∞In(p) = lim

n→∞ In(0) = lim
n→∞

n∑
k=0

1

(k + 1)(2k + 1)
=
∞∑
k=0

1

(k + 1)(2k + 1)

= 2
∞∑
k=0

1

(2k + 2)(2k + 1)
= 2

∞∑
k=0

(
1

2k + 1
− 1

2k + 2

)
= 2

∞∑
k=1

(−1)k−1

k
= 2 ln 2.
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In particular, in the case p = 2021, we obtain L = 2 ln 2.
Similarly, observe that

lim
n→∞ n(In(p)− L) = lim

n→∞ n(In(0)− L)

= lim
n→∞ n

(
n∑
k=0

1

(k + 1)(2k + 1)
−
∞∑
k=0

1

(k + 1)(2k + 1)

)

= lim
n→∞ n

(
−

∞∑
k=n+1

1

(k + 1)(2k + 1)

)
.

For every n ∈ Z
+ we have

∞∑
k=n+1

1

(k + 1)(2k + 4)
≤

∞∑
k=n+1

1

(k + 1)(2k + 1)
≤

∞∑
k=n+1

1

(k + 1)2k
.

Since
∞∑

k=n+1

1

(k + 1)(2k + 4)
= 1

2

∞∑
k=n+1

(
1

k + 1
− 1

k + 2

)
= 1

2(n+ 2)

and
∞∑

k=n+1

1

(k + 1)2k
= 1

2

∞∑
k=n+1

(
1

k
− 1

k + 1

)
= 1

2(n+ 1)
,

we conclude

− n

2(n+ 1)
≤ n

(
−

∞∑
k=n+1

1

(k + 1)(2k + 1)

)
≤ − n

2(n+ 2)
.

Thus, by the squeeze theorem,

lim
n→∞ n(In(p)− L) = lim

n→∞ n

(
−

∞∑
k=n+1

1

(k + 1)(2k + 1)

)
= −1

2
,

and setting p = 2021 completes the solution of the stated problem.

Editorial comment. The solution shows that the answers are the same if 2021 and 2022 are
replaced by p and p + 1 for any nonnegative integer p. Indeed, since In(p) is a decreasing
function of p, the answers are the same if 2021 and 2022 are replaced by x and x + 1 for
any nonnegative real number x.

Also solved by K. F. Andersen (Canada), P. Bracken, H. Chen, G. Fera (Italy), D. Fleischman, L. Han (USA)
& X. Tang (China), E. A. Herman, N. Hodges (UK), J. H. Lindsey II, O. P. Lossers (Netherlands), M. Omarjee
(France), K. Sarma (India), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt, J. Yan (China),
and the proposer.

A Hyperbolic Integral

12243 [2021, 277]. Proposed by M. L. Glasser, Clarkson University, Potsdam, NY. For
a > 0, evaluate ∫ a

0

t

sinh t
√

1− csch2a · sinh2 t
dt.

Solution by Kuldeep Sarma, Tezpur University, Tezpur, India. Let I (a) be the desired value.
First, we observe that

1− csch2a sinh2 t = cosh2 t (1− coth2 a tanh2 t).
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Using this, we obtain

I (a) =
∫ a

0

t dt

sinh t
√

1− csch2a · sinh2 t
=
∫ a

0

t dt

sinh t cosh t
√

1− coth2a · tanh2 t
.

Now using the substitution cos x = coth a tanh t , we have

I (a) =
∫ π/2

0

tanh−1(tanh a cos x)

cos x
dx

and hence

I ′(a) =
∫ π/2

0

sech2a

1− tanh2 a cos2 x
dx = sech a tan−1(cosh a tan x)

∣∣π/2
0 = π

2
sech a.

Thus

I (a) =
∫ a

0
I ′(s) ds = π

2

∫ a

0
sech s ds = π

2
tan−1(sinh a).

Editorial comment. Several solvers noted that the requested integral can be reduced to
integral (3.535) from I. S. Gradshteyn, I. M. Ryzhik, et al. (2014), Table of Integrals, Series,
and Products, 8th edition, Cambridge, MA: Academic Press.

Also solved by U. Abel & V. Kushnirevych (Germany), P. Bracken, H. Chen, G. Fera (Italy), L. Han (US) &
X. Tang (China), N. Hodges (UK), O. P. Lossers (Netherlands), T. M. Mazzoli (Austria), M. Omarjee (France),
A. Stadler (Switzerland), S. M. Stewart (Saudi Arabia), R. Tauraso (Italy), UM6P Math Club (Morocco), and
the proposer.

Equitable Polyominos in a Box

12244 [2021, 376]. Proposed by Rob Pratt, SAS Institute Inc., Cary, NC, Stan Wagon,
Macalester College, St. Paul, MN, Douglas B. West, University of Illinois, Urbana, IL,
and Piotr Zielinski, Cambridge, MA. A polyomino is a region in the plane with connected
interior that is the union of a finite number of squares from a grid of unit squares. For which
integers k and n with 4 ≤ k ≤ n does there exist a polyomino P contained entirely within
an n-by-n grid such that P contains exactly k unit squares in every row and every column
of the grid? Clearly such polyominos do not exist when k = 1 and n ≥ 2. Nikolai Beluhov
noticed that they do not exist when k = 2 and n ≥ 3, and his Problem 12137 [2019, 756;
2021, 381] shows that they do not exist when k = 3 and n ≥ 5.

Solution by Jacob Boswell, Missouri Southern State University, Joplin, MO. Polyominos
with the desired properties, which we call (k, n)-equitable polyominos, exist whenever
4 ≤ k ≤ n.

Denote the n-by-n grid by Gn. We call its unit squares cells and specify their positions in
matrix notation. We call the three cells (1,1), (1,2), and (2,1) the top left guard. Similarly,
we define top right, bottom left, and bottom right guards.

We argue by induction on k that in Gn there is a (k, n)-equitable polynomino that con-
tains two diagonally opposite guards such that removing the corner square from one of
those guards leaves the remainder connected. Let Ck,n denote the class of such polyomi-
nos. We postpone the discussion of the base cases.

For the induction step, consider (k, n) with n ≥ k ≥ 9. Cover Gn using two diagonally
opposite copies of G�n/2 and two diagonally opposite copies of G�n/2�. When n is odd, the
two larger subgrids share one cell in the center, but other than that the subgrids share no
cells.

We describe a uniform construction for all cases except when n is odd and k is even. In
the two opposite copies of G�n/2, place members of C�k/2,�n/2, with one of the guards that
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are inductively guaranteed to exist placed in the center of Gn. In the two opposite copies of
G�n/2�, similarly place members of C�k/2�,�n/2� with their guaranteed guards in the center of
Gn.

When n is odd and k is even, use members of Ck/2+1,�n/2 in the larger subgrids and
Ck/2−1,�n/2� in the smaller subgrids, and (in this case) delete the central cell from the result-
ing polyomino. The use of Ck/2−1,�n/2� here is the reason we need k = 8 in the basis.

In each case, the guards from each subpolyomino retain a cell adjacent to a cell retained
from the guard in a neighboring subpolyomino, so the resulting full polyomino is con-
nected. The polyomino also retains diagonally opposite complete guards, and deleting the
corner cell from one of those guards does not disconnect the polyomino, because it does
not disconnect the subpolyomino (even when the central cell is deleted, the two neighbors
of the central cell are connected through the other subpolyominos).

When n is even, the number of cells in each row and column of the final polyomino
is �k/2 + �k/2�. When n is odd and k is odd, the computation is the same except for
the central row and column, where it is �k/2 + �k/2 − 1 as desired, since the central
cell contributes only once. When n is odd and k is even, we have k/2 + 1 + k/2 − 1
cells in each noncentral row and column, and in the central row and column we have
k/2+ 1+ k/2+ 1− 2 cells, since the central cell was deleted. (Keeping the larger subgrid
connected in this case is the reason for the special condition on the subgrid.) Below we
show the construction of a member of C10,12 from four members of C5,6.

Now we return to the base cases. Because the induction step for k needs the induction
hypothesis for �(k − 1)/2� and (k, n)-equitable polyominos do not generally exist when
k ≤ 3, we need base cases for 4 ≤ k ≤ 8. Below we show members of C4,5 and C4,12. The
general construction shown for (k, n) = (4, 12) is valid when n ≥ 6, which completes the
proof for k = 4.
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For k ≥ 5, we show first that a special construction for n = 2k + 2 yields constructions
for all larger n. Say that a member of Ck,2k+2 is a butterfly if its portion in the upper left and
lower right quadrants consists precisely of triangular arrays of cells with side-length �k/2�
touching the center of G2k+2, as indicated on the left below. Suppose that Ck,2k+2 contains a
butterfly Bk . Note that the polyomino A′ in the upper right quadrant of Bk can be assumed
to be the transpose of A.

From Bk one can obtain a member of Ck,n whenever n > 2k + 2 by enlarging the central
portion of the butterfly and spreading A and A′ farther apart, as shown on the right below.
When k is even, the central diagonal of the added portion is omitted, but when k is odd it
is present. The correct counts in the rows and columns occupied by A and A′ are inherited
from Bk .

Below we show butterflies for 5 ≤ k ≤ 8. One issue in these constructions is ensuring
that the polyomino is connected; this is the reason we provided a different construction for
k = 4.
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At this point the proof is completed by exhibiting explicit examples for k ≤ n ≤ 2k + 1
when 5 ≤ k ≤ 8. General constructions for n = k and n = k + 1 are trivial. What remains
is a finite problem, exhibiting 26 polynominos. We leave the constructions to the reader.

Editorial comment. The constructions are far from unique. For example, there is a con-
struction similar to the butterfly that exists when n = 2k and expands like the butterfly,
reducing the finite problem to 18 polyominos.

Also solved by K. Gatesman, R. Stong, and the proposer.

CLASSICS

C11. Suggested by Richard Stanley, University of Miami, Coral Gables, FL. A standard
deck of cards has 26 red cards and 26 black cards. Deal out the cards in a shuffled standard
deck, one card at a time. At any point before the last card is dealt, you can guess that the
next card is red. For example, you may guess that the very first card is red, and your guess
will be correct with probability 1/2. Or you may watch some cards go by, noting their color
in order to decide when to guess. What strategy maximizes the probability that your guess
is correct?

Repetitions in the Interior of Pascal’s Triangle

C10. Due to Douglas Lind, suggested by the editors. Show that there are infinitely many
numbers that appear at least six times in Pascal’s triangle.

Solution. For m ≥ 3, m occurs twice as
(
m

1

)
and

(
m

m−1

)
. By symmetry, it will suffice to

find infinitely many values of m with at least two more occurrences in the left half of the
triangle.

There are several small examples of such pairs of occurrences: 120 = (10
3

) = (16
2

)
,

210 = (10
4

) = (21
2

)
, 1540 = (22

3

) = (56
2

)
, and 3003 = (15

5

) = (14
6

)
. The last of these exhibits

the intriguing relationship
(
n

k

) = (n−1
k+1

)
. To solve the problem, we will find infinitely many

solutions of this equation with k > 1 and k + 1 < (n− 1)/2.
The equation

(
n

k

) = (n−1
k+1

)
is equivalent to n(k + 1)− (n− k)(n− k − 1) = 0. We claim

that for every positive integer j , this equation is satisfied by the values n = F2j+2F2j+3
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and k = F2jF2j+3, where Fi is the ith Fibonacci number. To see why, note that with these
values we have n− k = (F2j+2 − F2j )F2j+3 = F2j+1F2j+3, and therefore

n(k + 1)− (n− k)(n− k − 1) = F2j+2F2j+3(F2jF2j+3 + 1)− F2j+1F2j+3(F2j+1F2j+3 − 1)

= F2j+3(F2j+2F2jF2j+3 + F2j+2 − F 2
2j+1F2j+3 + F2j+1)

= F2j+3(F2j+2F2jF2j+3 − F 2
2j+1F2j+3 + F2j+3)

= F 2
2j+3(F2j+2F2j − F 2

2j+1 + 1) = 0,

where the last step uses the well-known identity Fi+1Fi−1 − F 2
i = (−1)i .

The case j = 1 yields n = 15 and k = 5, the example we found earlier. When j = 2 we
get n = 104 and k = 39, and indeed

(104
39

) = (103
40

) = 61218182743304701891431482520.

Editorial comments. The appearance of the Fibonacci numbers in this solution can be
explained by reference to classic problem C2 (this Monthly, Feb. 2022, p. 194). View-
ing the equation n(k + 1)− (n− k)(n− k − 1) = 0 as a quadratic in n and applying the
quadratic formula yields

n = 3k + 2±√5k2 + 8k + 4

2
.

For n to be an integer, we need 5k2+ 8k+ 4 to be a perfect square. Setting 5k2+ 8k+ 4= t2
and solving for k by the quadratic formula, we get

k = −4±√5t2 − 4

5
.

For k to be an integer, 5t2 − 4 must be a perfect square, and the solution to classic problem
C2 (March 2022, pp. 293–294) shows that this happens if and only if t is an odd-indexed
Fibonacci number. Setting t = F2i+1 and applying Fibonacci identities leads to the values

n = Fi+1Fi+2 + (−1)i+1 − 1

5
, k = Fi−1Fi+2 + 4((−1)i+1 − 1)

5
.

These are integers when i is odd, and setting i = 2j + 1 leads to the values used in the
solution.

This result is due to Lind (D. Lind, The quadratic field Q(
√

5) and a certain Dio-
phantine equation, Fib. Quart. 6 (1968) 86–94, fq.math.ca/Scanned/6-3/lind.pdf). See also
C. A. Tovey, Multiple occurrences of binomial coefficients, Fib. Quart. 23 (1985) 356–358.
It is related to a 1971 conjecture of Singmaster (D. Singmaster, How often does an integer
occur as a binomial coefficient?, this Monthly 78 (1971) 385–386). For an integerm with
m ≥ 2, let Sm be the number of times m appears in Pascal’s triangle. Singmaster conjec-
tured that Sm is bounded, and suggested that 10 or 12 might be a bound. The problem shows
that 5 cannot be an asymptotic bound. It turns out that S3003 = 8; there are no other known
values of m for which Sm ≥ 8. The sequence of binomial coefficients for which Sm ≥ 6
starts 120, 210, 1540, 3003, 7140, 11628, 24310, 61218182743304701891431482520 (see
the OEIS sequences: oeis.org/A003015, oeis.org/A003016, and oeis.org/A090162). See
also K. Matomäki, M. Radziwiłł, X. Shao, T. Tao, and J. Teräväinen, Singmaster’s conjec-
ture in the interior of Pascal’s triangle, arxiv.org/abs/2106.03335.
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SOLUTIONS

Counting Sets Without Consecutive Elements

12233 [2021, 178]. Proposed by C. R. Pranesachar, Indian Institute of Science, Bengaluru,
India. Let n and k be positive integers with 1 ≤ k ≤ (n + 1)/2. For 1 ≤ r ≤ n, let h(r)
be the number of k-element subsets of {1, . . . , n} that do not contain consecutive elements
but that do contain r . For example, with n = 7 and k = 3, the string h(1), . . . , h(7) is
6, 3, 4, 4, 4, 3, 6. Prove
(a) h(r) = h(r + 1) when r ∈ {k, . . . , n− k}.
(b) h(k − 1) = h(k)± 1.
(c) h(r) > h(r + 2) when r ∈ {1, . . . , k − 2} and r is odd.
(d) h(r) < h(r + 2) when r ∈ {1, . . . , k − 2} and r is even.

Composite solution by Kyle Gatesman, Johns Hopkins University, Baltimore, MD, and
Roberto Tauraso, University of Rome Tor Vergata, Rome, Italy. The problem statement
requires correction in parts (c) and (d), where in the special case k = (n+ 1)/2 we have
h(r) = h(r + 2) for all r .

For a proof by induction, we make the dependence on n and k explicit. Let hn,k(r) =
h(r), and extend the definition to give 0 when n, k, or r is outside its natural domain. For
1 ≤ r ≤ n − 1, partition the k-element subsets containing r by whether they contain n,
obtaining

hn,k(r) = hn−1,k(r)+ hn−2,k−1(r). (1)

Similarly, for 1 < r ≤ n, partition the k-element subsets containing r by whether they
contain 1. After shifting indices to start at 2 or 3, this yields

hn,k(r) = hn−1,k(r − 1)+ hn−2,k−1(r − 2). (2)

(a) We use induction on n. Note that hn,1(r) = 1 for all r and n, from which (a) follows
for k = 1, including all cases with n ≤ 3. Now suppose n > 3 and k > 1. By symmetry,
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hn,k(r) = hn,k(n + 1 − r), so we need only consider k ≤ r ≤ (n − 1)/2. In that case,
r ≤ (n− 1)− k = (n− 2)− (k − 1). Now (1) and the induction hypothesis imply

hn,k(r) = hn−1,k(r)+ hn−2,k−1(r) = hn−1,k(r + 1)+ hn−2,k−1(r + 1) = hn,k(r + 1).

(b) We use induction on k to prove that hn,k(k − 1) − hn,k(k) = (−1)k , for all positive
integers n beginning with hn,1(0) = 0 and hn,1(1) = 1. By (1) and (2),

hn,k(r)− hn,k(r + 1) = (hn−1,k(r)+ hn−2,k−1(r)
)− (hn−1,k(r)+ hn−2,k−1(r − 1)

)
= −(hn−2,k−1(r − 1)− hn−2,k−1(r)

)
. (3)

With r = k − 1 ≤ ((n− 2)+ 1)/2, the induction hypothesis completes the proof.

(c, d) We use induction on r . The number of k-element subsets of {1, . . . , n} having no
consecutive elements is

(
n−k+1
k

)
, corresponding to insertions of k balls in distinct posi-

tions between or outside n− k markers in a row. Thus hn,k(1) =
(
n−k
k−1

)
, hn,k(2) =

(
n−k−1
k−1

)
,

and, by (2), hn,k(3) =
(
n−k−2
k−1

)+ (n−k−1
k−2

)
. Using Pascal’s formula for binomial coefficients

twice, hn,k(1) − hn,k(3) =
(
n−k−2
k−2

)
. Thus hn,k(1) − hn,k(3) > 0 unless k = (n+ 1)/2, in

which case the difference is 0. This completes the proof for r = 1.
Now suppose r ≥ 2. If k = (n + 1)/2, then n is odd, and hn,k(r) is 1 when r is odd

and 0 when r is even, so the desired difference is 0. Hence we may restrict our attention to
k ≤ n/2, which yields k − 1 ≤ (n− 3+ 1)/2. Using (1) and (2), then (3), and finally (1)
and (2) again, we find

hn,k(r)− hn,k(r + 2) = hn−1,k(r)+ hn−2,k−1(r)− hn−1,k(r + 1)− hn−2,k−1(r)

= −(hn−3,k−1(r − 1)− hn−3,k−1(r)
)

= −(hn−2,k−1(r − 1)− hn−2,k−1(r + 1)
)
.

Now the induction hypothesis completes the proof.

Editorial comment. Nigel Hodges conditioned on the number j of selected elements pre-
ceding r to prove

h(r) =
k−1∑
j=0

(
r − 1− j

j

)(
n− r − k + 1+ j

k − 1− j
)
.

He then used induction and Pascal’s formula to prove for r ≤ n− k + 1 that this expression
equals

∑r−1
j=0(−1)j

(
n−k−j
k−1−j

)
, from which (a)–(d) all follow quickly.

Also solved by H. Chen (China), C. Curtis & J. Boswell, N. Hodges (UK), Y. J. Ionin, O. P. Lossers (Nether-
lands), L. J. Peterson, R. Stong, and the proposer.

A Congruence for a Product of Quadratic Forms

12234 [2021, 179]. Proposed by Nicolai Osipov, Siberian Federal University, Krasnoyarsk,
Russia. Let p be an odd prime, and let Ax2 + Bxy + Cy2 be a quadratic form with A, B,
and C in Z such that B2 − 4AC is neither a multiple of p nor a perfect square modulo p.
Prove that ∏

0<x<y<p

(Ax2 + Bxy + Cy2)

is 1 modulo p if exactly one or all three of A, C, and A + B + C are perfect squares
modulo p and is −1 modulo p otherwise.
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Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
All expressions below involving x and y take place in the finite field Fp with p elements.
We first study the desired product in general, leaving until later a consideration of how
many elements of {A,C,A+ B + C} are squares. For convenience, define

Q(x, y) = Ax2 + Bxy + Cy2.

Since we are given that B2 − 4AC is a nonsquare,A and C must be nonzero, and it follows
thatQ(x, y) 	= 0 when (x, y) 	= (0, 0). In order to evaluate the product

∏
0<x<y<p Q(x, y),

we want to group the factors by the value of Q(x, y). That is, for each D we seek the
number of solutions of Q(x, y) = D such that 0 < x < y < p.

For D 	= 0, since Q(x, y) − Dz2 = 0 determines a nondegenerate quadric, there are
altogether p2 − 1 solution triples (x, y, z) to Q(x, y) − Dz2 = 0. (See Lemma 7.23 on
p. 142 of J. W. P. Hirschfeld (1979), Projective Geometries over Finite Fields, Clarendon
Press.) The set of solution triples is invariant under multiplication by any nonzero ele-
ment of Fp. Hence the solutions come in p + 1 multiplicative classes of size p − 1, each
containing one triple of the form (x, y, 1), yielding p + 1 solutions to Q(x, y) = D.

This partitions the set of nonzero pairs (x, y) by the value of Q(x, y), with each value
D occurring exactly p + 1 times. Note that Q(x, y) = Q(p − x, p − y), so for fixed D
the number of pairs satisfying Q(x, y) = D with x < y equals the number of pairs with
x > y. Hence we will need to divide the number of occurrences of D by 2.

Since we require 0 < x < y < p in the stated product, we must also exclude occur-
rences of D that arise when x = 0, y = 0, or x = y. Two nonzero elements of Fp have the
same quadratic character if they are both squares or both nonsquares, equivalent to their
ratio being a square. Occurrences ofD on the line x = 0 haveCy2 −D = 0, or y2 = D/C,
so there are two such pairs yielding D when D and C have the same quadratic character;
otherwise none. Similarly, there are two occurrences of D on y = 0 if and only if A and
D have the same quadratic character (satisfying x2 = D/A), and two occurrences of D
on x = y if and only if A+ B + C and D have the same quadratic character (satisfying
x2 = D/(A+ B + C)). Also, such occurrences on the three lines are distinct.

Let the number of squares among {A,C,A+B +C} be s. Starting with the p + 1 pairs
(x, y) ∈ F

2
p − (0, 0) that generate D, we subtract the occurrences with x = 0, y = 0, or

x = y and then divide the remaining occurrences by 2, as discussed above. We thus com-
pute that each squareD occurs in the product (p + 1− 2s)/2 times, while each nonsquare
D occurs in the product

(
p + 1− 2(3− s))/2 times.

This tells us how many times we have the product of all the squares and how many
times we have the product of all the nonsquares. It is well known that the product of all
the squares is (−1)(p+1)/2, and the product of all the nonsquares is (−1)(p−1)/2, because
an element and its reciprocal have the same quadratic character. After canceling reciprocal
pairs and ignoring 1, we are left with −1, which is a square if and only if p ≡ 1 mod 4.

We thus compute∏
0<x<y<p

Q(x, y) = (−1)
1
2 (p+1) 1

2 (p+1−2s)(−1)
1
2 (p−1) 1

2 (p+1+2s−6)

= (−1)
1
4

(
(p+1)2+(p2−1)−4s−6(p−1)

)
= (−1)

1
2 (p

2−2p+3−2s) = (−1)
1
2

(
(p−1)2+2−2s

)
= (−1)1−s .

This equals 1 or −1 when the number s of squares in {A,C,A+ B + C} is odd or even,
respectively, as desired.

Also solved by C. Curtis & J. Boswell, Y. J. Ionin, R. Tauraso (Italy), and the proposer.
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An Application of Liouville’s Theorem

12235 [2021, 179]. Proposed by George Stoica, Saint John, NB, Canada. Let a0, a1, . . .

be a sequence of real numbers tending to infinity, and let f : C→ C be an entire function
satisfying

|f (n)(ak)| ≤ e−ak
for all nonnegative integers k and n. Prove f (z) = ce−z for some constant c ∈ C with
|c| ≤ 1.

Solution by Kenneth F. Andersen, Edmonton, AB, Canada. We prove that the entire function
g(z) = ezf (z) satisfies

|g(z)| ≤ 1 (∗)
for all z. From this, Liouville’s theorem yields g(z) = c for some constant c, and then (∗)
yields |c| ≤ 1. Hence, f (z) = ce−z with |c| ≤ 1, as claimed.

Since f (z) is entire, for z = x + iy and k ≥ 0 we have

|g(z)| = |ez|
∣∣∣∣∣
∞∑
n=0

f (n)(ak)

n!
(z− ak)n

∣∣∣∣∣ ≤ ex
∞∑
n=0

|f (n)(ak)|
n!

|z− ak|n

≤ exe−ak
∞∑
n=0

|z− ak|n
n!

= ex−ak+|z−ak |.

Since limk→∞ ak = ∞, we have x < ak for sufficiently large k. Thus, for such k,

|g(z)| ≤ e|z−ak |−|x−ak | = exp

(
y2

|z− ak| + |x − ak|
)
.

Taking the limit as k→∞, we obtain (∗), which completes the proof.

Also solved by P. Bracken, L. Han (USA) & X. Tang (China), E. A. Herman, K. T. L. Koo (China), O. Kouba
(Syria), K. Sarma (India), A. Sasane (UK), A. Stadler (Switzerland), J. Yan (China), and the proposer.

The Googolth Term of a Sequence

12237 [2021, 276]. Proposed by Donald E. Knuth, Stanford University, Stanford, CA. Let
x0 = 1 and xn+1 = xn + �x 3/10

n  for n ≥ 0. What are the first 40 decimal digits of xn when
n = 10100?

Solution by Richard Stong, Center for Communications Research, San Diego, CA. The first
40 digits are 43236 87954 44259 51263 21573 91617 78825 77073.

Let f (x) = (10/7)x7/10, and let ak = f (xk) for all k. Applying the mean value theorem
to f yields cn ∈ (xn, xn+1) such that

an+1 − an = c−3/10
n (xn+1 − xn) = c−3/10

n �x3/10
n .

Since cn > xn, this implies an+1 − an < 1. Computing x6 = 7 and a6 = 10 · 7−3/10 < 6,
we obtain an < n and hence xn < (7n/10)10/7 for n ≥ 6. Putting n = 10100, we obtain an
upper bound for xn less than

4.3236 87954 44259 51263 21573 91617 78825 77073 38123× 10142.

We now provide a lower bound for xn. Applying the mean value theorem to g(x) =
x3/10 yields bn ∈ (xn, xn+1) such that

c3/10
n − x3/10

n < x
3/10
n+1 − x3/10

n = 3

10
b−7/10
n (xn+1 − xn) = 3

10
b−7/10
n �x3/10

n  < 1.
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Hence

an+1 − an = 1− c
3/10
n − �x3/10

n 
c

3/10
n

> 1− 2

x
3/10
n

. (∗)

By direct iteration, x45 = 102 > 410/3. Since 〈xn〉 is increasing, an+1 ≥ an + 1/2 whenever
n ≥ 45. From a45 > 45/2, for n ≥ 45 we conclude that an > n/2, hence xn > (7n/20)10/7.
Explicit computation shows that this lower bound for xn also holds for n < 45. Therefore,
summing (∗) from 1 through n− 1 gives

an > a1 + (n− 1)−
n−1∑
k=1

2

x
3/10
k

> n−
n−1∑
k=1

2

(7k/20)3/7
> n− 7

2(7/20)3/7
n4/7,

where at the last step we used the standard integral bound

n−1∑
k=1

1

k3/7
≤
∫ n

0

1

t3/7
dt = 7

4
n4/7.

For n = 10100, this yields a lower bound for xn greater than

4.3236 87954 44259 51263 21573 91617 78825 77073 37651× 10142.

Therefore, the first 40 digits of xn when n = 10100 are as claimed.

Also solved by O. P. Lossers (Netherlands), A. Stadler (Switzerland), R. Tauraso (Italy), E. Treviño, T. Wilde
(UK), The Logic Coffee Circle (Switzerland), and the proposer.

Collinear Midpoints from a Glide Reflection

12238 [2021, 276]. Proposed by Tran Quang Hung, Hanoi, Vietnam. Let ABCD be a
convex quadrilateral with AD = BC. Let P be the intersection of the diagonals AC and
BD, and letK and L be the circumcenters of triangles PAD and PBC, respectively. Show
that the midpoints of segments AB, CD, and KL are collinear.

Solution by Michel Bataille, Rouen, France. Let E and F be the midpoints of AB and CD,
respectively. Let m be the line through D that is parallel to EF , and let m′ be the image of
m under reflection through EF . Since F is the midpoint of CD, the point C must lie on
m′. Let � be the circle centered at B with radius AD. Since AD = BC, the point C also
lies on �.

Consider the 180◦ rotation of the plane centered at E. This rotation sends A to B and
D to some point D′. The rotation sends m to m′, so D′ lies on m′, and since BD′ = AD,
the point D′ also lies on �. However, D′ cannot be C, because the midpoint of D′D is E,
whereas the midpoint of CD is F . Thus � and m′ intersect at two points, and those two
points are C and D′. It follows that if n is the line through B that is perpendicular to EF ,
then C is the reflection of D′ through n.

Let g be the transformation of the plane consisting of rotation by 180◦ centered at E
followed by reflection through n. One sees easily that g is an orientation-reversing isometry
that sends A to B and D to C. (The transformation g can also be described as a glide
reflection with axis EF .)

For any lines � and �′, let ∠(�, �′) denote the directed angle from � to �′. Let �AD and
�BC be the circumcircles of �PAD and �PBC, respectively, and let Q = g(P ).

Since g is orientation-reversing, ∠(QB,QC) = ∠(PD,PA) = ∠(PB, PC). There-
fore Q lies on �BC . However, also Q, B, and C lie on g(�AD), so g(�AD) = �BC . It
follows that g(K) = L, and therefore the midpoint of KL lies on EF .
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Editorial comment. This solution shows that the quadrilateral need not be convex. Indeed,
it need not even be simple, as long as the lines AC and BD intersect.

Also solved by A. Ali (India), J. Cade, H. Chen (China), P. De (India), G. Fera (Italy), D. Fleischman, K. Gates-
man, O. Geupel (Germany), J.-P. Grivaux (France), W. Janous (Austria), D. Jones & M. Getz, O. Kouba
(Syria), K.-W. Lau (China), J. H. Lindsey II, O. P. Lossers (Netherlands), C. R. Pranesachar (India), A. Stadler
(Switzerland), R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), T. Wiandt, L. Wimmer (Germany), L. Zhou,
Davis Problem Solving Group, and the proposer.

Factorials and Powers of 2

12239 [2021, 276]. Proposed by David Altizio, University of Illinois, Urbana, IL. Deter-
mine all positive integers r such that there exist at least two pairs of positive integers (m, n)
satisfying the equation 2m = n!+ r .
Solution by Celia Schacht, North Carolina State University, Raleigh, NC. There are two
such values of r . They are r = 2, with 23 = 3! + 2 and 22 = 2! + 2, and r = 8, with
27 = 5!+ 8 and 25 = 4!+ 8. We show that there are no other values.

If 2m1 = n1!+ r and 2m2 = n2!+ r , then 2m1 − n1! = 2m2 − n2!. For x ∈ N, let 2v(x) be
the highest power of 2 dividing x. Note that x can be uniquely written as 2v(x) times an odd
number, which we call the odd part of x. Since r > 0, we have 2mi > ni!, so mi > v(ni!)
for i ∈ {1, 2}. Therefore,

v(n1!) = v(2m1 − n1!) = v(2m2 − n2!) = v(n2!).

Given that (m1, n1) 	= (m2, n2), we may assume m1 > m2 and n1 > n2. If there are any
even numbers from n2 + 1 to n1, then v(n1!) > v(n2!), so v(n1!) = v(n2!) implies that n2

is even and n1 = n2 + 1. Let n2 = 2k. Thus

2m1 − 2m2 = n1!− n2! = (2k) · (2k)!. (4)

The odd part of the left side is 2m1−m2 − 1. It equals the product of the odd parts of 2k and
(2k)!, so it is at least the odd part of (2k)!, which we write as 2q + 1. That is, 2m1−m2 − 1 ≥
2q + 1.

By dividing out all the factors of 2 from (2k)!, we obtain

v((2k)!) =
∞∑
i=1

⌊
2k

2i

⌋
<

∞∑
i=1

2k

2i
= 2k.

First consider the case k ≥ 5. By induction, (2k)! > 24k for k ≥ 5. Therefore,

24k < (2k)! = 2v((2k)!)(2q + 1) < 22k(2q + 1),

so 22k − 1< 22k < 2q + 1 ≤ 2m1−m2 − 1. Also (2k)! = n2! < n2!+ r = 2m2 , which yields

(2k)!
(
22k − 1

)
< 2m2

(
22k − 1

)
< 2m1 − 2m2 = (2k) · (2k)!.

Dividing by (2k)! yields 22k − 1 < 2k, which is false for all positive k. This contradiction
eliminates the possibility k ≥ 5.

It remains to check the cases of the form (n1, n2) = (2k + 1, 2k) for k ∈ {1, 2, 3, 4}.
According to (4), we need powers of 2 differing by 2k(2k)!. For 1 ≤ k ≤ 4, the values
of 2k(2k)! are 4, 96, 4320, and 322560, respectively. Examining powers of 2 yields the
solutions for k ∈ {1, 2} listed at the start, but no solution for k ∈ {3, 4}.
Also solved by A. Ali (India), F. R. Ataev (Uzbekistan), C. Curtis & J. Boswell, S. M. Gagola Jr., K. Gates-
man, M. Ghelichkhani (Iran), N. Hodges (UK), P. Komjáth (Hungary), O. P. Lossers (Netherlands), S. Omar
(Morocco), J. Polo-Gómez (Canada), K. Sarma (India), A. Stadler (Switzerland), R. Stong, M. Tang,
R. Tauraso (Italy), E. Treviño, T. Wilde (UK), L. Zhou, and the proposer.
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Harmonic Sums: Euler Once, Abel Twice

12241 [2021, 276]. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Univer-
sity of Cluj-Napoca, Cluj-Napoca, Romania. Prove

∞∑
n=1

(−1)n n

(
1

4n
− ln 2+

2n∑
k=n+1

1

k

)
= ln 2− 1

8
.

Solution by Kee-Wai Lau, Hong Kong, China. We first address the partial sum of the series
on the left side and show

8
N∑
n=1

(−1)nn

(
1

4n
− ln 2+

2n∑
k=n+1

1

k

)
(1)

= 2(−1)N(2N + 1)

(
2N∑

k=N+1

1

k
− ln 2

)
+

N∑
n=1

(−1)n

n
+ (−1)N − 1+ 2 ln 2.

Since ln 2 is irrational, it must have the same coefficient on both sides, requiring

8
N∑
n=1

(−1)nn = 2(−1)N(2N + 1)− 2.

This equality is easily verified by considering odd and evenN separately. LetK(N) denote
the quantity on both sides. In addition, since 8

∑N
n=1(−1)n(1/4) = (−1)N − 1, the sum of

the N initial terms on the left in (1) equals the sum of two terms on the right. It remains to
prove

N∑
n=1

8(−1)nn
2n∑

k=n+1

1

k
= 2(−1)N(2N + 1)

2N∑
k=N+1

1

k
+

N∑
n=1

(−1)n

n
.

Let L(N) denote the left side in this equation. Rewrite that double sum as

L(N) =
N∑
n=1

(K(n)−K(n− 1))J (n),

where J (n) =∑2n
k=n+1 1/k and K(0) = 0. By partial summation,

L(N) = K(N)J (N)+
N−1∑
n=1

K(n)(J (n)− J (n+ 1)).

Now

J (n)− J (n+ 1) = 1

n+ 1
− 1

2n+ 1
− 1

2n+ 2
= −1

2(n+ 1)(2n+ 1)
.

Hence

L(N) = (2(−1)N(2N + 1)− 2
)
J (N)+

N−1∑
n=1

(
(−1)n+1(2n+ 1)+ 1

) 1

(n+ 1)(2n+ 1)

= 2(−1)N(2N + 1)J (N)+
N−1∑
n=1

(−1)n+1

n+ 1
− 2J (N)+

N−1∑
n=1

1

(n+ 1)(2n+ 1)
. (2)

Restoring the expression involving J in the last summand, the last two terms in (2) simplify
by telescoping as

−2J (N)− 2
N−1∑
n=1

(J (n)− J (n+ 1)) = −2J (N)− 2(J (1)− J (N)) = −1.
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Now the expression for L(N) reduces to the right side of (1), completing the proof of the
identity.

Let HN denote the harmonic number
∑N

n=1 1/n. By Euler–Maclaurin summation,

HN = lnN + γ + 1

2N
+O(N−2),

where γ is Euler’s constant. Thus

2N∑
n=N+1

1

n
= H2N −HN = ln 2− 1

4N
+O(N−2).

Hence the first term on the right side of (1) simplifies as

2(−1)N(2N + 1)

(−1

4N
+O(N−2)

)
= −(−1)N +O(N−1).

Also,

∞∑
n=1

(−1)n

n
= − ln 2.

Thus the right side of (∗) converges to −1+ ln 2, which completes the proof.

Editorial comment. Another approach to evaluating the left side is to introduce the factor xn

for 0 < x < 1 into the sum, expand, and let x approach 1. This is an application of Abel’s
limit theorem, known as Abel summation. Ulrich Abel (fittingly) and Vitaliy Kushnirevych
used this method. With

an = 1

4n
− ln 2+H2n −Hn and g(x) =

∞∑
n=1

Hnx
n = − ln(1− x)

1− x ,

let

f (x) =
∞∑
n=1

an(−x)n = − ln(1+ x)
4

− x ln 2

1+ x +
g(i
√
x)+ g(−i√x)

2
− g(−x).

Upon differentiating f (x), we obtain a power series for (−1)nnan, and Abel summation
yields the result.

Many solvers used a method somewhat akin to Abel summation, that of integral repre-
sentation. For example, Richard Stong used

an = 1

2

∫ 1

0

1− x
1+ x x

2n−1 dx.

Upon interchange of summation and integration (justified by dominated convergence), the
desired sum then becomes the readily evaluated integral

−1

2

∫ 1

0

1− x
1+ x

x

(1+ x2)2
dx.

Also solved by U. Abel & V. Kushnirevych (Germany), A. Berkane (Algeria), P. Bracken, B. Bradie, H. Chen,
G. Fera (Italy), K. Gatesman, M. L. Glasser, G. C. Greubel, L. Han (US) & X. Tang (China), E. A. Herman,
N. Hodges (UK), S. Kaczkowski, O. Kouba (Syria), P. W. Lindstrom, O. P. Lossers (Netherlands), M. Omarjee
(France), K. Sarma (India), A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong, R. Tauraso (Italy),
M. Vowe (Switzerland), T. Wiandt, and the proposer.
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CLASSICS

C10. Due to Douglas Lind, suggested by the editors. Show that there are infinitely many
numbers that appear at least six times in Pascal’s triangle.

How Much of a Parabolic Arc Can Fit in a Unit Disk?

C9. From the 2001 Putnam Competition. Can an arc of a parabola inside a circle of radius
1 have a length greater than 4?

Solution. The answer is yes. For a positive real number A, the parabola y = Ax2 intersects
the circle x2 + (y − 1)2 = 1 at the origin and at the points (

√
2A− 1/A, 2 − 1/A) and

(−√2A− 1/A, 2− 1/A). The length L(A) of the parabolic arc between these points con-
sists of two congruent parts, one in each quadrant. Expressing the length of one of these
parts as an integral with respect to the variable y and then letting u = Ay, we obtain

L(A) = 2
∫ 2−1/A

0

√
1+ 1

4Ay
dy = 2

A

∫ 2A−1

0

√
1+ 1

4u
du.

It suffices to find a value of A so that L(A) is greater than 4. This occurs when

∫ 2A−1

0

(√
1+ 1

4u
− 1

)
du ≥ 1.

Since (√
1+ 1

4u
− 1

)(√
1+ 1

4u
+ 1

)
= 1

4u
,

when u > 1/12 we have √
1+ 1

4u
− 1 ≥ 1

12u
.

Therefore∫ 2A−1

0

(√
1+ 1

4u
− 1

)
du ≥

∫ 2A−1

1

(√
1+ 1

4u
− 1

)
du ≥

∫ 2A−1

1

1

12u
du.

Because
∫∞

1 (1/x) dx diverges, we may choose A so large that this last integral exceeds 1.

Editorial comments. Numerical calcu-
lation shows that the longest arc is
achieved when A is approximately 94.1,
at which point the length is approximately
4.00267. The figure shows this longest
parabolic arc. Not until A is approxi-
mately 37 does the arc length exceed 4.

In the 2001 Putnam Competition, just
one participant (out of approximately
3000) earned full credit for solving this
problem.
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SOLUTIONS

Making Equality Improbable with Two Dice

12223 [2021, 88]. Proposed by Michael Elgersma, Plymouth, MN, and James R. Roche,
Ellicott City, MD. Two weighted m-sided dice have faces labeled with the integers 1 to m.
The first die shows the integer i with probability pi , while the second die shows the integer
i with probability ri . Alice rolls the two dice and sums the resulting integers; Bob then
independently does the same.
(a) For each m with m ≥ 2, find the probability vectors (p1, . . . , pm) and (r1, . . . , rm) that
minimize the probability that Alice’s sum equals Bob’s sum.
(b)* Generalize to n dice, with n ≥ 3.

Composite solution to part (a) by the proposers and Shuyang Gao, George Washington
University, Washington, DC. The minimum probability is 3/(6m − 4), achieved only by
the two distributions(1

2
, 0, 0, . . . , 0, 0,

1

2

)
and

1

3m− 2
(2, 3, 3, . . . , 3, 3, 2).

We start with some notation. We write v for a probability (row) vector (v1, . . . , vm)

associated with the faces of an m-sided die; that is, the probability that a toss of such a die
turns up value i is vi (similarly with other letters). The reverse R(v) of v is (vm, . . . , v1).
We say that v is symmetric if v = R(v). For symmetrization and antisymmetrization,
let Sv = (v + R(v))/2 and Av = (v − R(v))/2. Thus v = Sv + Av, R(Sv) = Sv, and
R(Av) = −Av.

Let p and r denote the probability vectors for the two dice. Let X and Y be the sums
rolled by Alice and Bob, respectively. Note that X and Y have the same distribution. Let
s = (s2, . . . , s2m), where

sk = P(X = k) = P(Y = k) =
m∑
i=1

pirk−i ,

with the understanding that rj = 0 unless 1 ≤ j ≤ m. With ∗ denoting convolution of
vectors, we write s as p ∗ r.

Our first task is to show that the probability is minimized only when p and r are sym-
metric. The tool for this is the claim

P(X = Y ) ≥ (Sp ∗ Sr) · (Sp ∗ Sr),

November 2022] PROBLEMS AND SOLUTIONS 887



with equality holding if and only if p and r are both symmetric probability vectors. Given
this, let p and r be minimizing probability vectors. If we replace p and r by their sym-
metrizations Sp and Sr, then the new resulting probability P(X = Y ) will be equal to
(Sp ∗ Sr) · (Sp ∗ Sr), which will be strictly smaller than the original probability unless
p = Sp and r = Sr.

Hence we proceed to the claim. Since the players’ rolls are independent,

P(X = Y ) =
2m∑
k=2

P(X = k)P(Y = k) =
2m∑
k=2

( m∑
i=1

pirk−i
)2
.

We write this using convolution and inner product as

P(X = Y ) = (p ∗ r) · (p ∗ r) = ((Sp+Ap) ∗ (Sr+Ar)
) · ((Sp+Ap) ∗ (Sr+Ar)

)
.

By linearity of convolution and inner product, this expression expands into sixteen terms of
the form (fp ∗ gr) · (hp ∗ ir) with f, g, h, i ∈ {S,A}. We show that the contribution from
the terms other than (Sp ∗ Sr) · (Sp ∗ Sr) is nonnegative and is 0 if and only if p and r are
symmetric.

Since Sp ∗ Sr and Ap ∗ Ar are symmetric and Sp ∗ Ar and Ap ∗ Sr are antisymmetric,
each of the eight terms having one or three factors in {Ap, Ar} is the dot product of a
symmetric and an antisymmetric vector and hence vanishes.

With f, g ∈ {S,A}, we find four terms of the form (fp ∗ gr) · (fp ∗ gr). Each is non-
negative, since it is the dot product of a vector with itself, and it equals 0 if and only if
fp ∗ gr = 0. The convolution is 0 when f = A and p is symmetric, since then Ap = 0.
However, if p is not symmetric, then Ap ∗ Sr �= 0. The corresponding statements hold also
for g. Hence the contribution from these four terms is at least (Sp ∗ Sr) · (Sp ∗ Sr), with
equality if and only if both p and r are symmetric.

The remaining four terms use each factor in {Sp, Sr, Ap, Ar}. They sum to

2
(
(Sp ∗ Sr) · (Ap ∗ Ar)+ (Sp ∗ Ar) · (Ap ∗ Sr)

)
. (1)

We claim that this sum is 0. We have

(Sp ∗ Sr) · (Ap ∗ Ar) =
∑

Sp(k)Sr(�)Ap(k
′)Ar(�

′) (2)

and

(Sp ∗ Ar) · (Ap ∗ Sr) =
∑

Sp(k)Ar(�
′)Ap(k

′)Sr(�), (3)

where the sum in (2) is over choices of k, �, k′, �′ in {1, . . . , m} such that k + � = k′ + �′,
and the sum in (3) is over choices such that k + �′ = k′ + �. Note that k + � = k′ + �′
if and only if k − k′ = �′ − � and that k + �′ = k′ + � if and only if k − k′ = �− �′. By
symmetry and antisymmetry,

Sr(�) = Sr(m− �+ 1) and Ar(�
′) = −Ar(m− �′ + 1).

Thus Sp(k)Sr(�)Ap(k
′)Ar(�

′) = −Sp(k)Sr(m − � + 1)Ap(k
′)Ar(m − �′ + 1). When we

require k − k′ = �′ − �, at the same time we have k − k′ = (m− �+ 1)− (m− �′ + 1).
Hence terms in the sum in (3) negate corresponding terms in the sum in (2), and the expres-
sion in (1) is 0. This completes the proof of the claim.

The claim implies the desired result in the case m = 2, giving p = r = (1/2, 1/2). For
the remainder of the argument, we assume m ≥ 3. With p and r symmetric, the convolu-
tion s is also a symmetric probability vector, and the desired probability is

∑2m
k=2 s

2
k . By

symmetry,

sm+1 =
m∑
i=1

pirm−i+1 ≥ p1rm + pmr1 = 2p1r1 = 2s2. (4)
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This suggests that we consider the following nonlinear optimization problem:

minimize 2(s2
2 + · · · + s2

m)+ s2
m+1

subject to the constraints

2(s2 + s3 + · · · + sm)+ sm+1 = 1, 2s2 ≤ sm+1, and si ≥ 0 for 2 ≤ i ≤ m+ 1.

Extending (s2, . . . , sm+1) by letting s2m−i = s2+i for 0 ≤ i ≤ m− 2 relates this optimiza-
tion problem to the symmetric probability vector s considered earlier. This problem incor-
porates the constraint (4), but it ignores the requirement in the original problem that s be
realizable as the convolution of two probability vectors. It then suffices to show that we
can realize the resulting optimum by such a convolution.

Such constrained optimization problems can be solved using the Karush-Kuhn-Tucker
(KKT) conditions (see for example S. Boyd and L. Vandenberghe (2004), Convex Opti-
mization, Cambridge University Press). Satisfying the conditions is sufficient for a global
optimum. The method starts with a generalized Lagrangian incorporating the objective
function, the inequality constraints, and the equality constraints:

L = 2(s2
2 + · · · + s2

m)+ s2
m+1 + μ(2s2 − sm+1)+ λ

(
2(s2 + · · · + sm)+ sm+1 − 1

)
.

The KKT conditions require partial derivatives with respect to the original variables and
the multipliers for equality constraints to be 0, while for the multipliers of the inequal-
ity constraints we must have nonnegativity (see (9)) and “complementary slackness” (see
(10)). That is,

∂L

∂s2
= 4s2 + 2μ+ 2λ = 0; (5)

∂L

∂si
= 4si + 2λ = 0 for 3 ≤ i ≤ m; (6)

∂L

∂sm+1
= 2sm+1 − μ+ λ = 0; (7)

2(s2 + · · · + sm)+ sm+1 − 1 = 0. (8)

μ ≥ 0; and (9)

μ(2s2 − sm+1) = 0. (10)

We also require si ≥ 0 for all i in {2, . . . , m+ 1}.
We show first that λ must be negative. If λ > 0, then by (6) each si with i ≥ 3 is

negative, which is forbidden. If λ = 0, then (6) requires s3 = · · · = sm = 0. Since (5) now
reads 4s2 + 2μ = 0, it forbids μ > 0, so μ = 0 by (9). Now s2 = 0 by (5) and sm+1 = 0
by (7), but that contradicts (8).

Hence λ < 0. Note that subtracting (5) from (7) gives 2sm+1 − 4s2 = 3μ+ λ. Since we
require 2s2 ≤ sm+1 and have λ < 0, we must have μ > 0. Now (10) requires 2s2 = sm+1.

With these restrictions, (5)–(7) reduce to

λ = −3μ, s2 = μ, sm+1 = 2μ, and si = 3

2
μ for 3 ≤ i ≤ m.

Using sm+1 + 2
∑m

i=2 si = 1, we obtain μ = 1/(3m− 2), and consequently

s2 = 1

3m− 2
, sm+1 = 2

3m− 2
, and si = 3

6m− 4
for 3 ≤ i ≤ m.

November 2022] PROBLEMS AND SOLUTIONS 889



Extending back to the probability vector s with indices 2 through 2m, we obtain

s = 1

6m− 4
(2, 3, 3, . . . , 3, 3, 4, 3, 3, . . . , 3, 3, 2), (11)

yielding the minimum probability
∑2m

k=2 s
2
k = 3/(6m− 4).

This solution to the optimization problem is achievable as the convolution of the two
probability vectors(1

2
, 0, 0, . . . , 0, 0,

1

2

)
and

1

3m− 2
(2, 3, 3, . . . , 3, 3, 2).

Our final task is to show that these are the only probability vectors whose convolution
is (11). To achieve s2 = s2m > 0, we have p1 = pm > 0 and r1 = rm > 0. Since we must
satisfy

2s2 = sm+1 = p1rm + pmr1 +
m−1∑
i=2

pirm+1−i ,

we obtain pirm+1−i = 0 for 2 ≤ i ≤ m− 1. Consequently, for each i with 2 ≤ i ≤ m− 1,

pi = pm+1−i = 0 or rm+1−i = ri = 0.

By symmetry, we may take p2 = 0. Now let k be the least integer in {2, . . . , m} such that
pk > 0. It suffices to show that k = m, which yields p = (1/2, 0, . . . , 0, 1/2), whereupon
the known convolution (11) yields r as claimed.

Suppose k < m. By (11),

3

6m− 4
= si = p1ri−1 + 0+ 0+ · · · + 0 for 3 ≤ i ≤ k.

Since p1r1 = 2/(6m− 4), we obtain ri−1 = 3r1/2 > 0 for 3 ≤ i ≤ k.
Next, sk+1 = p1rk + pkr1. Since pkrk = pkrm+1−k = 0 and pk > 0, we have rk = 0.

Now pkr1 = sk+1 = 3/(6m− 4) and p1r1 = s2 = 2/(6m− 4). Thus, pk = 3p1/2. Finally,

sk+2 ≥ pkr2 =
(

3

2
p1

)(
3

2
r1

)
> 2s2 = 4

6m− 4
,

contradicting sk+2 ≤ 4/(6m− 4). Thus k = m, completing the proof.

Editorial comment. The problem arose as an extension of Problem 1290 in Stan Wagon’s
Problem of the Week, which in turn was inspired by a problem on Tanya Khovanova’s
blog: blog.tanyakhovanova.com/2018/12/two-dice.

No solutions to part (b) or other correct solutions to part (a) were received.

A Lower Bound on Average Squared Acceleration

12229 [2021, 89]. Proposed by Moubinool Omarjee, Lycée Henri IV, Paris, France. Let
f : [0, 1] → R be a function that has a continuous second derivative and that satisfies
f (0) = f (1) and

∫ 1
0 f (x) dx = 0. Prove

30240

(∫ 1

0
xf (x) dx

)2

≤
∫ 1

0

(
f ′′(x)

)2
dx.

Solution by Rory Molinari, Beverly Hills, MI. Applying integration by parts twice, and
using

∫ 1
0 f (x) dx = 0 and

∫ 1
0 f
′(x) dx = f (1)− f (0) = 0, we get∫ 1

0
xf (x) dx =

∫ 1

0

(
x − 1

2

)
f (x) dx = −

∫ 1

0

(
x2

2
− x

2

)
f ′(x) dx

= −
∫ 1

0

(
x2

2
− x

2
+ 1

12

)
f ′(x) dx =

∫ 1

0

(
x3

6
− x

2

4
+ x

12

)
f ′′(x) dx.
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Thus, by the Cauchy–Schwarz inequality,(∫ 1

0
xf (x) dx

)2

=
(∫ 1

0

(
x3

6
− x

2

4
+ x

12

)
f ′′(x) dx

)2

≤
(∫ 1

0

(
x3

6
− x

2

4
+ x

12

)2

dx

)
·
(∫ 1

0
(f ′′(x))2 dx

)
= 1

30240

∫ 1

0
(f ′′(x))2 dx,

and the desired conclusion follows.

Editorial comment. Justin Freeman generalized the problem by proving

(2n+ 2)!

|B2n+2|
(∫ 1

0
xf (x) dx

)2

≤
∫ 1

0
(f (n)(x))2 dx,

where Bk is the kth Bernoulli number.

Also solved by U. Abel & V. Kushnirevych (Germany), K. F. Andersen (Canada), M. Bataille (France),
A. Berkane (Algeria), P. Bracken, B. Bradie, H. Chen, G. Fera (Italy), J. Freeman (Netherlands), K. Gates-
man, G. Góral (Poland), N. Grivaux (France), L. Han, E. A. Herman, L. T. L. Koo (China), O. Kouba (Syria),
K.-W. Lau (China), Z. Lin (China), J. H. Lindsey II, O. P. Lossers (Netherlands), I. Manzur (UK) & M. Graczyk
(France), T. M. Mazzoli (Austria), A. Natian (UK), A. Pathak (India), B. Shala (Slovenia), A. Stadler (Switzer-
land), R. Stong, R. Tauraso (Italy), E. I. Verriest, M. Vowe (Switzerland), J. Vukmirović (Serbia), T. Wiandt,
J. Yan (China), L. Zhou, U. M. 6. P. MathClub (Morocco), and the proposer.

Families of Permutations with Equal Size

12230 [2021, 178]. Proposed by David Callan, University of Wisconsin, Madison, WI. Let
[n] = {1, . . . , n}. Given a permutation (π1, . . . , πn) of [n], a right-left minimum occurs at
position i if πj > πi whenever j > i, and a small ascent occurs at position i if πi+1 =
πi + 1. Let An,k denote the set of permutations π of [n] with π1 = k that do not have right-
left minima at consecutive positions, and let Bn,k denote the set of permutations π of [n]
with π1 = k that have no small ascents.
(a) Prove |An,k| = |Bn,k| for 1 ≤ k ≤ n.
(b) Prove |An,j | = |An,k| for 2 ≤ j < k ≤ n.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. For
n = 1, we have |A1,1| = |B1,1| = 1. Hence it suffices to show that both cn,k = |An,k| and
cn,k = |Bn,k| satisfy the recurrence

cn,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

n−1∑
j=2

cn−1,j if k = 1,

n−1∑
j=1

cn−1,j if k > 1.

The common recurrence then shows (a), and its form implies (b).
To a permutation π of [n], associate the permutation σ of [n− 1] obtained by deleting

π1 and decreasing all entries exceeding π1 by 1. From π1 and σ , we can reconstruct π
uniquely. In addition, σ has a right-left minimum at position i if and only if π has a right-
left minimum at position i + 1.

For k > 1, any permutation σ of [n− 1] with no right-left minima in consecutive posi-
tions arises from a permutation π ∈ An,k , and permutations in An,k generate such σ , since
position 1 in π is not a right-left minimum. Thus, the recursive formula holds for |An,k|
when k > 1. When k = 1, π has a right-left minimum in position 1, so we must ensure
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that the corresponding σ has no right-left minimum in position 1, which is equivalent to
σ1 �= 1. Thus, the formula holds also for |An,1|.

We show that this recurrence also holds for Bn,k . Again consider the same map, with
π ∈ Bn,k . If σ has no small ascents, then also π has none, unless σ1 = k. On the other
hand, if π has no small ascents, then σ has at most one small ascent, with equality exactly
when πj = k − 1 and πj+1 = k + 1 for some j . Let En−1,k be the set of permutations of
[n− 1] with a small ascent involving entries k − 1 and k and no other small ascents. We
obtain

|Bn,k| =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n−1∑
j=2
|Bn−1,j | if k = 1,

|En−1,k| + ∑
j �=k
|Bn−1,j | if 2 ≤ k ≤ n− 1,

n−1∑
j=1
|Bn−1,j | if k = n.

We now prove |En−1,k| = |Bn−1,k| when n ≥ 3, which reduces this expression to the
desired recurrence. Suppose σ ∈ En−1,k . Since σ has only one small ascent, the value k + 1
does not follow k in σ . Hence collapsing the pair (k − 1, k) of consecutive values to k − 1
and decreasing larger values by 1 gives a permutation of [n− 2] with no small ascent, and

the map is reversible. Hence |En−1,k| =
n−2∑
j=1
|Bn−2,j |. We now have a proof of the desired

recurrence by induction on n, since the induction hypothesis yields |En−1,k| = |Bn−1,k|.
Editorial comment. The proposer constructed a bijection from An,k to Bn,k iteratively as
follows. If the current permutation has a small ascent, choose the left-most small ascent and
move the larger value j + 1 so that it immediately follows the largest right-left minimumm

that it exceeds. For example, π = (10, 11, 12, 2, 3, 1, 6, 7, 4, 8, 9, 5) has right-left minima
at values 5, 4, and 1 (no two consecutive), and it has small ascents ending in the values 11,
12, 3, 7, and 9. The first iteration moves 11 to immediately after 5 and the fourth and final
iteration yields (10, 12, 2, 1, 3, 6, 4, 8, 5, 7, 9, 11).

Yury Ionin observed that exchanging the values k and k + 1 in π ∈ An,k yields a bijec-
tion between An,k and An,k+1 for k > 1. This is implicit in the featured solution.

Also solved by K. Gatesman, A. Goel, Y. J. Ionin, and the proposer. Part (b) also solved by N. Hodges (UK).

Complete Elliptic Integrals and Watson’s Integrals

12232 [2021, 178]. Proposed by Seán Stewart, Bomaderry, Australia. Prove∫ 1

0

∫ 1

0

1√
x(1− x)√y(1− y)√1− xy dx dy =

1

4π

(∫ ∞
0
e−t t−3/4 dt

)4

.

Solution I by Tamas Wiandt, Rochester Institute of Technology, Rochester, NY. Let I denote
the integral on the left side of the desired equation. Substituting x = k2 and y = sin2 t , we
get

I = 4
∫ 1

0

1√
1− k2

∫ π/2

0

1√
1− k2 sin2 t

dt dk = 4
∫ 1

0

K(k) dk√
1− k2

, (1)

where K(k) is the complete elliptic integral of the first kind given by the formula

K(k) =
∫ π/2

0

dt√
1− k2 sin2 t

.
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The last integral in (1) is given by equation 6.143 on page 632 of I. S. Gradshteyn and
I. M. Ryzhik (2007), Table of Integrals, Series, and Products, 7th ed., Burlington, MA:
Academic Press. Filling in its value, we obtain

I = 4
(
K(
√

2/2)
)2 =

(
�(1/4)

)4

4π
= 1

4π

(∫ ∞
0
e−t t−3/4 dt

)4

.

Solution II by Lixing Han, University of Michigan, Flint, MI, and Xinjia Tang, Changzhou
University, Changzhou, China. Let I be as in Solution I. Substituting x = cos2 u,
y = cos2 v, we get

I = 4
∫ π/2

0

∫ π/2

0

du dv√
1− cos2 u cos2 v

=
∫ π

0

∫ π

0

du dv√
1− cos2 u cos2 v

. (2)

For |a| < 1, the substitution s = tan(t/2) yields

∫ π

0

dt

1− a cos t
= 2

1− a
∫ ∞

0

ds

1+ 1+a
1−a s2

= 2√
1− a2

tan−1

(√
1+ a
1− a s

)∣∣∣∣∣
∞

0

= π√
1− a2

.

Setting a = cos u cos v leads to∫ π

0

dt

1− cos u cos v cos t
= π√

1− cos2 u cos2 v
.

Substituting into (2), we obtain

I = 1

π

∫ π

0

∫ π

0

∫ π

0

dt du dv

1− cos u cos v cos t
= π2I1,

where I1 is one of Watson’s triple integrals (see I. J. Zucker (2011), 70+ years of the
Watson Integrals, J. Stat. Phys. 145: 591–612, inp.nsk.su/∼silagadz/Watson Integral.pdf).
Filling in the known value of I1 gives the desired result.

Also solved by U. Abel & V. Kushnirevych (Germany), A. Berkane (Algeria), N. Bhandari (India), P. Bracken,
H. Chen, B. E. Davis, G. Fera (Italy), M. L. Glasser, J.-P. Grivaux (France), J. A. Grzesik, N. Hodges (UK),
Z. Lin (China), O. P. Lossers (Netherlands), M. Omarjee (France), K. Sarma (India), A. Stadler (Switzerland),
A. Stenger, R. Stong, R. Tauraso (Italy), M. Vowe (Switzerland), M. Wildon (UK), and the proposer.

Squarefree Sums

12236 [2021, 179]. Proposed by Navid Safaei, Sharif University of Technology, Tehran,
Iran. Let pk be the kth prime number, and let an = ∏n

k=1 pk . Prove that for n ∈ N every
positive integer less than an can be expressed as a sum of at most 2n distinct divisors of an.

Solution by Rory Molinari, Beverly Hills, MI. The divisors of an are exactly the positive
squarefree integers whose largest prime factor is no bigger than pn. We need the claim that
every positive integer r can be written as the sum of at most two distinct positive squarefree
integers.

It is easy to verify the claim for r ≤ 9, so assume r ≥ 10. Let A(r) be the set of positive
squarefree integers not greater than r . If r ∈ A(r), we are done. Otherwise, it is known
that |A(r)| ≥ 53r/88 for all r (see K. Rogers (1964), The Schnirelmann density of the
squarefree integers, Proc. Am. Math. Soc. 15(4): 515–516). Thus |A(r)| > 1 + r/2 for
r ≥ 10, and the pigeonhole principle implies that A(r) and {r − k : k ∈ A(r)} share at
least two elements. At least one of them is not r/2, yielding an expression of r as the sum
of two elements of A(r).
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To prove the problem statement, we use induction on n. The claim holds trivially for
n = 1. For n > 1, consider m such that 1 ≤ m < an. Write m as q · pn + r with 0 ≤
q < an−1 and 0 ≤ r < pn. By the claim, r is the sum of at most two positive squarefree
numbers. These numbers cannot have pn as a factor since r < pn, so they are factors of
an−1. By the induction hypothesis, q is the sum of at most 2(n− 1) distinct factors of an−1.
Hence, q · pn + r is the sum of at most 2(n− 1) distinct divisors of an, all of which are
multiples of pn, plus at most two distinct divisors of an−1. It follows that m is the sum of
at most 2n distinct divisors of an.

Editorial comment. The problem statement above corrects a typo in the original printing.
All solvers used similar proofs. Some used bounds such as

|A(r)| ≥ r − r
∞∑
k=1

p−2
k > .54r

in the proof of the initial claim.

Also solved by O. Geupel (Germany), N. Hodges (UK), M. Hulse (India), Y. J. Ionin, O. P. Lossers (Nether-
lands), C. Schacht, A. Stadler (Switzerland), M. Tang, R. Tauraso (Italy), and the proposer.

CLASSICS

C9. From the 2001 Putnam Competition, suggested by the editors. Can an arc of a parabola
inside a circle of radius 1 have a length greater than 4?

Flipping Coins Until They are All Heads

C8. Due to Leonard Räde, suggested by the editors. Start with n fair coins. Flip all of them.
After this first flip, take all coins that show tails and flip them again. After the second flip,
take all coins that still show tails and flip them again. Repeat until all coins show heads.
Let qn be the probability that the last flip involved only a single coin. What is limn→∞ qn?

Solution. Let L = 1/ ln 4. Rough computation suggests that qn converges to L, but we
show that qn oscillates around L with an asymptotic amplitude of about 10−5, and so the
limit does not exist. Here at left we display the graph of qn for 1 ≤ n ≤ 20, illustrating
the apparent convergence. At right we graph the same sequence, zooming in and using a
logarithmic horizontal axis. That view reveals what appears to be a persistent asymptotic
oscillation.

To prove that the limit does not exist, take n ≥ 2, let C be one of the coins, and let k be a
positive integer. Consider the event that C shows heads for the first time on flip k + 1, and
all other coins show heads earlier. This occurs only if C shows tails for each of the first k
flips and then heads on flip k + 1. This has probability 2−(k+1). For each of the other n− 1
coins, it must not be the case that all of the first k flips show tails. This has probability
1− 2−k . So the probability of the event is 2−(k+1)(1− 2−k)n−1.
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Because there are n possibilities for C, and because k can be any positive integer,

qn =
∞∑
k=1

n

2k+1

(
1− 1

2k

)n−1

. (∗)

We show that the sequence q1, q2, . . . does not converge by showing that it has different
subsequences that converge but to different limits.

Let ck = (1− 2−k)2k . It is well known and easy to show that c1, c2, . . . is an increasing
sequence and limk→∞ ck = 1/e.

We have

qn =
∞∑
k=1

n

2k+1

((
1− 1

2k

)2k
)n/2k (

1− 1

2k

)−1

=
∞∑
k=1

n

2k+1
c
n/2k

k

(
2k

2k − 1

)
.

Now fix an odd integer m, and let aj = qm2j for j ≥ 1. We have

aj =
∞∑
k=1

m2j

2k+1
c
m2j /2k

k

(
2k

2k − 1

)
=

∞∑
k=1−j

m

2k+1
c
m/2k

k+j

(
2k+j

2k+j − 1

)
.

The kth term of this series is bounded above by (m/2k)e−m/2k , whose sum over k from
−∞ to∞ is finite. Hence, by the dominated convergence theorem,

lim
j→∞ aj =

∞∑
k=−∞

lim
j→∞

m

2k+1
c
m/2k

k+j

(
2k+j

2k+j − 1

)
=

∞∑
k=−∞

m

2k+1
e−m/2

k
.

With m = 1, this last sum can be approximated by letting k run from −5 to 27, giving
an approximation of L + 4.58 · 10−6 for the sum, and the error in this approximation is
seen by a simple integration to be less than 10−8. Similarly, when m = 3, the last sum is
approximately L− 1.17 · 10−6, again with an error of less than 10−8. The distinct limits
prove that limn→∞ qn does not exist.

Editorial comment. One can approximate the sum in (∗) by∫ ∞
0
n2−(x+1)(1− 2−x)n−1 dx,

which is L, independent of n. The error in this approximation does not vanish with n,
however.

The problem appeared in this Monthly [1991, 366; 1994, 78]. A version of the same
problem appeared almost a decade earlier in the 1982 Can. Math. Bull. as Problem P322
by George Szekeres, who asked whether

lim
n→∞

n∑
i=1

(−1)i−1 i

2i − 1

(
n

i

)

equals 1/ ln 2. It turns out that the nth term here is just 2qn in disguise, so the answer to the
Szekeres problem is negative.

In N. J. Calkin, E. R. Canfield, and H. S. Wilf (2000), Averaging sequences, deranged
mappings, and a problem of Lambert and Slater, J. Comb. Th., Ser. A 91(1–2): 171–190,
a general class of sequences is found to exhibit the oscillating sequence phenomenon. In
particular, they answer an open question in D. E. Lampert and P. J. Slater (1998), Parallel
knockouts in the complete graph, this Monthly 105: 556–558.
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SOLUTIONS

A Double Sum for Apéry’s Constant

12222 [2020, 945]. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,”
Rome, Italy. Prove

∞∑
k=1

(−1)k

k2

∞∑
n=k

1

n2n
= −13 ζ(3)

24
,

where ζ(3) is Apéry’s constant
∑∞

k=1 1/k3.

Composite solution by Brian Bradie and Hongwei Chen, Christopher Newport University,
Newport News, VA. In general, ζ(m) =∑∞k=1 1/km. In working with expressions involving
reciprocal powers, it is useful to have the gamma function integral and its logarithmic
version

n!

kn+1
=
∫ ∞

0
e−kt tndt = (−1)n

∫ 1

0
xk−1(ln x)ndx, (1)

where the latter integral is obtained from the former by setting t = − ln x.
Let S be the desired double sum. After interchanging the order of summation, we invoke

(1) with n = 1 to obtain

S =
∞∑
n=1

1

n2n

n∑
k=1

(−1)k

k2
=
∞∑
n=1

1

n2n

n∑
k=1

(−1)k+1
∫ 1

0
xk−1 ln x dx

=
∞∑
n=1

1

n2n

∫ 1

0

(
n∑
k=1

(−1)k+1xk−1

)
ln x dx =

∞∑
n=1

1

n2n

∫ 1

0

1− (−x)n
1+ x ln x dx.

Because the integrand in this last expression is nonpositive for every x in [0, 1] and every
n, one can interchange the summation and integration to obtain

S =
∫ 1

0

− ln(1− 1/2)+ ln(1+ x/2)
1+ x ln x dx =

∫ 1

0

ln(2+ x) ln x

x + 1
dx.

We break the integral for S into three integrals by applying the polarization identity
ab = 1

2 (a
2 + b2 − (a − b)2) to the numerator of the integrand, using a = ln x and b =

ln(2+ x). Letting
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J (f (x)) =
∫ 1

0

(ln f (x))2

1+ x dx,

we obtain

2S = J (x)+ J (x + 2)− J (x/(2+ x)). (2)

Expanding 1/(1+ x) into a geometric series and applying (1) with n = 2 yields

J (x) =
∞∑
k=0

(−1)k
∫ 1

0
xk(ln x)2dx = 2

∞∑
k=0

(−1)k

(k + 1)3
.

To evaluate J (x + 2), we substitute t = 1/(x + 2). Since 1/(x + 1) = t/(1 − t), we
obtain dx/(1+ x) = dt/(t (t − 1)). Using partial fraction expansion and then another geo-
metric series,

J (x + 2) =
∫ 1/2

1/3

(
1

t
+ 1

1− t
)
(ln t)2dt = (ln 3)3 − (ln 2)3

3
+
∞∑
k=0

∫ 1/2

1/3
t k(ln t)2dt.

Integrating by parts twice yields∫ 1/2

1/3
t k(ln t)2dt = t k+1

(
(ln t)2

(k + 1)
− 2 ln t

(k + 1)2
+ 2

(k + 1)3

) ∣∣∣∣
1/2

1/3

. (3)

Summing over k, we now have J (x + 2) expressed in terms of polylogarithms, where the
polylogarithm Lis(z) is defined by Lis(z) =∑∞k=1 z

k/ks . Note that Li1(z) = − ln(1− z).
The function Li2 is called the dilogarithm, and Li3 is called the trilogarithm. In particular,
J (x) = −2 Li3(−1) and

J (x + 2) = (ln 3)3 − (ln 2)3

3
+
∞∑
k=1

(1/2)k
(
(ln(1/2))2

k
− 2 ln(1/2)

k2
+ 2

k3

)

−
∞∑
k=1

(1/3)k
(
(ln(1/3))2

k
− 2 ln(1/3)

k2
+ 2

k3

)

= (ln 3)3 − (ln 2)3

3
+ (ln 2)2 Li1(1/2)+ 2 ln 2 Li2(1/2)+ 2 Li3(1/2)

− (ln 3)2 Li1(1/3)− 2 ln 3 Li2(1/3)− 2 Li3(1/3)

= (ln 2)3 − (ln 3)3

3/2
+ 2 ln 2 Li2(1/2)+ 2 Li3(1/2)

− 2 ln 3 Li2(1/3)− 2 Li3(1/3)+ (ln 3)2 ln 2,

where the last step uses Li1(z) = − ln(1− z).
To evaluate J (x/(2 + x)), we substitute t = x/(2+ x), which yields x = 2t/(1− t),

1+ x = (1+ t)/(1− t), dx = 2 dt/(1− t)2, and dx/(1+ x) = 2 dt/(1− t2). Integrating
as we did in (3) after expanding a geometric sum yields

J (x/(2+ x)) = 2
∫ 1/3

0

1

1− t2 (ln t)
2dt

= 2
∞∑
k=0

(
1

3

)2k+1 (
(ln 3)2

2k + 1
+ 2 ln 3

(2k + 1)2
+ 2

(2k + 1)3

)
.
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The odd terms in a Taylor series T (x) at 0 sum to
(
T (x)− T (−x))/2, so

J (x/(2+ x)) = (ln 3)2 ln 2+ 2 ln 3
(
Li2(1/3)− Li2(−1/3)

)+ 2
(
Li3(1/3)− Li3(−1/3)

)
.

Substituting these expressions for J (x), J (x + 2), and J (x/(2+ x)) into (2) and com-
bining like terms yields

S = (ln 2)3 − (ln 3)3

3
− ln 3

(
2 Li2(1/3)− Li2(−1/3)

)− (2 Li3(1/3)− Li3(−1/3)
)

+ ln 2 Li2(1/2)− Li3(−1)+ Li3(1/2).

The following are known evaluations of dilogarithms and trilogarithms at −1, 1/2, and
±1/3:

Li3(−1) = −3

4
ζ(3)

Li2(1/2) = π2

12
− (ln 2)2

2

Li3(1/2) = −π
2 ln 2

12
+ (ln 2)3

6
+ 7

8
ζ(3)

2 Li2(1/3)− Li2(−1/3) = π2

6
− (ln 3)2

2

2 Li3(1/3)− Li3(−1/3) = −π
2 ln 3

6
+ (ln 3)3

6
+ 13

6
ζ(3).

After substituting these evaluations into the last expression for S, remarkably all terms not
involving ζ(3) cancel, leaving

S = 3

4
ζ(3)+ 7

8
ζ(3)− 13

6
ζ(3) = −13

24
ζ(3).

Editorial comment. The generation of many terms not involving ζ(3), which then can-
cel, suggests that there should be a shorter solution not involving polylogarithms, but no
solver was able to contribute such a solution. Some solvers replaced the original 2 by 1/x,
differentiated, summed, integrated, and thereby reduced the desired sum to∫ 1/2

0

Li2(−x)
x(1− x)dx.

However, this also does not seem to lead to a shorter solution.
A standard reference for polylogarithms and their evaluations is L. Lewin (1981), Poly-

logarithms and Associated Functions, Amsterdam: North-Holland. For further examples
of series summing to ζ(3) and historical background, see A. van der Poorten (1979), A
proof that Euler missed, Math. Intelligencer 1: 195–203, and W. Dunham (2021), Euler
and the cubic Basel problem, this Monthly 128: 291–301.

Also solved by N. Bhandari (Nepal), R. Boukharfane (Morocco), G. Fera (Italy), M. L. Glasser, P. W. Lind-
strom, M. Omarjee (France), A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong, and the proposer.

Collinear Intersection Points

12224 [2021, 88]. Proposed by Cherng-tiao Perng, Norfolk State University, Norfolk, VA.
Let ABC be a triangle, with D and E on AB and AC, respectively. For a point F in the
plane, let DF intersect BC at G and let EF intersect BC at H . Furthermore, let AF
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intersect BC at I , let DH intersect EG at J , and let BE intersect CD at K . Prove that I ,
J , and K are collinear.

Solution I by Nigel Hodges, Cheltenham, UK. We use XY.ZW to denote the intersection
of lines XY and ZW . Let L = AG.DI , M = AH.EI , and N = BC.DE. Lines EH ,
AI , and GD concur at F . Therefore, by the theorem of Desargues, the points EA.HI ,
EG.HD, and AG.ID are collinear. Since E lies on AC, and since H and I lie on BC, we
have EA.HI = C, and by definition, EG.HD = J and AG.ID = L. Thus, we have

C, J , and L are collinear. (1)

Similarly, applying the theorem of Desargues to EH , IA, and GD we conclude that

M , J , and B are collinear, (2)

and using EH , IA, and DG we get

M , N , and L are collinear. (3)

Statement (3) implies that lines LM , DE, and CB concur at N , so by one more applica-
tion of the theorem of Desargues we conclude that LD.ME, LC.MB, and DC.EB are
collinear. But L lies on DI and M lies on EI , so LD.ME = I , (1) and (2) imply that
LC.MB = J , and DC.EB = K by definition. Thus I , J , and K are collinear.

Solution II by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
We use homogeneous coordinates with A = (1 : 0 : 0), B = (0 : 1 : 0), C = (0 : 0 : 1),
and K = (1 : 1 : 1). This gives D = (1 : 1 : 0) and E = (1 : 0 : 1). Let F = (a : b : c).
Since G lies on BC and DF , we have G = (0 : b − a : c). Similarly,

H = (0 : b : c − a), I = (0 : b : c), and J = (a : a − b : a − c),
so it follows that I , J , and K are collinear.

Also solved by M. Bataille (France), J. Cade, C. Curtis, I. Dimitrić, G. Fera (Italy), R. Frank (Germany),
O. Geupel (Germany), J.-P. Grivaux (France), E. A. Herman, W. Janous (Austria), J. H. Lindsey II, C. R. Prane-
sachar (India), C. Schacht, V. Schindler (Germany), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy),
T. Wiandt, L. Zhou, Davis Problem Solving Group, The Zurich Logic-Coffee (Switzerland), and the proposer.

Gamma at Reciprocals of Positive Integers

12225 [2021, 88]. Proposed by Pakawut Jiradilok, Massachusetts Institute of Technology,
Cambridge, MA, and Wijit Yangjit, University of Michigan, Ann Arbor, MI. Let � denote
the gamma function, defined by �(x) = ∫∞0 e−t t x−1 dt for x > 0.
(a) Prove that �� (1/n)	 = n for every positive integer n, where �y	 denotes the smallest
integer greater than or equal to y.
(b) Find the smallest constant c such that � (1/n) ≥ n− c for every positive integer n.

Solution by Missouri State University Problem Solving Group, Springfield, MO. We use
three facts about the gamma function: (i) �(x + 1) = x�(x), (ii) �′(1) = −γ , where γ is
the Euler–Mascheroni constant, and (iii) the gamma function is convex on (0,∞).
(a) The equation of the line tangent to y = �(x + 1) at the point (0, 1) is

y = 1+ �′(1)x = 1− γ x.
Since the gamma function is convex, this implies that for x > −1,

�(x + 1) ≥ 1− γ x.
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Applying this with x = 1/n yields

�(1/n) = n�(1/n+ 1) ≥ n(1− γ /n) = n− γ.
Also, since �(1) = �(2) = 1, by convexity �(x + 1) ≤ 1 for 0 ≤ x ≤ 1. Hence

�(1/n) = n�(1/n+ 1) ≤ n.
Since n− γ ≤ �(1/n) ≤ n and γ < 1, we conclude that ��(1/n)	 = n.
(b) The solution to part (a) shows that γ satisfies the required condition. Now let c be any
constant such that �(1/n) ≥ n− c for all n. We have

c ≥ n− �(1/n) = n− n�(1/n+ 1) = −�(1+ 1/n)− 1

1/n
.

Letting n approach∞ yields

c ≥ lim
n→∞−

�(1+ 1/n)− 1

1/n
= −�′(1) = γ.

Thus, γ is the smallest such c.

Also solved by R. A. Agnew, K. F. Andersen (Canada), P. Bracken, H. Chen, G. Fera (Italy), D. Fleischman,
J.-P. Grivaux (France), J. A. Grzesik (Canada), L. Han, N. Hodges (UK), O. Kouba (Syria), O. P. Lossers
(Netherlands), I. Manzur (UK) & M. Graczyk (France), R. Molinari, M. Omarjee (France), A. Stadler (Switzer-
land), R. Stong, R. Tauraso (Italy), J. Vinuesa (Spain), M. Vowe (Switzerland), T. Wiandt, J. Yan (China),
L. Zhou, and the proposer.

A Recursive Sequence That Is Convergent or Eventually Periodic

12226 [2021, 88]. Proposed by Jovan Vukmirovic, Belgrade, Serbia. Let x1, x2, and x3 be
real numbers, and define xn for n ≥ 4 recursively by xn = max{xn−3, xn−1} − xn−2. Show
that the sequence x1, x2, . . . is either convergent or eventually periodic, and find all triples
(x1, x2, x3) for which it is convergent.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
Let λ1 be the unique real root of λ3 + λ− 1, so

λ1 =
(

9+√93

18

)1/3

+
(

9−√93

18

)1/3

= 0.682327803828 . . . .

The sequence converges if and only if (x1, x2, x3) = (x1, x1λ1, x1λ
2
1) with x1 > 0 or

(x1, x2, x3) = (x1, 0, 0) with x1 ≤ 0. Otherwise, it is eventually periodic with period 4.
Given such a sequence x1, x2, . . . , let i ∈ N be of type A if xi ≤ xi+2 and type B if

xi > xi+2. We claim that if i is of type A and i + 1 is of type B, then xj = xj+4 for
j ≥ i + 3. To see this, let (a, b, c) = (xi, xi+1, xi+2). We have a ≤ c and xi+3 = c − b, so
b > c − b and xi+4 = b − c.

If c ≤ b − c, which with b > c − b implies b > c, then the sequence continues

xi+5 = 2b − 2c, xi+6 = b − c, xi+7 = c − b, xi+8 = b − c, xi+9 = 2b − 2c.

With (xi+7, xi+8, xi+9) = (xi+3, xi+4, xi+5), the claim follows. If c > b − c, then the
sequence continues

xi+5 = b, xi+6 = c, xi+7 = c − b,
yielding (xi+5, xi+6, xi+7) = (xi+1, xi+2, xi+3). In both cases, the sequence has period 4
beginning no later than xi+3 and hence does not converge.
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If i of type A is never followed by i + 1 of type B, then either all i are of type B or there
exists some integer k ≥ 1 such that i is of type A if and only if i ≥ k. If all i are of type
B, then xn = −xn−2 + xn−3 for n ≥ 4. The characteristic polynomial λ3 + λ− 1 is strictly
increasing with unique real root λ1 between 0 and 1. The complex conjugate roots λ2 and
λ3 have magnitude greater than 1.

It follows that xn = c1λ
n
1 + �(c2λ

n
2) for some real c1 and complex c2, where �(z)

denotes the real part of z. Since |λ2| > 1 and xn−3 > xn−1 for n ≥ 4, we conclude c2 = 0
and therefore xn = c1λ

n
1, where c1 > 0 to satisfy xn > xn+2. This is a strictly decreasing

convergent solution, not eventually periodic.
Finally, if i is of type A if and only if i ≥ k, then xk+1, xk+2, . . . satisfies xn = xn−1 −

xn−2 for n ≥ k + 3. Therefore,

xk+3 = xk+2 − xk+1 ≥ xk+1,

xk+4 = −xk+1 ≥ xk+2,

xk+5 = −xk+2,

xk+6 = xk+1 − xk+2 ≥ −xk+1,

xk+7 = xk+1 ≥ −xk+2.

From −xk+1 ≥ xk+2 and xk+1 ≥ −xk+2 we conclude xi = 0 for i ≥ k + 1. Since k is of
Type A, also xk ≤ 0. If k > 1, then xk+2 = xk−1 − xk > xk+1 − xk = −xk ≥ 0, which
contradicts xk+2 = 0. Therefore, k must equal 1, and the convergent sequences that are
also eventually periodic are given by (x1, x2, x3) = (x1, 0, 0) with x1 ≤ 0.

Also solved by C. Curtis & J. Boswell, G. Fera (Italy), N. Hodges (UK), Y. J. Ionin, P. Lalonde (Canada),
M. Reid, R. Stong, L. Zhou, and the proposer.

Sum of Reciprocals of Consecutive Integers

12227 [2021, 88]. Proposed by Gregory Galperin, Eastern Illinois University, Charleston,
IL, and Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. Prove that for
any integer n with n ≥ 3 there exist infinitely many pairs (A,B) such that A is a set of
n consecutive positive integers, B is a set of fewer than n positive integers, A and B are
disjoint, and

∑
k∈A 1/k =∑k∈B 1/k.

Solution by Rory Molinari, Beverly Hills, MI. For positive integers t and n, let

An(t) =
{
{t −m, t −m+ 1, . . . , t +m} if n = 2m+ 1,

{t −m, t −m+ 1, . . . , t +m− 1} if n = 2m,

where m is an integer. For a set X of nonzero numbers, let S(X) =∑i∈X 1/i.
First consider the odd case: n = 2m+ 1 ≥ 3. Fix a positive integer p. Using 1/(np) =

1/p − (n− 1)/(np), we compute

S(An(np)) = 1

p
− n− 1

np
+

m∑
i=1

(
1

np − i +
1

np + i
)

= 1

p
+

m∑
i=1

(
1

np − i +
1

np + i −
2

np

)

= 1

p
+

m∑
i=1

2i2

np(n2p2 − i2) =
1

p
+

m∑
i=1

1

b(np, i)
,

where b(x, y) = x(x2 − y2)/(2y2). If we choose p to be a multiple of 2m!, then b(np, i)
is an integer for 1 ≤ i ≤ m. By taking A = An(np) and B = {p, b(np, 1), . . . , b(np,m)},
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we see that B is a set of fewer than n distinct positive integers and S(A) = S(B). Since
b(np, i) = �(p3), the sets A and B are disjoint for sufficiently large p.

The case n = 2m is similar. We compute

S(An(np)) = 1

p
+ 1

np −m −
n− 1

np
+

m−1∑
i=1

(
1

np − i +
1

np − i
)

= 1

p
+
(

1

np −m −
1

np

)
+

m−1∑
i=1

(
1

np − i +
1

np − i −
2

np

)

= 1

p
+ 1

np(2p − 1)
+

m−1∑
i=1

1

b(np, i)
.

Setting A = Ap(np) and B = {p, np(2p − 1), b(np, 1), . . . , b(np,m− 1)} suffices when
we take p to be a sufficiently large multiple of 2(m− 1)!.

Also solved by C. Curtis & J. Boswell, K. Gatesman, J.-P. Grivaux (France), N. Hodges (UK), P. Lalonde
(Canada), O. P. Lossers (Netherlands), I. Manzur (UK) & M. Graczyk (France), A. Pathak (India), C. R. Prane-
sachar (India), M. Reid, E. Schmeichel, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Tetiva
(Romania), L. Zhou, Missouri State University Problem Solving Group, and the proposers.

An Integral for Catalan Squared

12228 [2021, 89]. Proposed by Hervé Grandmontagne, Paris, France. Prove∫ 1

0

(ln x)2 ln
(
2
√
x/(x2 + 1)

)
x2 − 1

dx = 2G2,

where G is Catalan’s constant
∑∞

n=0(−1)n/(2n+ 1)2.

Solution by Li Zhou, Polk State College, Winter Haven, FL. It is well known that 2G =∫∞
0 (x/ cosh x) dx. (See, e.g., I. S. Gradshteyn and I. M. Ryzhik (2015), Table of Integrals,

Series, and Products, 8th ed., Waltham, MA: Academic Press, equation 3.521(2).) There-
fore, using the change of variables u = x + y, v = x − y, we have

2G2 = 1

2

∫ ∞
0

∫ ∞
0

xy

cosh x cosh y
dx dy

= 1

4

∫ ∞
0

∫ ∞
0

(x + y)2 − (x − y)2
cosh(x + y)+ cosh(x − y) dx dy

= 1

8

∫ ∞
0

∫ u

−u
u2 − v2

cosh u+ cosh v
dv du = 1

4

∫ ∞
0

∫ u

0

u2 − v2

cosh u+ cosh v
dv du

= 1

4

[∫ ∞
0
u2
∫ u

0

1

cosh u+ cosh v
dv du−

∫ ∞
0
v2
∫ ∞
v

1

cosh u+ cosh v
du dv

]

= 1

4

∫ ∞
0
u2

[∫ u

0

dv

cosh u+ cosh v
−
∫ ∞
u

dv

cosh u+ cosh v

]
du.

To evaluate the inner integrals, we use∫
dv

cosh u+ cosh v
=
∫

tanh((u+ v)/2)+ tanh((u− v)/2)
2 sinh u

dv

= 1

sinh u
ln

(
cosh((u+ v)/2)
cosh((u− v)/2)

)
+ C,
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which yields∫ u

0

dv

cosh u+ cosh v
= ln cosh u

sinh u
and

∫ ∞
u

dv

cosh u+ cosh v
= u− ln cosh u

sinh u
.

Hence

2G2 = 1

4

∫ ∞
0

u2(2 ln cosh u− u)
sinh u

du =
∫ 1

0

(ln x)2 ln
(
2
√
x/(x2 + 1)

)
x2 − 1

dx,

where the last equality follows from the substitution u = − ln x.

Also solved by F. R. Ataev (Uzbekistan), A. Berkane (Algeria), N. Bhandari (Nepal), H. Chen, G. Fera (Italy),
M. L. Glasser, D. Henderson, N. Hodges (UK), O. Kouba (Syria), A. Stadler (Switzerland), S. M. Stewart
(Australia), R. Stong, R. Tauraso (Italy), M. Wildon (UK), and the proposer.

A Sum of Secants from a Triangle

12231 [2021, 178]. Proposed by George Apostolopoulos, Messolonghi, Greece. For an
acute triangle ABC with circumradius R and inradius r , prove

sec

(
A− B

2

)
+ sec

(
B − C

2

)
+ sec

(
C − A

2

)
≤ R
r
+ 1.

Solution by UM6P Math Club, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
Since

(
cos((B − C)/2)− 2 sin(A/2)

)2 ≥ 0, we have

cos2

(
B − C

2

)
≥ 4 cos

(
B − C

2

)
sin

(
A

2

)
− 4 sin2

(
A

2

)
.

Using the well-known formula 4 sin(A/2) sin(B/2) sin(C/2) = r/R, we obtain

4 cos

(
B − C

2

)
sin

(
A

2

)
− 4 sin2

(
A

2

)
= 4 sin

(
A

2

)(
cos

(
B − C

2

)
− sin

(
A

2

))

= 4 sin

(
A

2

)(
cos

(
B − C

2

)
− cos

(
B + C

2

))

= 8 sin

(
A

2

)
sin

(
B

2

)
sin

(
C

2

)
= 2r

R
.

Thus sec
(
(B − C)/2) ≤ √R/(2r). Similarly

sec
(
(A− B)/2) ≤ √R/(2r) and sec

(
(C − A)/2) ≤ √R/(2r),

and summing these inequalities yields

sec

(
A− B

2

)
+ sec

(
B − C

2

)
+ sec

(
C − A

2

)
≤ 3

√
R

2r
.

To complete the proof, it suffices to show

3

√
R

2r
≤ R
r
+ 1.

Setting t =√R/(2r), the required inequality becomes 3t ≤ 2t2+ 1, or (2t − 1)(t − 1)≥ 0.
This holds because t ≥ 1, by Euler’s inequality R ≥ 2r .

Editorial comment. The assumption that the triangle is acute is not needed.
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Also solved by M. Bataille (France), H. Chen (China), C. Chiser (Romania), C. Curtis, N. S. Dasireddy (India),
P. De (India), H. Y. Far, G. Fera (Italy), O. Geupel (Germany), N. Hodges (UK), W. Janous (Austria), K.-W. Lau
(China), M. Lukarevski (North Macedonia), C. R. Pranesachar (India), V. Schindler (Germany), A. Stadler
(Switzerland), R. Stong, R. Tauraso (Italy), M. Tetiva (Romania), M. Vowe (Switzerland), T. Wiandt, L. Wim-
mer (Germany), and the proposer.

CLASSICS

C8. (Due to Leonard Räde, suggested by the editors). Start with n fair coins. Flip all of
them. After this first flip, take all coins that show tails and flip them again. After the second
flip, take all coins that still show tails and flip them again. Repeat until all coins show heads.
Let qn be the probability that the last flip involved only a single coin. What is limn→∞ qn?

Are R and C Isomorphic Under Addition?

C7. Contributed by Alan D. Taylor, Union College, Schenectady, NY. Are the additive group
of real numbers and the additive group of complex numbers isomorphic?

Solution. Each of the given groups is a vector space over the set Q of rational numbers.
Because every vector space has a basis, we can let B1 be a basis for R and B2 a basis
for C. Because Q is countable while R is not, in order for B1 to span R, the cardinality
of B1 must equal the cardinality of R. The same holds for C. Because R and C have the
same cardinality, there is a bijection f : B1 → B2. The bijection can be extended to an
isomorphism of the groups as follows: for each x ∈ R write x (uniquely) as a finite sum∑n

i=1 qibi , where qi ∈ Q \ {0} and bi ∈ B1 and define f (x) to be
∑n

i=1 qif (bi). It is easy
to verify that f (x + y) = f (x)+ f (y), so f is a group isomorphism.

Editorial comment. The result of the problem is folklore. The theorem that every vector
space has a basis relies on the axiom of choice (denoted AC). A simple proof uses Zorn’s
lemma to show that there is a maximal linearly independent set of vectors; such a set
must be a basis. It is well known that Zorn’s lemma is equivalent to AC. It turns out
that the statement that every vector space has a basis is also equivalent to AC (A. Blass
(1984), Existence of bases implies the axiom of choice, Contemp. Math. 31, 31–33). The
question therefore arises whether the existence of an isomorphism from R to C can be
proved without using AC. We sketch a proof that it cannot.

A set of reals has the property of Baire if it differs from an open set by a meager set
(i.e., a countable union of nowhere dense sets), and a function has the property of Baire if
the inverse image of any open set has the property of Baire (so it is “almost continuous”).
Let ZF be the axiomatic theory whose axioms are the Zermelo–Fraenkel axioms (AC not
included). Let PB be the assertion that “all sets of reals have the property of Baire” and
let ZF+ PB be the theory in which PB is added to ZF as an additional axiom. The theory
ZF+ PB is known to be consistent, assuming ZF is consistent (S. Shelah (1984), Can you
take Solovay’s inaccessible away?, Isr. J. Math. 48, 1–47).

We now show that, in ZF + PB, the additive groups (R,+) and (C,+) are not iso-
morphic. An involution of a group is an automorphism of order 2. The complex numbers
admit at least two involutions: z → −z and z → z̄. Any automorphism f of R satisfies
f (x + y) = f (x)+ f (y), and it is a classic result (W. Sierpiński (1924), Sur un propriété
des fonctions de M. Hamel, Fund. Math. 5, 334–336) that any function with the property
of Baire that satisfies this functional equation has the form x → cx for some real c. There-
fore, by PB, the only involution of R is x → −x. Because C has more than one involution,
C cannot be isomorphic to R.
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SOLUTIONS

A Common Coefficient

12209 [2020, 852]. Proposed by Li Zhou, Polk State College, Winter Haven, FL. Prove
n∑
k=0

(−1)k
(
n

k

)(
m+ 2n− 2k + 1

m

)
=

n∑
k=0

(
n

k

)(
m+ k + 1

m− n
)

for all integers m and n with m ≥ n ≥ 0.

Solution by Michel Bataille, France. We show that both sides equal the coefficient of xm in
the polynomial P defined by

P(x) = (1+ x)m+1(2x + x2)n = (1+ x)m+1((1+ x)2 − 1)n.

Using the binomial theorem twice yields

P(x) = (1+ x)m+1
n∑
k=0

(−1)k
(
n

k

)
(1+ x)2(n−k) =

n∑
k=0

(−1)k
(
n

k

)
(1+ x)2n−2k+m+1

=
n∑
k=0

(−1)k
(
n

k

) 2n−2k+m+1∑
j=0

(
2n− 2k +m+ 1

j

)
xj .

This expresses the left side of the identity as the coefficient of xm in the expansion of P(x).
Also,

P(x) = (1+ x)m+1(x(2+ x))n = xn(1+ x)m+1(1+ (1+ x))n,
so another two uses of the binomial theorem yield

P(x) = xn(1+ x)m+1
n∑
k=0

(
n

k

)
(1+ x)k =

n∑
k=0

(
n

k

) m+k+1∑
j=0

(
m+ k + 1

j

)
xn+j .
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This shows that the coefficient of xm in the expansion of P(x) is also the right side of the
identity, completing the proof.

Also solved by R. Boukharfane (Saudi Arabia), Ó. Ciaurri (Spain), J. Boswell & C. Curtis, G. Fera (Italy),
N. Hodges (UK), M. Kaplan & M. Goldenberg, O. Kouba (Syria), P. Lalonde (Canada), O. P. Lossers
(Netherlands), M. Maltenfort, E. Schmeichel, A. Stadler (Switzerland), R. Stong, F. A. Velandia (Colombia),
M. Vowe (Switzerland), J. Vukmirović (Serbia), J. Wangshinghin, M. Wildon (UK), X. Ye (China), and the
proposer.

A Median Inequality

12214 [2020, 853]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let x, y,
and z be the lengths of the medians of a triangle with area F . Prove

xyz(x + y + z)
xy + zx + yz ≥

√
3F.

Solution by Oliver Geupel, Brühl, Germany. The Cauchy–Schwarz inequality implies that
x2 + y2 + z2 ≥ xy + yz+ zx, and therefore

(x + y + z)2 = x2 + y2 + z2 + 2(xy + yz+ zx) ≥ 3(xy + yz+ zx). (1)

It is well known that the medians of a triangle with area F are the sides of a triangle with
area K = 3F/4 (see, for example, sections 91–93 in N. Altschiller-Court (1952), College
Geometry, New York: Barnes and Noble). Moreover, it is known that a triangle with sides
x, y, and z and area K satisfies the inequality

9xyz

x + y + z ≥ 4
√

3K (2)

(see item 4.13 on p. 45 of O. Bottema et al. (1969), Geometric Inequalities, Groningen:
Wolters-Noordhoff). Combining (1) and (2), we obtain

xyz(x + y + z)
xy + yz+ zx ≥

3xyz(x + y + z)
(x + y + z)2 = 3xyz

x + y + z ≥
4
√

3K

3
= √3F.

Editorial comment. Inequality (2) appeared as part of elementary problem E1861 [1966,
199; 1967, 724] from this Monthly, proposed by T. R. Curry and solved by Leon Bankoff.
The equation K = 3F/4 is also featured as Theorem 10.4 on p. 165 of C. Alsina and
R. B. Nelsen (2010), Charming Proofs: A Journey Into Elegant Mathematics, Washington,
DC: Mathematical Association of America.

Also solved by A. Alt, H. Bai (Canada), M. Bataille (France), E. Bojaxhiu (Albania) & E. Hysnelaj (Australia),
I. Borosh, R. Boukharfane (Saudi Arabia), P. Bracken, S. H. Brown, C. Curtis, N. S. Dasireddy (India), A. Dixit
(India) & S. Pathak (UK), H. Y. Far, G. Fera (Italy), N. Hodges (UK), W. Janous (Austria), M. Kaplan &
M. Goldenberg, P. Khalili, O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Netherlands), M. Lukarevski
(Macedonia), A. Pathak (India), C. R. Pranesachar (India), C. Schacht, V. Schindler (Germany), A. Stadler
(Switzerland), N. Stanciu & M. Drăgan (Romania), R. Stong, B. Suceavă, M. Vowe (Switzerland), J. Vuk-
miroviıc (Serbia), T. Wiandt, X. Ye (China), M. R. Yegan (Iran), Davis Problem Solving Group, and the pro-
poser.

Another Incenter-Centroid Inequality

12217 [2020, 944]. Proposed by Giuseppe Fera, Vicenza, Italy. Let I be the incenter and
G be the centroid of a triangle ABC. Prove

3

2
<
AI

AG
+ BI

BG
+ CI

CG
≤ 3.
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Solution by Haoran Chen, Suzhou, China. Let a = BC, b = CA, and c = AB. Also let
s = (a + b + c)/2. Let ma be the length of the median from A, r the radius of the incircle,
and K the point of tangency of the incircle with AB. By the triangle inequality,

2ma <
(a

2
+ b

)
+
(a

2
+ c

)
= 2s.

Also, AG = 2ma/3 and AI > AK = s − a. Therefore

AI

AG
= 3AI

2ma
>

3(s − a)
2s

.

Summing this with the other two analogous inequalities establishes the strict lower bound
of 3/2.

For the upper bound, note that

rs = area of 	ABC = bc sinA

2
,

and therefore

AI 2 = AK

cos(A/2)
· r

sin(A/2)
= (s − a)r
(1/2) sinA

= bc(s − a)
s

.

Also, by Apollonius’s theorem,

4m2
a = 2b2 + 2c2 − a2 = (b + c + a)(b + c − a)+ (b − c)2 ≥ 4s(s − a).

Therefore

AI

AG
= 3AI

2ma
≤ 3
√
bc

2s
≤ 3(b + c)

4s
.

Summing this with the other two analogous inequalities establishes the upper bound of 3.

Editorial comment. Problem 12175 [2020, 372; 2021, 952] establishes

AI 2

AG2
+ BI 2

BG2
+ CI 2

CG2
≤ 3.

This can be used to give an alternative proof of the upper bound: By the Cauchy–Schwarz
inequality,

AI

AG
+ BI

BG
+ CI

CG
≤
√

3

(
AI 2

AG2
+ BI 2

BG2
+ CI 2

CG2

)
≤ 3.

Also solved by A. Alt, S. Gayen (India), P. Khalili, S. Lee (Korea), C. R. Pranesachar (India), A. Stadler
(Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt, and the proposer.

Composing All Permutations of [n] to Do Nothing

12218 [2020, 944]. Proposed by Richard Stong, Center for Communications Research, La
Jolla, CA, and Stan Wagon, Macalester College, St. Paul, MN. For which positive integers
n does there exist an ordering of all permutations of {1, . . . , n} so that their composition in
that order is the identity?

Solution by S. M. Gagola Jr., Kent State University, Kent, OH. Such an ordering of permu-
tations is possible for n = 1 (trivially) and for all n at least 4.

When n is 2 or 3, the number of permutations with odd parity is odd, so no composition
in these cases can have even parity like the identity. Note, however, that when n = 3 the
product of the three distinct transpositions always equals the middle factor (t1t2t3 = t2).
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Before considering n ≥ 4, it is useful to note that any group of even order has an odd
number of elements of order 2. To see this, pair the elements of the group with their
inverses. The identity element and the elements of order two (involutions) are self-paired,
while the remaining elements form sets of size 2. Since the group has even order, the num-
ber of involutions is therefore odd.

If in a group of even order a product of the involutions (in some order) can be shown
to equal the identity, then the remaining elements can be paired with their inverses to
yield a product of all the elements equaling the identity. Hence it suffices to show that for
n ≥ 4, the involutions of the symmetric group Sn can be ordered so that their product is the
identity.

The nine involutions in S4 can be partitioned into three triples as follows:

{(12), (34), (12)(34)}, {(13), (24), (13)(24)}, {(14), (23), (14)(23)}.
The product of the three involutions in any one subset (in any order) equals the identity;
this completes the n = 4 case.

For n = 5, we partition the involutions in S5 into sets I1, . . . , I5 and order each set to
obtain a product yielding the identity. For I1 we take the nine involutions on {2, 3, 4, 5}.
By the n = 4 case, there is a product of these yielding the identity. For j ≥ 2, let Ij con-
sist of all involutions that exchange 1 and j . One element is (1j), and each of the other
three elements is the product of (1j) and a transposition of two of the three elements of
{2, 3, 4, 5} − {j}. Each of the four elements of Ij transposes 1 and j , and we have noted
that the product of the three transpositions on a set of size 3 can be ordered to yield any
one of the three transpositions. We can therefore choose orderings of each of I2, I3, I4,
and I5 so that their products are (45), (45), (23), and (23), respectively. Combining these
orderings completes the n = 5 case.

The solutions for n = 4 and n = 5 provide a basis for a proof by induction. We write [n]
for {1, . . . , n}. For n ≥ 6, partition the involutions of Sn into the n sets I1, . . . , In, where
I1 consists of all the involutions on [n]− {1}, and Ij for j ≥ 2 consists of all involutions
exchanging 1 and j . The n − 1 case yields an ordering of I1 that produces the identity.
For j ≥ 2, each element of Ij consists of the transposition (1j) times an element of the
symmetric group on [n]− {1, j} that is the identity or an involution. As noted earlier, Ij
thus has even size, and hence any product of the elements of Ij leaves 1 and j in place.
Furthermore, the n − 2 case guarantees that the elements of Ij other than (1j) can be
ordered so that their effect on [n]− {1, j} is the identity. Doing this independently for all
Ij completes the proof.

Editorial comment. The problem is a special case of a result from J. Dénes and P. Hermann
(1982), On the product of all elements in a finite group, in E. Mendelsohn, ed., Algebraic
and geometric combinatorics, North-Holland Math. Stud. 65, Amsterdam: North-Holland,
pp. 105–109. A special case of their theorem that still includes the problem here is proved
more simply in M. Vaughan-Lee and I. M. Wanless (2003), Latin squares and the Hall–
Paige conjecture. Bull. London Math. Soc. 35, no. 2, 191–195.

The solver Gagola noted that if a groupG of even order has a cyclic Sylow 2-subgroup,
then there is a normal 2-complement N , and the product of the elements of G taken in
any order always represents a coset of order 2 in the factor group G/N . Therefore, this
product can never equal the identity element. He then asked whether a group of even order
that does not have a cyclic Sylow 2-subgroup always has an ordering of the elements so
that the resulting product produces the identity. As Vaughan-Lee and Wanless wrote, “The
Hall–Paige conjecture deals with conditions under which a finite group G will possess a
complete mapping, or equivalently a Latin square based on the Cayley table of G will
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possess a transversal. Two necessary conditions are known to be: (i) that the Sylow 2-
subgroups ofG are trivial or noncyclic, and (ii) that there is some ordering of the elements
of G which yields a trivial product. These two conditions are known to be equivalent, but
the first direct, elementary proof that (i) implies (ii) is given here.” Thus the answer to
Gagola’s question is yes.

Also solved by F. Chamizo & Y. Fuertes (Spain), D. Dima (Romania), O. Geupel (Germany), N. Hodges (UK),
Y. J. Ionin (USA) & B. M. Bekker (Russia), O. P. Lossers (Netherlands), M. Reid, A. Stadler (Switzerland),
R. Tauraso (Italy), T. Wilde (UK), and the proposers.

A Vanishing Sum of Stirling Numbers

12219 [2020, 944]. Proposed by Brad Isaacson, New York City College of Technology,
New York, NY. Let k and m be positive integers with k < m. Let c(m, k) be the number
of permutations of {1, . . . , m} consisting of k cycles. (The numbers c(m, k) are known as
unsigned Stirling numbers of the first kind.) Prove

m∑
j=k

(−2)j
(
m

j

)
c(j, k)

(j − 1)!
= 0

whenever m and k have opposite parity.

Solution by Roberto Tauraso, University of Rome Tor Vergata, Rome, Italy. Let

Fm(x) =
m∑
k=1

(−x)k
m∑
j=k

(−2)j
(
m

j

)
c(j, k)

(j − 1)!
.

Here Fm(x) is a generating function for the desired sum, evaluated at the negative of the
formal variable. We aim to show that the coefficients of odd powers of x are 0 when m is
even, and the coefficients of even powers of x are 0 when m is odd. For this it suffices to
show

Fm(−x) = (−1)mFm(x).

The well-known generating function for the unsigned Stirling numbers of the first
kind is given by

∑j

k=1 c(j, k)y
k = ∏j−1

i=0 (y + i) (easily proved combinatorially). Setting
y = −x yields

∑j

k=1(−1)j−kc(j, k)xk =∏j−1
i=0 (x − i).

We interchange the order of summation to take advantage of this identity. Let x be an
integer with x ≥ m. We compute

Fm(x) =
m∑
j=1

2j
(
m

j

)
(j − 1)!

j∑
k=1

(−1)j−kc(j, k)xk =
m∑
j=1

2j
(
m

j

)
(j − 1)!

j−1∏
i=0

(x − i)

= m
m∑
j=1

2j
(
m− 1

j − 1

)(
x

j

)
= m

m∑
j=1

(
m− 1

m− j
)(
x

j

)
2j

= m[zm](1+ z)m−1(1+ 2z)x = m[zm](1+ z)x+m−1

(
1+ z

1+ z
)x
,

where [zm] is the “coefficient operator” extracting the coefficient of zm in the expression
that follows it.

To extract the coefficient of zm in a different way, we apply the binomial theorem twice
to obtain
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(1+ z)x+m−1

(
1+ z

1+ z
)x
=

x∑
j=0

(1+ z)x+m−j−1

(
x

j

)
zj

=
x∑
j=0

(
x

j

)
zj

x+m−j−1∑
k=0

(
x +m− j − 1

k

)
zk.

To extract all the contributions to the coefficient of zm, restrict j to run from 0 to m, and
set k = m− j in the inner sum. This leads to the formula

Fm(x) = m[zm](1+ z)x+m−1

(
1+ z

1+ z
)x
= m

m∑
j=0

(
x +m− j − 1

m− j
)(
x

j

)
.

Viewing
(
x

j

)
as a polynomial in x, this is a polynomial equation that holds for every integer

x with x ≥ m. It therefore holds for all real numbers x. Thus, by reversing the index of
summation and using (−y

r

)
= (−1)r

(
y + r − 1

r

)
,

we obtain

Fm(−x) = m
m∑
j=0

(−x +m− j − 1

m− j
)(−x

j

)
= m

m∑
j=0

(−(x − j + 1)

j

)( −x
m− j

)

= m
m∑
j=0

(−1)j
(
x

j

)
· (−1)m−j

(
x +m− j − 1

m− j
)
= (−1)mFm(x),

as desired.

Editorial comment. In addition to the polynomials studied above, solvers used induction,
contour integration, generating function manipulations, or primitive Dirichlet characters.

There is a direct combinatorial proof of the needed identity
m∑
j=1

2j
(
m− 1

j − 1

)(
x

j

)
=

m∑
j=0

(
x +m− j − 1

m− j
)(
x

j

)

in the proof given above. Both sides count the distinguishable ways to place m balls in x
boxes, where balls may be black or white, with each box having at most one white ball but
any number of black balls. On the left side, j is the number of boxes that have balls: Pick
the boxes, distribute the balls with a positive number in each chosen box, and decide for
each chosen box whether to make one of the balls white. On the right side, j is the number
of white balls: Pick boxes for them, and independently distribute m − j black balls into
the x boxes with repetition allowed.

Also solved by N. Hodges (UK), O. Kouba (Syria), P. Lalonde (Canada), A. Stadler (Switzerland), J. Wangsh-
inghin (Canada), and the proposer.

A Limit Related to the Basel Problem

12220 [2020, 944]. Proposed by D. M. Bătineţu-Giurgiu, “Matei Basarab” National Col-
lege, Bucharest, Romania, and Neculai Stanciu, “George Emil Palade” School, Buzău,
Romania. Let an =∑n

k=1 1/k2 and bn =∑n
k=1 1/(2k − 1)2. Prove

lim
n→∞ n

(
bn

an
− 3

4

)
= 3

π2
.
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Solution by Charles Curtis, Missouri Southern State University, Joplin, MO. Note that

bn =
2n∑
k=1

1

k2
− 1

4

n∑
k=1

1

k2
= 3

4

n∑
k=1

1

k2
+

2n∑
k=n+1

1

k2
= 3

4
an +

2n∑
k=n+1

1

k2
.

Therefore

n

(
bn

an
− 3

4

)
= n

an

2n∑
k=n+1

1

k2
= n

an

n∑
k=1

1

(n+ k)2 =
1

an

[
1

n

n∑
k=1

1

(1+ k/n)2
]
.

It is well known that an converges to π2/6 (this is often called the Basel problem). The
expression in square brackets can be interpreted as a Riemann sum, yielding

lim
n→∞

1

n

n∑
k=1

1

(1+ k/n)2 =
∫ 2

1

1

x2
dx = 1

2
.

Hence we get the desired result.

Also solved by U. Abel & V. Kushnirevych (Germany), K. F. Andersen (Canada), F. R. Ataev (Uzbek-
istan), M. Bataille (France), N. Batir (Turkey), A. Berkane (Algeria), N. Bhandari (Nepal), R. Boukharfane
(Morocco), P. Bracken, B. Bradie, V. Brunetti & J. Garofali & A. Aurigemma (Italy), F. Chamizo (Spain),
H. Chen, C. Chiser (Romania), G. Fera (Italy), D. Fleischman, O. Geupel (Germany), D. Goyal (India), N. Gri-
vaux (France), J. A. Grzesik, L. Han, J.-L. Henry (France), E. A. Herman, N. Hodges (UK), F. Holland (Ire-
land), R. Howard, W. Janous (Austria), O. Kouba (Syria), H. Kwong, P. Lalonde (Canada), G. Lavau (France),
S. Lee, P. W. Lindstrom, O. P. Lossers (Netherlands), C. J. Lungstrom, J. Magliano, R. Molinari, A. Natian,
S. Omar (Morocco), M. Omarjee (France), M. Reid, S. Sharma (India), J. Singh (India), A. Stadler (Switzer-
land), S. M. Stewart (Australia), R. Stong, M. Tang, R. Tauraso (Italy), D. Terr, D. B. Tyler, D. Văcaru (Roma-
nia), J. Vinuesa (Spain), M. Vowe (Switzerland), J. Wangshinghin (Canada), T. Wiandt, Q. Zhang (China),
Missouri State University Problem Solving Group, and the proposer.

A Logarithmic Integral Evaluated by Residues

12221 [2020, 945]. Proposed by Necdet Batır, Nevşehir Hacı Bektaş Veli University,
Nevşehir, Turkey. Prove ∫ 1

0

log(x6 + 1)

x2 + 1
dx = π

2
log 6− 3G,

where G is Catalan’s constant
∑∞

k=0(−1)k/(2k + 1)2.

Solution by Kenneth F. Andersen, Edmonton, AB, Canada. Let I denote the requested inte-
gral. Writing I as a sum of two integrals and then making the change of variable t = 1/x
in the first integral, we obtain

I =
∫ 1

0

log(1+ 1/x6)

1+ x2
dx + 6

∫ 1

0

log x

1+ x2
dx =

∫ ∞
1

log(1+ t6)
1+ t2 dt + 6

∫ 1

0

log x

1+ x2
dx,

and therefore

2I =
∫ ∞

0

log(1+ x6)

1+ x2
dx + 6

∫ 1

0

log x

1+ x2
dx.

To evaluate the last integral, we express 1/(1+ x2) as an infinite series:∫ 1

0

log x

1+ x2
dx =

∫ 1

0

( ∞∑
k=0

(−1)kx2k

)
log x dx.

Since the partial sums of the series are bounded in absolute value by 1, the dominated
convergence theorem justifies interchanging the order of summation and integration, and
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then an integration by parts yields∫ 1

0

log x

1+ x2
dx =

∞∑
k=0

(−1)k
∫ 1

0
x2k log x dx =

∞∑
k=0

(−1)k+1

(2k + 1)2
= −G.

Thus,

2I =
∫ ∞

0

log(1+ x6)

1+ x2
dx − 6G,

so the required result follows from∫ ∞
−∞

log(1+ x6)

1+ x2
dx = 2π log 6, (1)

which we now prove using the method of residues.
For z = |z|eiθ with |z| > 0 and −π < θ ≤ π , define Log z = log |z| + iθ . The func-

tion Log z is analytic on the open upper half-plane. For R > 1 let CR denote the contour
z = Reiθ , 0 ≤ θ ≤ π . Let

P1(z) = z+ i, P2(z) = z−
√

3/2+ i/2, and P3(z) = z+
√

3/2+ i/2.
For j ∈ {1, 2, 3}, the function LogPj (z) is analytic on the closed upper half-plane, and
therefore the residue theorem yields∫ R

−R
LogPj (x)

1+ x2
dx +

∫
CR

LogPj (z)

1+ z2
dz = 2πi Res

(
LogPj (z)

1+ z2
, i

)

= π LogPj (i). (2)

Since ∣∣∣∣
∫
CR

LogPj (z)

1+ z2
dz

∣∣∣∣ ≤ πR (log(R + 1)+ π)
R2 − 1

,

letting R→∞ in (2) and then taking the real part of the resulting identity yields∫ ∞
−∞

log |Pj (x)|
1+ x2

dx = π log |Pj (i)|.
Finally, since

x6 + 1 = (x2 + 1
)(
x2 −√3x + 1

)(
x2 +√3x + 1

)
= (x2 + 1

)(
(x −√3/2)2 + 1/4

)(
(x +√3/2)2 + 1/4

)
= |P1(x)|2|P2(x)|2|P3(x)|2,

we have∫ ∞
−∞

log(1+ x6)

1+ x2
dx =

3∑
j=1

∫ ∞
−∞

2 log |Pj (x)|
1+ x2

dx

=
3∑
j=1

2π log |Pj (i)| = 2π
(

log 2+ log
√

3+ log
√

3)

= 2π log 6,

which completes the proof of (1).

Editorial comment. Several solvers noted that a similar problem appeared as problem 2107
in Math. Mag. 93 (2020), p. 389.
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Also solved by U. Abel & V. Kushnirevych (Germany), F. R. Ataev (Uzbekistan), M. Bataille (France),
A. Berkane (Algeria), N. Bhandari (Nepal), K. N. Boyadzhiev, P. Bracken, B. Bradie, V. Brunetti & J. Garo-
fali & J. D’Aurizio (Italy), H. Chen, B. E. Davis, G. Fera (Italy), M. L. Glasser, R. Gordon, H. Grandmon-
tagne (France), J. A. Grzesik, L. Han, D. Henderson, E. A. Herman, N. Hodges (UK), F. Holland (Ireland),
P. Khalili, O. Kouba (Syria), Z. Lin (China), O. P. Lossers (Netherlands), T. M. Mazzoli (Austria), M. Omar-
jee (France), V. Schindler (Germany), J. Singh (India), A. Stadler (Switzerland), S. M. Stewart (Australia),
R. Stong, R. Tauraso (Italy), D. Văcaru (Romania), T. Wiandt, M. R. Yegan (Iran), and the proposer.

CLASSICS

We solicit contributions of classics from readers, who should include the problem state-
ment, solution, and references with their submission. The solution to the classic problem
published in one issue will appear in the subsequent issue.

C7. Contributed by Alan D. Taylor, Union College, Schenectady, NY. Are the additive group
of real numbers and the additive group of complex numbers isomorphic?

Random Tetrahedra Inscribed in a Sphere

C6. Contributed by David Aldous, University of California, Berkeley, CA. Consider four
random points on the surface of a sphere, chosen uniformly and independently. Prove that
the probability that the tetrahedron determined by the points contains the center of the
sphere is 1/8.

Solution. Assume the sphere is in R
3 centered at the origin O. Fix the point P4 and then

choose P1, P2, P3 by randomly choosing three diameters,D1,D2, andD3, and then choos-
ing, randomly, an end of each. There are eight ways to choose the endpoints. The prob-
ability conclusion follows from the observation that, for almost all choices of diameters,
exactly one of the eight choices of endpoints yields a tetrahedron containing O.

To see this, assume that P1, P2, and P3 are chosen so that no three of the points
P1, P2, P3, P4 are linearly dependent as vectors in R

3. (The opposite case has probability
0.) The equation −P4 = xP1 + yP2 + zP3 has a unique solution in nonzero real numbers
x, y, and z. Write this asO = xP1 + yP2 + zP3 + P4. The eight choices of endpoints now
correspond to the eight choices of signs in the expression O = ±xP1 ± yP2 ± zP3 + P4.
The tetrahedron contains O if and only if there is a representation O = a1P1 + a2P2 +
a3P3 + a4P4 where ai > 0 for all i. This happens if and only if the coefficients±x,±y,±z
are all positive, and that occurs for exactly one of the eight equally likely choices.

Editorial comment. This was problem A6 on the 1992 Putnam Competition. For a geomet-
ric explanation of what is happening, see the 3blue1brown video “The hardest problem on
the hardest test” at youtube.com/watch?v=OkmNXy7er84. In J. G. Wendel (1962), A prob-
lem in geometric probability, Math. Scand. 11: 109–111, it is proved that for k points on
the sphere in R

n , the probability pn,k that the convex hull of the points contains the origin
is
∑k−1

j=n
(
k−1
j

)/
2k−1. A corollary is the surprising duality formula pm,m+n + pn,m+n = 1.

According to Wendel, the problem goes back to R. E. Machol and was first solved by L. J.
Savage.

Some further generalizations can be found in R. Howard and P. Sisson (1996), Capturing
the origin with random points: Generalizations of a Putnam problem, College Math. J.,
27(3): 186–192.
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∫

SOLUTIONS

Dominated Convergence of an Integral

12207 [2020, 753]. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Univer-
sity of Cluj-Napoca, Cluj-Napoca, Romania. Let f : [0, 1]→ R be a continuous function
satisfying

∫ 1
0 f (x) dx = 1. Evaluate

lim
n→∞

n

ln n

∫ 1

0
xnf (xn) ln(1− x) dx.

Solution by Roberto Tauraso, Università di Roma “Tor Vergata,” Rome, Italy. Substituting
t = xn, we get

n

ln n

∫ 1

0
xnf (xn) ln(1− x) dx = −

∫ 1

0
f (t)un(t) dt,

where

un(t) = − t
1/n ln(1− t1/n)

ln n
.

For fixed t ∈ (0, 1), letting y = 1/n and applying L’Hôpital’s rule twice yields

lim
n→∞un(t) = lim

y→0+
ln(1− ty)

ln y
= lim

y→0+
ty ln t/(ty − 1)

1/y
= lim

y→0+
y ln t

ty − 1
= lim

y→0+
ln t

ty ln t
= 1.

Moreover, by Bernoulli’s inequality, for n ≥ 3 we have

0 ≤ un(t) ≤ − ln(1− t1/n)
ln n

≤ − ln((1− t)/n)
ln n

= 1− ln(1− t)
ln n

≤ 1− ln(1− t).
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Since f is bounded and
∫ 1

0 (1 − ln(1 − t)) dt = 2 < ∞, the dominated convergence
theorem applies, and we conclude that

lim
n→∞

n

ln n

∫ 1

0
xnf (xn) ln(1− x) dx = − lim

n→∞

∫ 1

0
f (t)un(t) dt = −

∫ 1

0
f (t) dt = −1.

Also solved by U. Abel & V. Kushnirevych (Germany), K. F. Andersen (Canada), C. Antoni (Italy),
R. Boukharfane (Saudi Arabia), N. Caro (Brazil), R. Gordon, N. Grivaux (France), L. Han (USA) & X. Tang
(China), E. A. Herman, N. Hodges (UK), F. Holland (Ireland), E. J. Ionaşcu, Y. Jinhai, O. Kouba (Syria),
O. P. Lossers (Netherlands), M. Omarjee (France), A. Stadler (Switzerland), R. Stong, T. Wilde (UK), Y. Xiang
(China), and the proposer.

Three Wise Women

12208 [2020, 753]. Proposed by Gregory Galperin, Eastern Illinois University, Charleston,
IL, and Yury J. Ionin, Central Michigan University, Mount Pleasant, MI. (In memory of
John Horton Conway, 1937–2020.) Three wise women, Alice, Beth, and Cecily, sit around
a table. A card with a positive integer on it is attached to each woman’s forehead, so she
can see the other two numbers but not her own. The women know that one of the three
integers is equal to the sum of the other two. The same question, “Can you determine the
number on your forehead?”, is addressed to the wise women in the following order: Alice,
Beth, Cecily, Alice, Beth, Cecily, . . . . The answer is either “No” or “Yes, the number is

,” and the other wise women hear the answer. The questioning ends as soon as the posi-
tive answer is obtained. (Assume that the women are logical and honest, they all know this,
they all know that they all know this, and so on.)
(a) Prove that whichever numbers are assigned to the wise women, an affirmative answer
is obtained eventually.
(b) Suppose that Alice’s second answer is “Yes, the number is 50.” Determine the numbers
assigned to Beth and Cecily.
(c) Suppose the numbers assigned to Alice, Beth, and Cecily are 1492, 1776, and 284,
respectively. Determine who will give the affirmative answer and how many negative
answers she will give before that.
Solution by Mark D. Meyerson, US Naval Academy, Annapolis, MD. We describe each
assignment of numbers with a triple (a, b, c) giving Alice’s, Beth’s, and Cicely’s positive
numbers in that order. Note that one of the entries must be the sum of the other two.

We claim that for all triples, if a woman says “Yes” on some turn, then her number
must be the largest. Suppose not, and choose a counterexample (a, b, c) for which the
“Yes” answer occurs as early as possible. Suppose, for example, Alice says “Yes” on turn
n, but Beth has the largest number, so b = a + c. (Other cases are similar.) Alice, seeing
the numbers a + c and c, knows from the beginning that her number must be either a or
a + 2c. To say “Yes” on turn n, she must be able to rule out the triple (a + 2c, a + c, c)
for the first time on that turn, and this will happen only if either Cicely or Beth would have
said “Yes” on turn n− 1 or n− 2 on that triple. But this is ruled out by the minimality of
n, since neither Beth nor Cicely has the largest number in that triple.

Let f be the function that assigns to a triple the number of the turn on which the answer
“Yes” occurs. Part (a) asks us to show that f is defined for every triple. If the triple has the
form (2x, x, x), for some positive integer x, then Alice will say “Yes” on her first turn, so
f (2x, x, x) = 1. If it has the form (x, 2x, x), then Alice will think she could have either
x or 3x, so she will say “No,” and then Beth will say “Yes.” Therefore f (x, 2x, x) = 2.
Similarly, for triples of the form (x, x, 2x), Cicely will say “Yes” on her first turn, and
f (x, x, 2x) = 3.

Now consider triples in which the numbers are distinct. If some triple never yields an
affirmative answer, then let (a, b, c) be such a triple whose largest element is as small as
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possible. If c = a + b, then (a, b, |a − b|) has a smaller largest element, so f (a, b, |a − b|)
is defined. If f (a, b, |a − b|) = n, then on turn n+ 1 or n+ 2, depending on which of a
or b is larger, Cecily can eliminate the triple (a, b, |a − b|), since Alice or Beth would pre-
viously have said “Yes.” Cecily then answers “Yes” with a + b on her turn. The argument
is similar when a or b is the largest entry in (a, b, c). This completes the solution to (a).

(b) Using the reasoning from part (a), we can now determine, for every n, the triples
(a, b, c) for which f (a, b, c) = n. If f (a, b, c) = 1, then (a, b, c) must have the form
(2x, x, x), for some positive integer x. For f (a, b, c) = 2, we must have b = a + c. If
a = c then (a, b, c) has the form (x, 2x, x). If not, then f (a, |a − c|, c) must be 1, so
(a, |a − c|, c) has the form (2x, x, x), and therefore (a, b, c) = (2x, 3x, x). Thus, the
triples (a, b, c) such that f (a, b, c) = 2 are those of the form (x, 2x, x) or (2x, 3x, x). If
f (a, b, c) = 3, then c = a + b, and either (a, b, c) has the form (x, x, 2x) or f (a, b, |a −
b|) is either 1 or 2, in which case (a, b, c) has the form (2x, x, 3x), (x, 2x, 3x), or
(2x, 3x, 5x). A similar argument shows that the triples (a, b, c) with f (a, b, c) = 4
are those of the form (3x, 2x, x), (4x, 3x, x), (3x, x, 2x), (4x, x, 3x), (5x, 2x, 3x), or
(8x, 3x, 5x). Since 50 is not divisible by any number in {3, 4, 8}, the only way Alice will
say “Yes, my number is 50” on her second turn (n = 4) is for x to be 10 in the fifth triple,
so Beth has 20 and Cecily has 30.

(c) Working from (1492, 1776, 284) to determine the turn on which that
triple will be resolved, we iteratively replace the biggest number by the dif-
ference of the other two to undo the decision process. The successive triples
after (1492, 1776, 284) are these: (1492, 1208, 284), (924, 1208, 284), (924, 640, 284),
(356, 640, 284), (356, 72, 284), (212, 72, 284), (212, 72, 140), (68, 72, 140), (68, 72, 4),
(68, 64, 4), (60, 64, 4), (60, 56, 4), (52, 56, 4), (52, 48, 4), (44, 48, 4), (44, 40, 4),
(36, 40, 4), (36, 32, 4), (28, 32, 4), (28, 24, 4), (20, 24, 4), (20, 16, 4), (12, 16, 4),
(12, 8, 4), (4, 8, 4). The last triple would be resolved by Beth on turn 2, the one before it
by Alice on turn 4. Working backward, Yes comes on the following turns for these triples:

2, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 30, 31, 32, 34, 35, 37, 38.

Since 38 = 3 · 12+ 2, the affirmative answer is by Beth after giving 12 negative answers.
(Tracking only the two smaller entries in each triple, the decision process parallels the
Euclidean algorithm.)

Also solved by E. Curtin, J. Boswell & C. Curtis, N. Hodges (UK), E. J. Ionaşcu, G. Lavau (France),
O. P. Lossers (Netherlands), K. Schilling, E. Schmeichel, R. Stong, F. A. Velandia & J. F. Gonzalez (Colombia),
T. Wilde (UK), Eagle Problem Solvers, The Zurich Logic Coffee (Switzerland), and the proposer.

Asymptotics of a Recursively Defined Sequence

12210 [2020, 852]. Proposed by Paul Bracken, University of Texas Rio Grande Valley,
Edinburg, TX. Let x1 = 1, and let

xn+1 =
(√

xn + 1√
xn

)2

when n ≥ 1. For n ∈ N, let an = 2n+ (1/2) log n− xn. Show that the sequence a1, a2, . . .

converges.
Solution by Peter W. Lindstrom, Saint Anselm College, Manchester, NH. By the recurrence
for xn, we have xn+1 = xn + 2+ 1/xn > xn + 2, and therefore by induction xn ≥ 2n when
n > 1.

Let zk = xk − 2k. Since zk+1 − zk = xk+1 − xk − 2 = 1/xk , we have

zn = z1 +
n−1∑
k=1

(zk+1 − zk) = −1+
n−1∑
k=1

1

xk
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for n > 1. Thus

0 ≤ 1

2k
− 1

xk
= zk

2kxk
=
∑k−1

j=1 1/xj − 1

2kxk
≤
∑k−1

j=2 1/xj

(2k)2
≤ (1/2)

∑k−1
j=2 1/j

4k2
<

log k

8k2

for k > 2. Since
∑∞

k=1 log k/(8k2) is convergent, so is
∑∞

k=1(1/(2k)− 1/xk). Let

ζ =
∞∑
k=1

(
1

2k
− 1

xk

)
.

For n > 1,

an = 2n+ log n

2
− xn = −zn + log n

2
= 1−

n−1∑
k=1

1

xk
+ log n

2

= 1− 1

2

(
n∑
k=1

1

k
− log n

)
+

n−1∑
k=1

(
1

2k
− 1

xk

)
+ 1

2n
.

Thus limn→∞ an = 1− γ /2+ ζ , where γ is the Euler–Mascheroni constant.

Also solved by G. Aggarwal (India), K. F. Andersen (Canada), M. Bataille (France), R. Boukharfane (Saudi
Arabia), H. Chen, C. Chiser (Romania), Ó. Ciaurri (Spain), C. Degenkolb, A. Dixit (India) & S. Pathak (USA),
G. Fera (Italy), J. Freeman (Netherlands), R. Gordon, J.-P. Grivaux (France), L. Han, R. Hang, D. Hen-
derson, E. A. Herman, N. Hodges (UK), Y. Jinhai (China), O. Kouba (Syria), Z. Lin (China), J. H. Lind-
sey II, O. P. Lossers (Netherlands), S. Omar (Morocco), M. Omarjee (France), P. Palmieri & C. Antoni (Italy),
A. Pathak (India), R. K. Schwartz, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), D. Terr, D. B. Tyler,
E. I. Verriest, J. Vukmirović (Serbia), T. Wiandt, L. Wimmer (Germany), L. Zhou, and the proposer.

A Truncated Tetrahedron

12211 [2020, 852]. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania. On
each of the six edges of a tetrahedron, identify the point that is coplanar with the incenter
of the tetrahedron and with the two vertices incident to the opposite edge. Prove that the
volume of the octahedron formed by these six points is no more than half the volume of
the tetrahedron, and determine the conditions for equality.
Solution by Elton Bojaxhiu, Tirana, Albania, and Enkel Hysnelaj, Sydney, Australia. Let
A, B, C, and D be the vertices of the tetrahedron, and let w, x, y, and z denote the areas
of �ABC, �ABD, �ACD, and �BCD, respectively.

Let pAB be the plane passing through C, D, and the incenter of the tetrahedron, and let
PAB denote the intersection of pAB with AB. Let hA and hB be the altitudes from A and B,
respectively, to the line CD, and let dA and dB be the distances fromA and B, respectively,
to the plane pAB . Since pAB bisects the angle between the planes containing �ACD and
�BCD, we have

APAB

BPAB
= dA

dB
= hA

hB
= y

z
.

Similarly, if PAC , PAD , PBC , PBD , and PCD are the vertices of the octahedron that lie on
the other edges of the tetrahedron, then we have

APAC

CPAC
= x

z
,

APAD

DPAD
= w

z
,

BPBC

CPBC
= x

y
,

BPBD

DPBD
= w

y
, and

CPCD

DPCD
= w

x
.

The octahedron is constructed from the tetrahedron ABCD by removing the four
smaller tetrahedra APABPACPAD , BPABPBCPBD , CPACPBCPCD , and DPADPBDPCD . If
t is the volume of the tetrahedron ABCD and tA is the volume of APABPACPAD , then

tA

t
= APAD

AD
· APAC
AC

· APAB
AB

= w

w + z ·
x

x + z ·
y

y + z .
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Combining this with similar formulas for the other small tetrahedra, we see that it suffices
to show

wxy

(w + z)(x + z)(y + z) +
wxz

(w + y)(x + y)(z+ y)
+ wyz

(w + x)(y + x)(z+ x) +
xyz

(x + w)(y + w)(z+ w) ≥
1

2
. (∗)

Let a, b, c, and d denote the elementary symmetric polynomials in w, x, y, and z:

a = w + x + y + z,
b = wx + wy + wz+ xy + xz+ yz,
c = wxy + wxz+ wyz+ xyz,
d = wxyz.

By multiplying out and rearranging, we find that (∗) is equivalent to

abc − 5a2d ≥ c2.

From Newton’s inequalities for the elementary symmetric polynomials, we have
(a/4)(c/4) ≤ (b/6)2 and (b/6)d ≤ (c/4)2. Consequently,

b ≥ 3
√
ac

2
and d ≤ 3c2

8b
≤ 3c2

12
√
ac
= c3/2

4
√
a
.

Also, by Maclaurin’s inequality, a/4 ≥ 3
√
c/4, so a3/2 ≥ 4

√
c. Therefore

abc − 5a2d ≥ ac · 3
√
ac

2
− 5a2 · c

3/2

4
√
a
= a3/2c3/2

4
≥ 4
√
c · c3/2

4
= c2,

as required.
Equality holds if and only if w = x = y = z; that is, all faces of the tetrahedron have

the same area. It is well known that this is true precisely when the tetrahedron is isosceles,
which means that each pair of opposite edges have the same length.

Editorial comment. There are several other ways to establish (∗), as indicated by multiple
solvers. For instance, one could cite Muirhead’s inequality; alternatively, assume without
loss of generality that w ≤ x ≤ y ≤ z, write x = w + s, y = w + s + t , and z = w + s +
t + u for s, t, u ≥ 0, and note that expanding and rearranging (∗) yields f (w, s, t, u) ≥ 0,
where f is a polynomial with all nonnegative coefficients.

Also solved by C. Curtis, G. Fera (Italy), O. P. Lossers (Netherlands), A. Stadler (Switzerland), R. Stong,
J. Vukmirović, and the proposer.

An Application of Farkas’s Lemma

12212 [2020, 852]. Proposed by George Stoica, Saint John, NB, Canada. Let x1, . . . , xm
and y1, . . . , ym be two lists of m vectors in R

n, and suppose

〈xi − xj , yi − yj 〉 ≥ 0

for all i and j in {1, . . . , m}. Prove that there exists a vector y in R
n such that

〈xi, yi〉 ≥ 〈xi, y〉
for all i in {1, . . . , m}.

592 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 129



Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
The following is a variant of Farkas’s lemma (see for example Corollary 7.1(e) in
A. J. Schrijver, Theory of Linear and Integer Programming, John Wiley and Sons, Chich-
ester, UK, 1986).

If A is a p-by-q matrix, and b ∈ R
p, then exactly one of the following two assertions

is true:

(1) The system Au ≤ b has a solution u ∈ R
q .

(2) The system vT A = 0 has a solution v ∈ R
p with v ≥ 0 and vT b < 0.

Let X and Y be the n-by-m matrices that have the vectors xi and yi , respectively, for their
columns. Let A = XT Y ; in particular, the (i, j)-entry of A is 〈xi, yj 〉. Let b be the vector
consisting of the main diagonal entries of A. If some vector u satisfies Au ≤ b, then the
vector y defined by

y = Yu =
m∑
j=1

ujyj

has the desired property, because

〈xi, y〉 =
∑
j

uj 〈xi, yj 〉 =
∑
j

ujai,j = (Au)i ≤ bi = 〈xi, yi〉.

If there is no such vector u, then by the variant of Farkas’s lemma there exists v ∈ R
m

such that vT A = 0 with v ≥ 0 and vT b < 0. The condition 〈xi − xj , yi − yj 〉 ≥ 0 expands
to the condition aii − aij − aji + ajj ≥ 0 on the entries of A. Hence,

0 ≤
∑
i,j

vivj (aii − aij − aji + ajj )

=
∑
j

vj
∑
i

viaii −
∑
j

vj
∑
i

viaij −
∑
i

vi
∑
j

vj aji +
∑
i

vi
∑
j

vjajj

=
∑
j

vj v
T b −

∑
j

vj0−
∑
i

vi0+
∑
i

viv
T b = 2vT b

∑
i

vi < 0,

which is a contradiction.

Also solved by R. Stong and the proposer.

A Sum of Tails of the Zeta Function

12215 [2020, 853]. Proposed by Ovidiu Furdui and Alina Sı̂ntămărian, Technical Univer-
sity of Cluj-Napoca, Cluj-Napoca, Romania. Calculate

∞∑
n=1

((
1

n2
+ 1

(n+ 2)2
+ 1

(n+ 4)2
+ · · ·

)
− 1

2n

)
.

Solution by Gaurav Aggarwal, student, Guru Nanak Dev University, Amritsar, India. The
sum equals π2/16+ 1/2. Let

SN =
N∑
n=1

((
1

n2
+ 1

(n+ 2)2
+ 1

(n+ 4)2
+ · · ·

)
− 1

2n

)
.

June–July 2022] PROBLEMS AND SOLUTIONS 593



The term (
1

n2
+ 1

(n+ 2)2
+ 1

(n+ 4)2
+ · · ·

)
− 1

2n

clearly approaches 0 as n approaches infinity, since the part in parentheses is bounded by∑∞
k=n 1/k2, which itself goes to 0. Therefore, it suffices to prove

lim
N→∞ S2N = π2/16+ 1/2.

We compute

S2N =
N∑
i=1

i

(
1

(2i − 1)2
+ 1

(2i)2

)
+N

∞∑
i=2N+1

1

i2
−

2N∑
i=1

1

2i

=
N∑
i=1

(
i

(2i − 1)2
+ i

(2i)2
− 1

2(2i − 1)
− 1

2(2i)

)
+N

∞∑
i=2N+1

1

i2

=
N∑
i=1

1

2(2i − 1)2
+N

∞∑
i=2N+1

1

i2
.

Noting that ζ(2) = π2/6, where ζ is the Riemann zeta function, we have

lim
N→∞

N∑
i=1

1

2(2i − 1)2
= 1

2

(
1− 1

22

)
ζ(2) = π2

16
.

We use telescoping series again and the squeeze theorem to show that the remaining term
tends to 1/2:

N

2N + 1
= N

∞∑
i=2N+1

(
1

i
− 1

i + 1

)
= N

∞∑
i=2N+1

1

i(i + 1)
< N

∞∑
i=2N+1

1

i2

< N

∞∑
i=2N+1

1

(i − 1)i
= N

∞∑
i=2N+1

(
1

i − 1
− 1

i

)
= N

2N
= 1

2
.

Hence lim
N→∞ SN = lim

N→∞ S2N = π2/16+ 1/2.

Also solved by U. Abel & V. Kushnirevych (Germany), K. F. Andersen (Canada), M. Bataille (France),
A. Berkane (Algeria), R. Boukharfane (Saudi Arabia), K. N. Boyadzhiev, P. Bracken, B. Bradie, V. Brunetti
& A. Aurigemma & G. Bramanti & J. D’Aurizio & D. B. Malesani (Italy), B. S. Burdick, H. Chen, C. Curtis,
T. Dickens, G. Fera (Italy), M. L. Glasser, H. Grandmontagne (France), J.-P. Grivaux (France), J. A. Grzesik,
E. A. Herman, N. Hodges (UK), F. Holland (Ireland), Y. Jinhai (China), O. Kouba (Syria), K.-W. Lau (China),
G. Lavau (France), O. P. Lossers (Netherlands), R. Molinari, A. Natian, M. Omarjee (France), P. Palmieri
(Italy), K. Schilling, A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong, R. Tauraso (Italy), D. Terr,
D. B. Tyler, J. Vukmirović (Serbia), T. Wiandt, Y. Xiang (China), FAU Problem Solving Group, Missouri State
Problem Solving Group, and the proposer.

Rotating an Icosahedron

12216 [2020, 944]. Proposed by Zachary Franco, Houston, TX. A regular icosahedron with
volume 1 is rotated about an axis connecting opposite vertices. What is the volume of the
resulting solid?
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Solution by Albert Stadler, Herrliberg, Switzerland. It is known (see for example
en.wikipedia.org/wiki/Regular icosahedron) that if the edge length of a regular icosahe-
dron is a, then the radius of the circumscribed sphere is

R = a

4

√
10+ 2

√
5,

while the volume is

V = 5

12
(3+√5)a3.

We place the icosahedron in R
3 in such a way that its 12 vertices have the following

coordinates:

P1 : (0, 0, R),

P2–P6 :
R√

5

(
2 cos

(
2kπ

5

)
, 2 sin

(
2kπ

5

)
, 1

)
, k ∈ {0, . . . , 4},

P7–P11 :
R√

5

(
2 cos

(
(2k + 1)π

5

)
, 2 sin

(
(2k + 1)π

5

)
,−1

)
, k ∈ {0, . . . , 4},

P12 : (0, 0,−R).
The segment connecting the two points P2 and P7 is given by

s(t) = R√
5

[
t
(

2, 0, 1
)
+ (1− t)

(
2 cos

(π
5

)
, 2 sin

(π
5

)
,−1

)]
, 0 ≤ t ≤ 1.

This segment generates the boundary of the middle part of the solid formed when the
icosahedron is rotated about the z-axis. The other two parts are cones whose boundaries
are generated by rotating the segment connecting P1 and P2 and the segment connecting
P7 and P12.

The distance of s(t) from the z-axis equals

R√
5

∥∥∥t (2, 0, 0
)
+ (1− t)

(
2 cos

(π
5

)
, 2 sin

(π
5

)
, 0
)∥∥∥ = R

√
4− 2(3−√5)t (1− t)

5
.

Therefore, the volume of the rotated icosahedron equals

Vrot = 2

3
π

(
R − R√

5

)(
2R√

5

)2

+ πR2 2R√
5

∫ 1

0

(
4− 2(3−√5)t (1− t)

5

)
dt.

The first term in this formula is the volume of the two cones, and the second is the volume
of the middle part. Evaluating the integral and simplifying we obtain

Vrot = 2

15
(5+√5)πR3 =

√
2

240

(
5+√5

)5/2
πa3.

If the volume of the icosahedron is 1, then a is determined by

a3 = 12

5(3+√5)
.

Substituting this into our formula for Vrot gives a volume of

Vrot = π

5

√
5+√5

2
≈ 1.19513.
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Also solved by F. Chamizo (Spain), C. Curtis & J. Boswell, G. Fera (Italy), O. Geupel (Germany), J.-P. Grivaux
(France), N. Hodges (UK), M. J. Knight, G. Lavau (France), O. P. Lossers (Netherlands), M. D. Meyerson,
R. Stong, D. Terr, T. Wiandt, L. Zhou, Davis Problem Solving Group, Eagle Problem Solvers, and the proposer.

CLASSICS

We solicit contributions of classics from readers, who should include the problem state-
ment, solution, and references with their submission. The solution to the classic problem
published in one issue will appear in the subsequent issue.

C6. Due to R. E. Machol and L. J. Savage, contributed by David Aldous, University of
California, Berkeley, CA. Consider four random points on the surface of a sphere, chosen
uniformly and independently. Prove that the probability that the tetrahedron determined by
the points contains the center of the sphere is 1/8.

The Affine Hull of Four Points in Space

C5. Contributed by the editors. Given a set S in R
n, let L(S) be the set of all points lying

on some line determined by two points in S. For example, if S is the set of vertices of an
equilateral triangle in R

2, then L(S) is the union of the three lines that extend the sides of
the triangle, and L(L(S)) is all of R2. If S is the set of vertices of a regular tetrahedron,
then what is L(L(S))?

Solution. There are precisely four points that are not in L(L(S)). Inscribe the tetrahedron
in a cube with the vertices of the tetrahedron at four of the corners of the cube. The four
other corners of the cube are the missing points.

To see that these points are missed, observe that L(S) consists of all the points on the
extended edges of the tetrahedron. A line through points on adjacent extended edges lies
in the plane of a tetrahedral face and so misses the unused corners. Also, a line connecting
one such corner to a nearby extended edge of the tetrahedron lies in the plane of a face of
the cube and so misses any of the skew edges.

We now show that all other points in R
3 are included. Let P1 be the plane containing

the top face of the cube and let P2 be the plane containing the bottom face. Let l1 and l2
be the tetrahedral edges lying in P1 and P2, respectively. Notice that P1 is the unique plane
containing l1 that is parallel to l2, and similarly for P2. Suppose that Q is a point that does
not lie on either P1 or P2. Let P be the plane containing Q and l1. Since Q does not lie
on P1, P is not equal to P1, so it is not parallel to l2. Therefore it intersects l2, say at R.
The line QR lies in the plane P , which contains l1. Since Q does not lie on P2, QR is not
parallel to l1. ThereforeQR must intersect l1, say at T . But nowQ, R, and T are collinear,
so Q is in L(L(S)).

This argument shows that L(L(S)) contains all points that do not lie in either the plane
of the top of the cube or the plane of the bottom. Similarly, it contains all points that do
not lie on either the plane of the left side or the right side, and all points that do not lie on
either the plane of the front or back. This means that the only points that can be missed are
the corners of the cube.

Editorial comment. The problem was proposed by Victor Klee as Problem 1413 in
Math. Mag. 66 (1993) 56, with solution in Math. Mag. 67 (1993) 68–69. See also V. Klee
(1963), The generation of affine hulls, Acta Scient. Math. (Szeged) 24, 60–81.
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SOLUTIONS

Non-divisors of Translated Sums of Squares

12200 [2020, 660]. Proposed by Ibrahim Suat Evren, Denizli, Turkey. Prove that for every
positive integer m, there is a positive integer k such that k does not divide m+ x2 + y2 for
any positive integers x and y.

Solution by Peter W. Lindstrom, Saint Anselm College, Manchester, NH. We prove that
4m2 has the desired property. Let k = 4m2, and let c be a positive integer, so ck − m =
m(4cm− 1). Since 4cm− 1 ≡ −1 (mod 4), the prime factorization of 4cm− 1 must have
an odd power of a prime p with p ≡ −1 (mod 4). Also, sincem and 4cm− 1 are relatively
prime, p cannot divide m, so the prime factorization of ck −m has p to an odd power.

The “sum of two squares” theorem in number theory states that the prime factoriza-
tion of a number of the form x2 + y2 has even exponent for each prime congruent to −1
(mod 4). Hence no integers c, x, and y satisfy x2 + y2 +m = ck. This makes it impossible
for k to divide x2 + y2 +m for any integers x and y.

Also solved by R. Boukharfane (Saudi Arabia), R. Chapman (UK), C. Curtis & J. Boswell, S. M. Gagola Jr.,
N. Hodges (UK), E. J. Ionaşcu, Y. J. Ionin, J. S. Liu, O. P. Lossers (Netherlands), S. Miao (China), C. R. Prane-
sachar (India), A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), M. Tetiva (Romania),
K. Williams (Canada), L. Zhou, FAU Problem Solving Group, and the proposer.

A Large Vector Sum from Probability or Polygons

12202 [2020,752]. Proposed by Koopa Tak Lun Koo, Chinese STEAM Academy, Hong
Kong, China. Let V be a finite set of vectors in R

2 such that
∑

v∈V |v| = π . Prove that
there exists a subset U of V such that |∑v∈U v| ≥ 1.

Solution I by Oliver Geupel, Brühl, Germany. Choose at random a ray h starting from the
origin. For v ∈ V , let Xv be the length of the projection of v onto h if the angle between
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them is acute, and 0 otherwise. The expected value of Xv is

E[Xv] = 1

2π

∫ π/2

−π/2
|v| cosφ dφ = |v|

π
.

Therefore E[
∑

v∈V Xv] =
∑

v∈V E[Xv] = 1, so there is some ray h such that∑
v∈V Xv ≥ 1. We can now let U = {v ∈ V : the angle between h and v is acute}.

Solution II by Elton Bojaxhiu, Tirana, Albania, and Enkel Hysnelaj, Sydney, Australia. Let
V = {v1, . . . , vn}, and define vn+1 so that v1 + · · · + vn+1 = 0. For any vector v, let θ(v)
be the angle from the positive x-axis to v, with 0 ≤ θ(v) < 2π , and let v′1, . . . , v

′
n+1 be a

permutation of v1, . . . , vn+1 such that θ(v′1) ≤ · · · ≤ θ(v′n+1). The endpoints of the partial
sums

∑r
i=1 v

′
i form the vertices of a (possibly degenerate) convex polygon. Let p and d be

the perimeter and diameter of this polygon; it is known that p < πd. Thus

π =
∑
v∈V
|v| ≤

n+1∑
k=1

|vk| = p < πd,

so d > 1. The set U can be chosen to be a collection of vectors (not including vn+1) whose
sum gives a diameter of the polygon.

Editorial comment. Kevin Byrnes and Nicolás Caro pointed out that this problem appears
as exercise 14.9 in J. Michael Steele (2004), The Cauchy–Schwarz Master Class: An Intro-
duction to the Art of Mathematical Inequalities, Cambridge: Cambridge Univ. Press, and
also in W. W. Bledsoe (1970), An inequality about complex numbers, this Monthly 77,
pp. 180–182. If p and d are the perimeter and diameter of a convexm-gon, then the inequal-
ity p < πd follows from p ≤ 2m sin(π/(2m))d, proved in H. Sedrakyan and N. Sedrakyan
(2017), Geometric Inequalities: Methods of Proving, Cham, Switzerland: Springer, p. 379.
Radouan Boukharfane and Tom Wilde extended the problem to R

n, where the constant π
generalizes to 2

√
π 	((n+ 1)/2)/	(n/2).

Also solved by R. Boukharfane (Saudi Arabia), K. M. Byrnes, N. Caro (Brazil), R. Chapman (UK), R. Frank
(Germany), Y. J. Ionin, Y. Jeong (Korea), J. H. Lindsey II, O. P. Lossers (Netherlands), M. D. Meyerson,
K. Schilling, E. Schmeichel, R. Stong, R. Tauraso (Italy), T. Wilde (UK), and the proposer.

A Family of Sums with Logarithmic Powers

12203 [2020, 752]. Proposed by Roberto Tauraso, Università di Roma “Tor Vergata,”
Rome, Italy. Let m be a nonnegative integer, and let μ be the Möbius function on Z

+,
defined by setting μ(k) equal to (−1)r if k is the product of r distinct primes and equal to
0 if k has a square prime factor. Evaluate

lim
n→∞

1

lnm(n)

n∑
k=1

μ(k)

k
lnm+1

(n
k

)
.

Solution by Albert Stadler, Herrliberg, Switzerland. The limit is m+ 1.
For a fixed j ≥ 1, we show that there is a positive constant c such that

n∑
k=1

μ(k)

k
(−1)j lnj k = dj

dsj

1

ζ(s)

∣∣∣∣
s=1

+O
(
e−c
√

ln n
)
, (1)

where ζ(s) is the Riemann zeta function. We start with

dj

dsj

1

ζ(s)
−

n∑
k=1

μ(k)

ks
(−1)j lnj (k) =

∞∑
k=n+1

μ(k)

ks
(−1)j lnj (k) (2)
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for s > 1, which follows from Dirichlet’s expansion of 1/ζ(s). We now show that (2) holds
also in the case s = 1.

LetM(k) =∑k
i=1 μ(i). The functionM is known as the Mertens function. Partial sum-

mation yields
∞∑

k=n+1

μ(k)

ks
(−1)j lnj (k) =

∞∑
k=n+1

M(k)

ks
(−1)j lnj (k)−

∞∑
k=n

M(k)

(k + 1)s
(−1)j lnj (k + 1)

= M(n)

ns
(−1)j+1 lnj (n)+

∞∑
k=n
M(k)(−1)j

(
lnj (k)

ks
− lnj (k+1)

(k + 1)s

)
.

For s ≥ 1 and x > ej ,

d

dx

lnj (x)

xs
= lnj (x)

xs+1

(
j

ln x
− s

)
< 0.

Moreover,
d

dx

lnj (x)

xs
> −s lnj (x)

xs+1
,

with the latter increasing in x. Thus, by the mean value theorem,∣∣∣∣∣ ln
j (k)

ks
− lnj (k + 1)

(k + 1)s

∣∣∣∣∣ < s
lnj (k)

ks+1
≤ 2

lnj (k)

ks+1

for 1 ≤ s ≤ 2 and k > ej . Since M(k) = O
(
ke−2c

√
ln k
)

for a suitable positive con-

stant c (see, for instance, E. Landau (1974), Handbuch der Lehre von der Verteilung der
Primzahlen, v. 2, AMS Chelsea Publishing: Providence, p. 570) and since lnj+2(k) =
O
(
ec
√

ln k
)

, we have∣∣∣∣∣M(k)(−1)j
(

lnj (k)

ks
− lnj (k + 1)

(k + 1)s

)∣∣∣∣∣ = O
(
e−c
√

ln k 1

k ln2(k)

)
.

From this we deduce∣∣∣∣M(n)ns
(−1)j+1 lnj (n)+

∞∑
k=n
M(k)(−1)j

(
lnj (k)

ks
− lnj (k + 1)

(k + 1)s

) ∣∣∣∣
= O

(
e−c
√

ln n
)
+
∞∑
k=n

O

(
e−c
√

ln k 1

k ln2(k)

)

= O
(
e−c
√

ln n
)
+O

(
e−c
√

ln n 1

ln n

)
= O

(
e−c
√

ln n
)
.

The convergence of the series is uniform for s ∈ [1, 2], so both sides of (2) are continuous
on [1, 2]. Therefore, (2) is valid at s = 1, proving (1).

We conclude

1

lnm(n)

n∑
k=1

μ(k)

k
lnm+1

(n
k

)
= 1

lnm(n)

n∑
k=1

μ(k)

k
(ln n− ln k)m+1

= 1

lnm(n)

m+1∑
j=0

(
m+ 1

j

)
lnm+1−j (n)

n∑
k=1

μ(k)

k
(−1)j lnj (k)

= 1

lnm(n)

m+1∑
j=0

(
m+ 1

j

)
lnm+1−j (n)

(
dj

dsj

1

ζ(s)

∣∣∣∣
s=1

+O
(
e−c
√

ln n
))
.
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As n→∞, all error terms have limit 0. Since ζ(s) is meromorphic with a simple pole
of residue 1 at s = 1, the function 1/ζ(s) is holomorphic at s = 1, and its Taylor series
expansion begins (s − 1) + · · · . The main term vanishes for j = 0 and has limit 0 for
j > 1 as n→∞. Therefore,

lim
n→∞

1

lnm(n)

n∑
k=1

μ(k)

k
lnm+1

(n
k

)
=
(
m+ 1

1

)
d

ds

1

ζ(s)

∣∣∣∣
s=1

= m+ 1.

Editorial comment. The proof of the bound on the Mertens function is similar to one for
the prime number theorem. Some solvers used other bounds, shortening their solutions.
Bounds on sums of the form

∑n
k=1 μ(k) lnq(k)/k (Landau, pp. 568–570, 594–595) allow

one to begin with the binomial expansion of ln n− ln k. For m > 0, the solution follows
immediately from

n∑
k=1

μ(k)

k
lnm+1

(n
k

)
= (m+ 1) lnm(n)+

m−1∑
k=1

ck(m) lnk(n)+O(1),

which appears on p. 489 of H. N. Shapiro (1950), On a theorem of Selberg and generaliza-
tions, Ann. Math., 485–497.

Also solved by W. Janous (Austria), A. Stenger, R. Stong, and the proposer.

The Sum of Cosines in a Convex Quadrilateral

12204 [2020, 752]. Proposed by Florentin Visescu, Bucharest, Romania. Prove that the
absolute value of the sum of the cosines of the four angles in a convex quadrilateral is less
than 1/2.

Solution by O. P. Lossers, Eindhoven University of Technology, Eindhoven, Netherlands.
Denote the angles by αi for i ∈ {1, 2, 3, 4}, with 0 < α1 ≤ α2 ≤ α3 ≤ α4 < π . We have∑
αi = 2π . Let a = α1 + α2, and note that a ≤ π and α3 + α4 = 2π − a. If a = π , then

all four angles are π/2, so
∑

cos(αi) = 0, so
∑
αi = 0 and the required inequality holds.

We may therefore assume a < π .
For the sum of the first two cosines,

cosα1 + cosα2 = 2 cos
(a

2

)
cos

(
α2 − α1

2

)
. (1)

Since 0 < α1 ≤ α2, we have

0 ≤ α2 − α1

2
<
α1 + α2

2
= a

2
<
π

2
,

and therefore

cos
(a

2

)
< cos

(
α2 − α1

2

)
≤ 1.

Multiplying by 2 cos(a/2), which is positive, we conclude

2 cos2
(a

2

)
< 2 cos

(a
2

)
cos

(
α2 − α1

2

)
≤ 2 cos

(a
2

)
,

which by (1) implies

2 cos2
(a

2

)
< cosα1 + cosα2 ≤ 2 cos

(a
2

)
. (2)
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Since 0 < π − α4 ≤ π − α3 < π and

(π − α4)+ (π − α3) = 2π − (α3 + α4) = a,
we can apply the same reasoning to π − α4 and π − α3 to obtain

2 cos2
(a

2

)
< cos(π − α4)+ cos(π − α3) ≤ 2 cos

(a
2

)
,

or equivalently

−2 cos
(a

2

)
≤ cosα3 + cosα4 < −2 cos2

(a
2

)
. (3)

Adding (2) and (3), and putting x = cos(a/2), we get

2x2 − 2x <
∑

αi < 2x − 2x2.

Since the quadratic 2x − 2x2 has maximum value 1/2 at x = 1/2, this proves the inequality.

Editorial comment. The problem statement assumes that all angles are strictly less than π .
If one allows an angle to equal π , then one can achieve a cosine sum of 1/2 by beginning
with an equilateral triangle and adding a fourth vertex along one side, obtaining a four-
sided figure with angles π/3, π/3, π/3, and π . One can obtain quadrilaterals with all angles
less than π and cosine sum arbitrarily close to 1/2 by using angles π/3 + ε, π/3 + ε,
π/3+ ε, and π − 3ε.

Nicolás Caro solved the more general problem of bounding
∑n

i=1 cos xi , given that
0 < xi < π and

∑n
i=1 xi = jπ ; the stated problem is the case n = 4, j = 2.

Also solved by E. Bojazhiu (Albania) & E. Hysnelaj (Australia), R. Boukharfane (Saudi Arabia), N. Caro
(Brazil), R. Chapman (UK), C. Chiser (Romania), G. Fera & G. Tescaro (Italy), L. Giugiuc (Romania), J.-
P. Grivaux (France), N. Hodges (UK), E. J. Ionaşcu, Y. J. Ionin, W. Janous (Austria), A. B. Kasturiarachi,
O. Kouba (Syria), K.-W. Lau (China), Z. Lin (China), J. H. Lindsey II, K. Park (Korea), C. Schacht, E. Schme-
ichel, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), E. I. Verriest, L. Zhou, and the proposer.

Minimizing a Ratio of Integrals

12205 [2020, 752]. Proposed by Christian Chiser, Elena Cuza College, Craiova, Romania.
Find the minimum value of ∫ 1

0 x
2(f ′(x))2 dx∫ 1

0 x
2(f (x))2 dx

over all nonzero continuously differentiable functions f : [0, 1]→ R with f (1) = 0.

Solution by Jinhai Yan, Fudan University, Shanghai, China. We show that the minimum
value is π2.

Let

g(x) =
{

sin(πx)/x, if x �= 0,

π, if x = 0.

Note that g ∈ C∞[0, 1], g(1) = 0, and g satisfies the Euler–Lagrange equation

d

dx

(
x2g′(x)

) = −π2x2g(x).

Therefore, for any f as in the problem statement,

d

dx

(
x2g′(x)
g(x)

f (x)2
)
= x2

(
2g′(x)
g(x)

f (x)f ′(x)− π2f (x)2 − g
′(x)2

g(x)2
f (x)2

)

= x2 (f ′(x)2 − π2f (x)2
)− x2

(
f ′(x)− g

′(x)
g(x)

f (x)

)2

.
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Note that the singularity at x = 1 on both sides of this equation is removable, because

lim
x→1−

f (x)

g(x)
= lim

x→1−
f ′(x)
g′(x)

= −f
′(1)
π
∈ R.

It follows that∫ 1

0

(
x2
(
f ′(x)2 − π2f (x)2

)− x2

(
f ′(x)− g

′(x)
g(x)

f (x)

)2
)
dx = x2g′(x)

g(x)
f (x)2

∣∣∣∣
1

0

= 0.

Thus∫ 1

0
x2f ′(x)2 dx − π2

∫ 1

0
x2f (x)2 dx =

∫ 1

0
x2

(
f ′(x)− g

′(x)f (x)
g(x)

)2

dx ≥ 0,

with equality if f = g, and the desired conclusion follows.

Also solved by K. F. Andersen (Canada), R. Boukharfane (Saudi Arabia), P. Bracken, H. Chen, T. Dick-
ens, L. Han, O. Kouba (Syria), P. W. Lindstrom, A. Natian, M. Omarjee (France), A. Stadler (Switzerland),
R. Stong, R. Tauraso (Italy), E. I. Verriest, and the proposer.

A Skew-Harmonic Formula for Apéry’s Constant

12206 [2020, 752]. Proposed by Seán Stewart, Bomaderry, Australia. Prove

∞∑
n=1

H 2n

n2
= 3

4
ζ(3),

whereHn is the nth skew-harmonic number
∑n

k=1(−1)k+1/k and ζ(3) is Apéry’s constant∑∞
k=1 1/k3.

Solution by Michel Bataille, Rouen, France. With H0 = 0 and Hn =∑n
k=1 1/k,

H 2m = H2m − 2
m∑
k=1

1

2k
= H2m −Hm =

m∑
k=1

1

m+ k . (1)

Also note that

H2m−1 −Hm−1 −
m+N∑
j=m

(
1

j
− 1

j +m
)
= H2m+N −Hm+N =

2m+N∑
j=m+N+1

1

j
.

As N tends to∞, the right side tends to 0, so

∞∑
j=m

(
1

j
− 1

j +m
)
= H2m−1 −Hm−1. (2)

Let S =∑∞n=1H 2n/n
2. By (1),

S =
∞∑
n=1

1

n2

n∑
k=1

1

n+ k =
∞∑
n=1

1

n

n∑
k=1

1

k

(
1

n
− 1

n+ k
)

=
∞∑
n=1

Hn

n2
−
∞∑
n=1

n∑
k=1

1

nk(n+ k) . (3)
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We consider the two terms in this expression separately. First

∞∑
n=1

Hn

n2
=
∞∑
n=1

(
Hn−1

n2
+ 1

n3

)
=
∞∑
n=1

Hn−1

n2
+ ζ(3) = 2ζ(3)

by Euler’s formula
∑∞

n=1Hn−1/n
2 = ζ(3).

To evaluate the double sum in the second term of (3), interchange the order of sum-
mation, use (2), and then manipulate the harmonic terms and use the first part of (1) to
obtain

∞∑
n=1

n∑
k=1

1

nk(n+ k) =
∞∑
k=1

1

k2

∞∑
n=k

(
1

n
− 1

n+ k
)
=
∞∑
k=1

H2k−1 −Hk−1

k2

=
∞∑
k=1

H2k −Hk + 1/(2k)

k2
=
∞∑
k=1

H 2k

k2
+ ζ(3)

2
= S + ζ(3)

2
.

Thus

S = 2ζ(3)−
(
S + ζ(3)

2

)
,

and the result follows.

Editorial comment. A simple proof of Euler’s formula for ζ(3) appears in this Monthly
127 (2020), 855. That issue contains the solutions to Problem 12091 and Problem 12102,
both of which also link ζ(3) to infinite series involving harmonic sums.

Many solvers expressed harmonic numbers as integrals from 0 to 1 of the formula for
the sum of a finite geometric series and then performed interchanges. This led to various
integrals with logarithmic integrands and/or dilogarithms. Two known definite integrals
that played a role in many solutions were∫ 1

1

log2(1− x)
x

dx = 2ζ(3)

and ∫ 1

0

log(1− x) log(1+ x)
x

dx = −5

8
ζ(3).

Also solved by A. Berkane (Algeria), N. Bhandari (Nepal), R. Boukharfane (Saudi Arabia), K. N. Boyadzhiev,
P. Bracken, B. Bradie, N. Caro (Brazil), A. C. Castrillón (Colombia), H. Chen, N. S. Dasireddy (India), G. Fera
(Italy), M. L. Glasser, R. Gordon, H. Grandmontagne (France), L. Han, E. A. Herman, N. Hodges (UK),
F. Holland (Ireland), W. Janous (Austria), O. Kouba (Syria), K.-W. Lau (China), O. P. Lossers (Netherlands),
I. Mezö (China), R. Molinari, V. H. Moll & T. Amdeberhan, K. Nelson, M. Omarjee (France), S. Sharma
(India), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), J. Wangshinghin (Canada), T. Wiandt, Y. Xiang
(China), and the proposer.

A Fibonacci Inequality

12213 [2020, 853]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let Fn be the nth
Fibonacci number, defined by F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. Prove

n∑
k=1

√
Fk−1Fk+2 ≤

√
Fn+1Fn+4 −

√
5.
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Solution by Rory Molinari, Beverly Hills, MI. More generally, consider a sequence 〈a〉
of nonnegative real numbers such that an = an−1 + an−2 for n ≥ 2. For n ≥ 2 and d a
nonnegative integer, we prove

n−1∑
k=1

√
ak−1ak+d−1 ≤ √anan+d −√a1ad+1.

Setting an = Fn+1 and d = 3 proves the desired inequality.
The identity

∑m
k=j ak = am+2 − aj+1 is easily shown by induction on m. By the

Cauchy–Schwarz inequality,

n−1∑
k=1

√
ak−1ak+d−1 ≤

(
n−1∑
k=1

ak−1

)1/2 (
n−1∑
k=1

ak+d−1

)1/2

= √(an − a1)(an+d − ad+1).

By the AM-GM inequality,

(an − a1)(an+d − ad+1) = anan+d + a1ad+1 − a1an+d − ad+1an

≤ anan+d + a1ad+1 − 2
√
a1an+dad+1an

= (√anan+d −√a1ad+1
)2
.

Editorial comment. The majority of solvers proved the inequality by induction, showing√
Fn+1Fn+4 +

√
FnFn+3 ≤

√
Fn+2Fn+5

by squaring both sides and applying the AM-GM inequality. Doyle Henderson used this
approach to generalize to a sequence of real numbers satisfying an ≥ an−1 + an−2 for n ≥ 2
and
√
a0a3 ≤ √a2a5 −√a5, obtaining

n∑
k=1

√
ak−1ak+2 ≤ √an+1an+4 −√a5.

Also solved by K. F. Andersen (Canada), M. Bataille (France), B. D. Beasley, R. Boukharfane (Saudi Ara-
bia), P. Bracken, B. Bradie, Ó. Ciaurri (Spain), C. Curtis, A. Dixit (India) & S. Pathak (USA), G. Fera (Italy),
D. Fleischman, O. Geupel (Germany), R. Gordon, D. Henderson, N. Hodges (UK), Y. J. Ionin, W. Janous (Aus-
tria), M. Kaplan & M. Goldenberg, K. T. L. Koo (China), O. Kouba (Syria), W.-K. Lai, P. Lalonde (Canada),
K.-W. Lau (China), O. P. Lossers (Netherlands), R. Nandan, M. Omarjee (France), J. Pak (Canada), A. Pathak
(India), Á. Plaza (Spain), E. Schmeichel, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), D. B. Tyler,
J. Van hamme (Belgium), M. Vowe (Switzerland), J. Vukmirović (Serbia), T. Wiandt, L. Wimmer (Germany),
X. Ye (China), A. Zaidan, L. Zhou, FAU Problem Solving Group, and the proposer.

CLASSICS

We solicit contributions of classics from readers, who should include the problem state-
ment, solution, and references with their submission. The solution to the classic problem
published in one issue will appear in the subsequent issue.

C5. Due to Victor Klee, contributed by the editors. Given a set S in R
n, let L(S) be the set

of all points lying on some line determined by two points in S. For example, if S is the set
of vertices of an equilateral triangle in R

2, then L(S) is the union of the three lines that
extend the sides of the triangle, and L(L(S)) is all of R2. If S is the set of vertices of a
regular tetrahedron, then what is L(L(S))?
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Returning the Icing to the Top

C4. From the 1968 Moscow Mathematical Olympiad, contributed by the editors. A round
cake has icing on the top but not the bottom. Cut a piece of the cake in the usual shape of
a sector with vertex angle one radian and with vertex at the center of the cake. Remove the
piece, turn it upside down, and replace it in the cake to restore roundness. Next, move one
radian around the cake, cut another piece with the same vertex angle adjacent to the first,
remove it, turn it over, and replace it. Keep doing this, moving around the cake one radian
at a time, inverting each piece. Show that, after a finite number of steps, all the icing will
again be on the top.

Solution. We solve the general problem in which the central angle of every slice is θ radi-
ans. If 2π/θ is an integer n, then clearly n flips put all the icing on the bottom, and n more
flips return it all to the top. Otherwise, let n = �2π/θ�. We show that the icing returns
to the top for the first time after 2n(n+ 1) steps. In the case θ = 1, we have n = 6, and
therefore it takes 84 steps for the icing to return to the top.

Let α = 2π − nθ . Clearly 0 < α < θ . Let β = θ − α, so that α + β = θ . Cut n
consecutive pieces with angle θ (these are the first n pieces to be flipped), leaving a piece
with angle α. Cut each of the n pieces into two
pieces of angle α and β, as in the figure.
Reading counterclockwise, you now have
pieces of width α, β, α, β, . . . , α, with the last
α adjacent to the first. Let A1, . . . , An+1 be
the pieces with angle α, and let B1, . . . , Bn be
the pieces with angle β, with Bi between Ai
and Ai+1, as shown here. You may now dis-
card the knife; no further cutting is necessary.

Imagine that the cake is on a rotating cake
plate and we rotate the cake plate clockwise
through an angle of θ after each piece is
flipped. In the first step, we flip the piece con-
sisting of A1 and B1 and then rotate the plate
clockwise. Piece A1 is now upside down in the original location of piece An+1, and B1

is now upside down in the original location of piece Bn. All other pieces simply rotate
clockwise without being flipped, so for 2 ≤ i ≤ n+ 1, Ai moves to the original location
of Ai−1, and for 2 ≤ i ≤ n, Bi moves to the original location of Bi−1. At the end of this
operation the cuts are in the same positions as they were in originally; the net effect of one
step is simply to permute the A and B pieces cyclically, with one of each being flipped.

It is now clear that after n steps the B pieces have completed a full rotation, with each
piece being flipped once, so they are back in their original positions upside down, and after
another n steps they are in their original positions right side up again. Similarly, it takes
2(n+ 1) steps for all the A pieces to return to right side up, in their original positions. It
follows that the number of steps needed to return all icing to the top is the least common
multiple of 2n and 2(n+ 1), which is 2n(n+ 1). Indeed, after this many steps, not only is
the icing on top, but the cake is fully restored to its original configuration.

Editorial comment. This problem appeared, in a somewhat different form, as problem
31.2.8.3 in the 1968 Moscow Mathematical Olympiad. The version given here appears in
P. Winkler (2007), Mathematical Mind-Benders, A K Peters/CRC Press, Wellesley, MA.

May 2022] PROBLEMS AND SOLUTIONS 495



SOLUTIONS

An Euler–Mascheroni Sum

12194 [2020, 564]. Proposed by Marian Tetiva, Gheorghe Roşca Codreanu National Col-
lege, Bı̂rlad, Romania. Let γn = − ln n +∑n

k=1 1/k, and let γ be the Euler–Mascheroni
constant limn→∞ γn. Evaluate

∞∑
n=1

(
γn − γ − 1

2n

)
.

Solution by Abdelhak Berkane, Université Frères Mentouri, Constantine, Algeria. We show
that the answer is

(
1 + γ − ln(2π)

)
/2. Let Hn denote the nth harmonic number, so that

γn = − ln n+Hn, and let Sn denote the nth partial sum of the series in the problem. Apply-
ing the formula

∑n
k=1Hk = (n+ 1)Hn − n (which is easily verified by induction), we find

that

Sn =
n∑
k=1

(
Hk − ln k − γ − 1

2k

)
=
(
n+ 1

2

)
Hn − n− ln(n!)− nγ.

Using the known asymptotic formulas

Hn = ln n+ γ + 1

2n
+O

(
1

n2

)
and

ln(n!) = n ln n− n+ ln(2πn)

2
+O

(
1

n

)
,

we obtain

Sn =
(
n+ 1

2

)(
ln n+ γ + 1

2n
+O

(
1

n2

))
− n−

(
n ln n− n+ ln(2πn)

2
+O

(
1

n

))
− nγ

= 1+ γ − ln(2π)

2
+O

(
1

n

)
.

Let n→∞ to get the desired sum.
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Also solved by U. Abel & V. Kushnirevych (Germany), T. Akhmetov (Russia), K. F. Andersen (Canada),
M. Bataille (France), N. Bhandari (Nepal), R. Boukharfane (Saudi Arabia), P. Bracken, B. Bradie, N. Caro
(Brazil), R. Chapman (UK), H. Chen, C. Chiser (Romania), B. E. Davis, A. Dixit (India) & S. Pathak (US),
S. P. I. Evangelou (Greece), G. Fera (Italy), D. Fleischman, S. Gayen (India), O. Geupel (Germany), J. A. Grze-
sik, E. A. Herman, N. Hodges (UK), W. Janous (Austria), M. Kaplan & M. Goldenberg, K. T. L. Koo (China),
O. Kouba (Syria), S. S. Kumar, K.-W. Lau (China), G. Lavau (France), O. P. Lossers (Netherlands), I. Mezo
(Canada), R. Molinari, A. Natian, K. Nelson, M. Omarjee (France), N. Osipov (Russia), A. Pathak, Á. Plaza
(Spain), K. Sarma (India), K. Schilling, S. Sharma (India), S. Singhania (India), A. Stadler (Switzerland),
S. M. Stewart (Australia), R. Stong, R. Tauraso (Italy), M. Vowe (Switzerland), T. Wiandt, H. Widmer (Switzer-
land), Y. Xiang (China), L. Zhou, and the proposer.

A Mean Inequality

12196 [2020, 659]. Proposed by Vasile Mircea Popa, Lucian Blaga University, Sibiu,
Romania. Determine which positive integers n have the following property: If a1, . . . , an
are n real numbers greater than or equal to 1, and A, G, and H are their arithmetic mean,
geometric mean, and harmonic mean, respectively, then

G−H ≥ 1

G
− 1

A
.

Composite solution by Radouan Boukharfane, Extreme Computing Research Center,
Thuwal, Saudi Arabia, Nigel Hodges, Cheltenham, UK, the proposer, and the editors.
The property holds for n ≤ 5 but fails for n ≥ 6.

If a1 = a2 = · · · = an−1 = 1 and an = n+ 1, then the inequality becomes

n
√
n+ 1− n+ 1

n
≥ 1

n
√
n+ 1

− 1

2
. (1)

We claim that this inequality is false for n ≥ 6. To see why, we first note that (5/4)12 > 13,
and therefore 12

√
13 < 5/4. It is easily verified that the sequence { n√n+ 1} is decreasing,

so n
√
n+ 1 < 5/4 for n ≥ 12, and therefore

n
√
n+ 1− n+ 1

n
<

5

4
− 1 = 1

4
and

1
n
√
n+ 1

− 1

2
>

4

5
− 1

2
= 3

10
>

1

4
.

Thus, (1) is false for n ≥ 12. One can check numerically that it is also false for n =
6, . . . , 11, so the property in the problem does not hold for n ≥ 6.

To prove that it holds for n ≤ 5, let

F(a1, . . . , an) = G− 1

G
−H + 1

A
.

Suppose C > 1. We show that if n≤ 5 and 1≤ a1≤ · · · ≤ an≤C, then F(a1, . . . , an)≥ 0.
Since C is arbitrary, this will establish that the property holds for n ≤ 5.

Since we have restricted our attention to a compact domain, F achieves a minimum
value on that domain. We need the following fact about where the minimum occurs.

Lemma. If the minimum value of F(a1, . . . , an) for 1 ≤ a1 ≤ · · · ≤ an ≤ C is negative,
and F achieves that minimum value at a sequence (a1, . . . , an), then aj = 1 whenever
1 ≤ j ≤ n/2+ 1.

Proof. Suppose that the minimum value is negative. Note that if a1 = · · · = an, then
F(a1, . . . , an) = 0, so the minimum must occur at a nonconstant sequence. We proceed
now by induction on j .
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For the base case, suppose that F achieves its minimum at a sequence (a1, . . . , an)

with 1 < a1 ≤ · · · ≤ an ≤ C. Since the sequence is not constant, H < G < A. With bi =
ai/a1, we have

F(b1, . . . , bn) = 1

a1
(G−H)− a1

(
1

G
− 1

A

)
< G−H −

(
1

G
− 1

A

)
= F(a1, . . . , an),

contradicting the assumption that F achieves its minimum at (a1, . . . , an). This establishes
the base case.

For the induction step, assume that j ≥ 1, the claim holds for 1, . . . , j , and j + 1 ≤
n/2 + 1; that is, j ≤ n/2. Suppose F achieves its minimum at a sequence (a1, . . . , an)

with aj+1 > 1. By the induction hypothesis, a1 = · · · = aj = 1. We have A = S/n and
H = n/T , where

S = a1 + · · · + an = j + aj+1 + · · · + an, T = 1

a1
+ · · · + 1

an
= j + 1

aj+1
+ · · · + 1

an
.

Let bi = ai for i /∈ {j, j + 1}, and let bj = bj+1 = √aj+1. The sequence (b1, . . . , bn)

has the same geometric mean as (a1, . . . , an), and its arithmetic and harmonic means are
S ′/n and n/T ′, respectively, where

S ′ = S − 1− aj+1 + 2
√
aj+1 = S − (√aj+1 − 1)2,

T ′ = T − 1− 1

aj+1
+ 2√

aj+1
= T − (

√
aj+1 − 1)2

aj+1
.

Therefore

F(a1, . . . , an)− F(b1, . . . , bn) =
(
G− 1

G
− n

T
+ n
S

)
−
(
G− 1

G
− n

T ′
+ n

S ′

)

=
(

n

T − (√aj+1 − 1)2/aj+1
− n

T

)
−
(

n

S − (√aj+1 − 1)2
− n
S

)

= n(√aj+1 − 1)2
(

1

T (T aj+1 − (√aj+1 − 1)2)
− 1

S(S − (√aj+1 − 1)2)

)
. (2)

Clearly, T ≤ S, and using the fact that j ≤ n/2 we obtain

T aj+1 =
(
j + 1

aj+1
+ · · · + 1

an

)
aj+1 ≤

(
j + n− j

aj+1

)
aj+1 = jaj+1 + n− j

= n+ j (aj+1 − 1) ≤ n+ (n− j)(aj+1 − 1) = j + (n− j)aj+1

≤ j + aj+1 + · · · + an = S.
Combining this with (2), we conclude F(a1, . . . , an)− F(b1, . . . , bn) ≥ 0, which implies
F(b1, . . . , bn) ≤ F(a1, . . . , an) and hence F achieves its minimum at (b1, . . . , bn). But
bj = √aj+1 > 1, so this contradicts the induction hypothesis. �

We are now ready to complete the solution. The case n = 1 is trivial. If n = 2 and the
minimum of F is negative, then by the lemma this minimum must occur at the sequence
(1, 1). But F(1, 1) = 0, so this is impossible.

If n = 3 and the minimum of F is negative, then by the lemma the minimum occurs at
some sequence (1, 1, a3). Writing a3 = (x + 1)3 for some x ≥ 0, we have

F(1, 1, (x + 1)3) < 0.
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On the other hand,

F(1, 1, (x + 1)3) = (x + 1)− 1

x + 1
− 3

2+ 1/(x + 1)3
+ 3

2+ (x + 1)3

= x3(2+ x)(6+ 12x + 15x2 + 9x3 + 2x4)

(1+ x)(3+ 3x + 3x2 + x3)(3+ 6x + 6x2 + 2x3)
≥ 0,

so this is a contradiction.
Similarly, if n = 4 and the minimum of F is negative, then by the lemma we have

F(1, 1, 1, (x + 1)4) < 0 for some x ≥ 0, and we get a contradiction from the calculation

F(1, 1, 1,(x + 1)4)

= x3(2+ x)(8+ 24x + 60x2 + 80x3 + 56x4 + 20x5 + 3x6)

(1+ x)(4+ 4x + 6x2 + 4x3 + x4)(4+ 12x + 18x2 + 12x3 + 3x4)
≥ 0.

Finally, if n = 5 and the minimum of F is negative, then by the lemma we have
F(1, 1, 1, (x + 1)5, (x + y + 1)5) < 0 for some x, y ≥ 0. A calculation similar to those in
the previous cases shows that F(1, 1, 1, (x + 1)5, (x + y + 1)5) is a rational function with
all coefficients positive, which is a contradiction.

Editorial comment. When n = 6, F(1, 1, 1, 1, 1, (x + 1)6) is a rational function whose
numerator is

x3(2+ x)(−30− 150x − 111x2 + 456x3 + 1328x4

+ 1758x5 + 1431x6 + 764x7 + 264x8 + 54x9 + 5x10),

which is negative for x positive and close to 0.

No other complete solutions were received.

A Pell-type Equation in Disguise

12197 [2020, 659]. Proposed by Nicolai Osipov, Siberian Federal University, Krasnoyarsk,
Russia. Prove that the equation

(a2 + 1)(b2 − 1) = c2 + 3333

has no solutions in integers a, b, and c.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. We may
clearly assume a, b, c ≥ 0. If a = 0, then b2 − c2 = 3334, which has no solutions since
3334 ≡ 2 (mod 4). If b ∈ {0, 1}, then the left side is nonpositive and there are no solutions.
Thus we may assume a > 0 and b > 1. Hence neither a2 + 1 nor b2 − 1 is a perfect square.
We rewrite the equation as c2 − da2 = b2 − 3334, where d = b2 − 1, in order to apply
known results about Pell-type equations.

In the Pell-type equation x2 − dy2 = n, where d > 0 and d is not a perfect square,
with any solution (x, y) we can associate an algebraic number α by setting α = x + y√d .
Since α = x +√x2 − n, and x +√x2 − n increases with x for x2 > n, minimizing x is
equivalent to minimizing α.

With a solution (u, v) in positive integers to u2 − dv2 = 1 we associate another alge-
braic number β by setting β = u+ v√d. Note that β−1 = u− v√d . We compute

αβ−1 = (x + y√d)(u− v√d) = (xu− dyv)+ (yu− xv)√d.
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Setting x ′ = xu− dyv and y ′ = yu− xv gives another solution to x2 − dy2 = n. Sup-
pose that (x, y) is the solution in nonnegative integers that minimizes x and hence also
minimizes α. Since β > 1, we have αβ−1 < α, so x ′ or y ′ must be negative. They cannot
both be negative, because αβ−1 > 0. Since (x ′)2 − d(y ′)2 = n, we have

nβα−1 = (x ′ + y ′√d)(x ′ − y ′√d)βα−1 = αβ−1(x ′ − y ′√d)βα−1 = x ′ − y ′√d.
Since exactly one of x ′ and y ′ is negative, |x ′ − y ′√d| = |x ′| + |y ′|√d, and hence
|n|βα−1 = |x ′| + |y ′|√d . Since (|x ′|, |y ′|) is a solution to x2 − dy2 = n, the minimal-
ity of α implies α ≤ |n|βα−1, and hence α ≤ √|n|β.

Now consider a solution (a, b, c) to the original equation that minimizes c. Write the
equation as

c2 − (b2 − 1)a2 = b2 − 3334 = n,
and note that (u, v) = (b, 1) satisfies u2 − (b2 − 1)v2 = 1. Letting α = c+ a√b2 − 1 and
β = b +√b2 − 1, we obtain

c + a
√
b2 − 1 = α ≤ √|n|β = √|b2 − 3334|(b +

√
b2 − 1) <

√
|b2 − 3334|(2b).

We next prove that b < 117. If b ≥ 117 (in fact, whenever b ≥ 58), then

c2 − (b2 − 1)a2 = b2 − 3334 > 0,

so c > a
√
b2 − 1. Hence,

2a
√
b2 − 1 <

√
2b|b2 − 3334|. (∗)

Now rewrite the original equation as

c2 − (a2 + 1)b2 = −a2 − 3334.

Note that (u, v) = (2a2 + 1, 2a) satisfies u2 − (a2 + 1)v2 = 1. Take α = c + b√a2 + 1
and β = (2a2 + 1)+ 2a

√
a2 + 1 in the preceding, and note that β = (a +√a2 + 1)2 <

4(a2 + 1). We obtain

c + b
√
a2 + 1 = α ≤ √|n|β = √(a2 + 3334)β < 2

√
(a2 + 3334)(a2 + 1).

Since c > 0, we conclude b < 2
√
a2 + 3334. Combining this with (∗), we obtain

b2 < 4(a2 + 3334) <
2b(b2 − 3334)

b2 − 1
+ 13336.

The largest real root of t2(t2 − 1) − 2t (t2 − 3334) − 13336(t2 − 1) is less than 117, so
b < 117.

Thus the problem is reduced to checking values of b up to 116 and values of a up
to
√
b|b2 − 3334|/(2(b2 − 1)) and then evaluating c. This is easily done on a computer,

yielding no solutions with integral c.

Also solved by R. Chapman (UK), A. Stenger, and the proposer.

Dilating Kimberling’s Center X65 from the Incenter

12198 [2020, 659]. Proposed by Michel Bataille, Rouen, France. Let A1A2A3 be a
nonequilateral triangle with incenter I , circumcenter O, and circumradius R. For i ∈
{1, 2, 3}, let Bi be the point of tangency of the incircle of A1A2A3 with the side of the
triangle opposite Ai , and let Ci be the point of intersection between the circle centered at
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I of radius R and the ray IBi . Let K be the orthocenter of C1C2C3. Prove that I is the
midpoint of OK .

Solution by Lienhard Wimmer, Isny im Allgäu, Germany. For i ∈ {1, 2, 3}, let Di be the
reflection of Ci through I . It suffices
to show that O is the orthocenter
of D1D2D3, because this orthocen-
ter is the reflection of K through I .
Extend A1I to intersect the circum-
circle of A1A2A3 at X.

Since A1X bisects ∠A2A1A3,
arcsA2X andA3X are equal. There-
fore OX is the perpendicular bisec-
tor of A2A3, so OX ‖ D1I . By con-
struction, D1I = R = OX. Thus
D1IXO is a parallelogram, which
implies D1O ‖ A1X. The isosce-
les triangles �IB2B3 and �ID2D3

are similar, and therefore B2B3 ‖
D2D3. Since A1X ⊥ B2B3, we con-
clude that D1O ⊥ D2D3. Like-
wise,D2O ⊥ D3D1, completing the
proof.

Editorial comment. Oliver Geupel and Nigel Hodges point out that the orthocenter of
B1B2B3 is center X65 in Clark Kimberling’s Encyclopedia of Triangle Centers
(faculty.evansville.edu/ck6/encyclopedia/etc.html), and I divides OX65 in the ratio of
R : r . The result in the problem follows immediately, because �C1C2C3 is the image of
�B1B2B3 under a dilation with center I and ratio R/r .

Also solved by R. Boukharfane (Saudi Arabia), H. Chen (China), G. Fera (Italy), O. Geupel (Germany),
N. Hodges (UK), E. J. Ionaşcu, W. Janous (Austria), M. Kaplan & M. Goldenberg, L. Kiernan, O. Kouba
(Syria), J. H. Lindsey II, O. P. Lossers (Netherlands), C. R. Pranesachar (India), V. Schindler (Germany),
A. Stadler (Switzerland), R. Stong, T. Wiandt, L. Zhou, and the proposer.

The Basel Problem in Disguise

12199 [2020, 660]. Proposed by Shivam Sharma, Delhi University, New Delhi, India. Prove∫ ∞
0

x sinh(x)

3+ 4 sinh2(x)
dx = π2

24
.

Solution by Robin Chapman, University of Exeter, Exeter, UK. Observe that for x > 0,

2 sinh x

3+ 4 sinh2 x
= ex − e−x

3+ (ex − e−x)2 =
1

ex − e−x ·
(ex − e−x)2

3+ (ex − e−x)2

= 1

ex − e−x
(

1− 3

3+ (ex − e−x)2
)

= 1

ex − e−x −
3

e3x − e−3x
= 1

2 sinh x
− 3

2 sinh(3x)
.

Therefore ∫ ∞
0

x sinh x

3+ 4 sinh2 x
dx = 1

4

∫ ∞
0

x dx

sinh x
− 3

4

∫ ∞
0

x dx

sinh(3x)
.
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A simple substitution gives ∫ ∞
0

x dx

sinh(3x)
= 1

9

∫ ∞
0

x dx

sinh x
,

so ∫ ∞
0

x sinh x

3+ 4 sinh2 x
dx = 1

6

∫ ∞
0

x dx

sinh x
= 1

3

∫ ∞
0

x dx

ex − e−x

= 1

3

∫ ∞
0

∞∑
k=0

xe−(2k+1)x dx = 1

3

∞∑
k=0

∫ ∞
0
xe−(2k+1)x dx

= 1

3

∞∑
k=0

1

(2k + 1)2
= 1

3

[ ∞∑
k=1

1

k2
−
∞∑
k=1

1

(2k)2

]

= 1

3

(
1− 1

4

) ∞∑
k=1

1

k2
= 1

4
· π

2

6
= π2

24
.

Also solved by Z. Ahmed (India), T. Akhmetov (Russia), K. F. Andersen (Canada), F. R. Ataev (Uzbekistan),
S. Attaoui & M. Slimane (Algeria), M. Bataille (France), N. Batir (Turkey), A. Berkane (Algeria), N. Bhan-
dari (Nepal), R. Boukharfane (Saudi Arabia), P. Bracken, B. Bradie, V. Brunetti (India), C. Burnette, H. Chen,
B. E. Davis, T. Dickens, G. A. Edgar, G. Fera (Italy), P. Fulop (Hungary), M. L. Glasser, H. Grandmon-
tagne (France), N. Grivaux (France), J. A. Grzesik, E. A. Herman, N. Hodges (UK), F. Holland (Ireland),
E. J. Ionaşcu, W. Janous (Austria), J. E. Kampmeyer III, O. Kouba (Syria), K.-W. Lau (China), G. Lavau
(France), J. Magliano, S. Miao (China), A. Natian, K. Nelson, Q. M. Nguyen (Canada), C. R. Pranesachar
(India), V. Schindler (Germany), A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong, R. Tauraso
(Italy), D. Terr, D. B. Tyler, A. Tzarellas, E. I. Verriest, T. Wiandt, H. Widmer (Switzerland), Y. Xiang (China),
M. R. Yegan (Iran), L. Zhou, FAU Problem Solving Group, and the proposer.

Group Algebras With Invariant Subsets

12201 [2020, 660]. Proposed by Stephen M. Gagola, Jr., Kent State University, Kent, Ohio.
Let F be a field, and let G be a finite group. The group algebra F [G] is the vector space
of all formal sums

∑
g∈G agg, where ag ∈ F , with multiplication defined by extending the

multiplication in G via the distributive laws. A subset S of F [G] is G-invariant if s ∈ S
and g ∈ G imply sg ∈ S. In particular, the subset G is G-invariant, as is the singleton set
{∑g∈G g}. Find all fields F and groupsG such that there exists an F -linear transformation
φ : F [G]→ F [G] that is not right multiplication by an element of G but that nevertheless
sends every G-invariant subset to itself.

Solution by Kenneth Schilling, University of Michigan, Flint, MI. The field F must be the
field of order 2, and the group G must be a cyclic group of order 3, 4, or 5.

Let F [G] be a group algebra, and let φ : F [G]→ F [G] be an F -linear transformation
that preserves G-invariant sets but is not right-multiplication by an element of G. Let e
be the identity element of G. It follows that the map ψ : F [G]→ F [G] given by ψ(x) =
φ(x)(φ(e))−1 is also an F -linear transformation of F [G] that preserves G-invariant sets
but is not right-multiplication by an element of G and has the additional property that
ψ(e) = e. We may therefore assume henceforth without loss of generality that φ(e) = e.
Claim 1: For every finite subset {g1, . . . , gk} of G, there exists h ∈ G such that

{φ(g1), . . . , φ(gk)} = {g1h, . . . , gkh}.
In particular, φ maps G injectively into itself, and hence φ is injective on F [G].
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Proof. Since G is G-invariant, φ(G) ⊂ G. Since the set {g1h+ · · · + gkh : h ∈ G} is also
G-invariant and contains g1 + · · · + gk , there exists h′ ∈ G such that

φ(g1 + · · · + gk) = φ(g1)+ · · · + φ(gk) = g1h
′ + · · · + gkh′.

The claim now follows from the fact thatG is a linearly independent set in the vector space
F [G] and φ(gi) and gih′ belong to G for all i. �
Claim 2: For all g ∈ G, φ(g) ∈ {g, g−1}.
Proof. For g ∈ G− {e}, Claim 1 implies that {e, φ(g)} = {h, gh} for some h ∈ G. Thus
either e = h and φ(g) = gh, in which case φ(g) = g, or e = gh and φ(g) = h, in which
case φ(g) = g−1. �
Claim 3: If φ(g1) �= g1 and φ(g2) �= g2 for distinct elements g1, g2 ∈ G, then g1 = g−1

2
or g1 = g2

2 or g2 = g2
1 .

Proof. By Claims 1 and 2, {φ(e), φ(g1), φ(g2)} = {e, g−1
1 , g−1

2 } = {h, g1h, g2h} for some
h ∈ G. If e = h, then {e, g−1

1 , g−1
2 } = {e, g1, g2}, and g1 = g−1

2 follows from φ(g2) =
g−1

2 �= g2. If e = g1h, then {e, g−1
1 , g−1

2 } = {g−1
1 , e, g2g

−1
1 }, so g−1

2 = g2g
−1
1 , which yields

g1 = g2
2. By symmetry, g2 = g2

1 when e = g2h. �
Claim 4: If φ(g1) = g1 and φ(g2) �= g2 for g1, g2 ∈ G− {e}, then g1 and e are the only
elements of G fixed by φ. Also, g2

1 = e, and g2 = g1 for all g ∈ G− {e, g1}.
Proof. By Claims 1 and 2, {e, φ(g1), φ(g2)}= {e, g1, g

−1
2 }= {h, g1h, g2h} for some h∈G.

If e = h, then g−1
2 = g2, which contradicts φ(g2) �= g2. If e = g1h, then {e, g1, g

−1
2 } ={g−1

1 , e, g2g
−1
1 }. Since g−1

2 �= g−1
1 , we have g1 = g−1

1 and g−1
2 = g2g

−1
1 , so g2

1 = e and
g2

2 = g1. If e = g2h, then {e, g1, g
−1
2 } = {g−1

2 , g1g
−1
2 , e}, so g1 = g1g

−1
2 , which contradicts

g2 �= e.
We conclude g2

1 = e and g1 = g2
2. This implies that g1 is the only element of G− {e}

that is fixed by φ. Furthermore, g2 = g1 for all g ∈ G− {e, g1}. �
Claim 5: F is the field of order 2.

Proof. If F has an element a that is neither 0 nor 1, then let g be any element of G− {e}.
The set {h+ agh : h ∈ G} is G-invariant, and e + ag is one of its elements, so there exists
h ∈ G such that φ(e+ ag) = e+ aφ(g) = h+ agh. It follows that e = h and φ(g) = gh,
so φ(g) = g. In other words, φ is the identity transformation on G, and so also on F [G],
contrary to hypothesis. �

We now find all possible groups G.
First, suppose that G− {e} has elements g1 and g2 such that φ(g1) = g1 and φ(g2) =

g−1
2 �= g2. By Claim 4, g4

2 = g2
1 = e, so the group 〈g2〉 generated by g2 is a cyclic group of

order 4 and contains g1, which equals g2
2. Furthermore, we claim G = 〈g2〉. If there exists

h ∈ G− 〈g2〉, then φ(h) �= h by Claim 4. Applying Claim 3 to g2 and h now yields either
g2

2 = h (forbidden by h �∈ 〈g2〉) or h2 = g2 (forbidden by Claim 4 implying h2 = g1). With
G being a cylic group of order 4, it is easy to check that φ(g) = g−1 satisfies the required
conditions.

A second case is G = {e, g1, g
−1
1 }, where φ(g) = g−1 for g ∈ G. Here, G is a cylic

group of order 3, and it is easy to check that φ(g) = g−1 satisfies the required conditions.
The only remaining case is that no element of G − {e} is fixed by φ, and G contains

at least two distinct pairs of inverse elements. Let g1, g
−1
1 , g2, g

−1
2 be distinct elements of

G. Assume without loss of generality that g2 = g2
1. We know that g−1

1 = g2
2 or g2 = g−2

1 .
The second option is impossible (if true, then g2 = g−1

2 , which would imply φ(g2) = g2),
so g−1

1 = g2
2. Therefore, g−1

1 = g2
2 = g4

1, and the order of g1 in G is 5. Furthermore, since
g2 = g2

1 and g1 = g−2
2 , each of g1, g2 belongs to the group generated by the other. Since

g1, g2 were chosen arbitrarily, the entire group G is the group generated by g1, a cyclic
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group of order 5. Once again it is easy to check that φ(g) = g−1 satisfies the required
conditions.

Editorial comment. Kenneth Schilling observed that the hypothesis that G is finite is not
needed, although the reference to the singleton set {∑g∈G g} in the problem statement does
not make sense without that hypothesis.

Also solved by N. Caro (Brazil), R. Chapman (UK), J. H. Lindsey II, and the proposer.

CLASSICS

We solicit contributions of classics from readers, who should include the problem state-
ment, solution, and references with their submission. The solution to the classic problem
published in one issue will appear in the subsequent issue.

C4. From the 1968 Moscow Mathematical Olympiad, contributed by the editors. A round
cake has icing on the top but not the bottom. Cut a piece of the cake in the usual shape of
a sector with vertex angle one radian and with vertex at the center of the cake. Remove the
piece, turn it upside down, and replace it in the cake to restore roundness. Next, move one
radian around the cake, cut another piece with the same vertex angle adjacent to the first,
remove it, turn it over, and replace it. Keep doing this, moving around the cake one radian
at a time, inverting each piece. Show that, after a finite number of steps, all the icing will
again be on the top.

The Game of Chomp

C3. Attributed to Frederik Schuh, contributed by the editors. Alice and Bob play a game
in which they take turns removing squares from an m-by-n grid of squares. We label the
square in row i and column j with the pair (i, j). A legal move in this game consists
of selecting one of the remaining squares (i, j) and removing all the squares (a, b) with
i ≤ a ≤ m and j ≤ b ≤ n that were not were not already removed by a previous move.
The players alternate moves, with Alice going first, and the player who removes the square
(1, 1) loses. Show that Alice has a winning strategy.

Solution. Since the game is finite, either Alice or Bob has a winning strategy. Suppose it is
Bob who has a winning strategy. If Alice removes just the single square (m, n) on her first
move, then Bob has a winning response (i, j), leading to a position P from which Alice
has no winning response. But Alice could have selected square (i, j) on her first move, and
this would have been a winning move for Alice, since it leaves Bob to play from position
P . This contradicts the assumption that Bob has a winning strategy, so it must be Alice
who has a winning strategy.

Editorial comment. The solution illustrates the concept of strategy stealing from combi-
natorial game theory. It demonstrates that Alice has a winning move to open the game,
although it does not tell her what that move is. Indeed, little is known about how Alice
should play. It is easy to see that Alice’s only winning opening move in the case m = 1 is
(1, 2) and in the case m = 2 is (2, n). When m = n, Alice’s only winning opening move
is (2, 2). Some progress on the m = 3 case is given in D. Zeilberger (2001), Three-rowed
Chomp, Adv. Appl. Math. 26, 168–179.

The game goes back to Frederick Schuh, whose version of the game is played on the
positive integers, with players alternately choosing divisors of a given integer, subject to
the restriction that no choice can be a multiple of a previous choice. The version of the
game that we have given here is due to David Gale. It is isomorphic to Schuh’s game in the
case that the integer is 2m3n.
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SOLUTIONS

The Polytope of Parking Functions

12191 [2020, 563]. Proposed by Richard Stanley, University of Miami, Coral Gables, FL. A
parking function of length n is a list (a1, a2, . . . , an) of positive integers whose increasing
rearrangement b1 ≤ b2 ≤ · · · ≤ bn satisfies bi ≤ i. It is well known that the number of
parking functions of length n is (n + 1)n−1. Let Pn denote the convex hull in R

n of all
parking functions of length n.
(a) Find the number of vertices of the convex polytope Pn.
(b) Find the number of (n− 1)-dimensional faces of Pn.
(c)* Find the number of integer points in Pn, i.e., the number of elements of Zn ∩ Pn. For
n ≤ 8 these numbers are 1, 3, 17, 144, 1623, 22804, 383415, 7501422.
(d)* Find the volume of Pn. For n ≤ 5 these volumes are 0, 1/2, 4, 159/4, 492.
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Solution by Richard Stong, Center for Communications Research, San Diego, CA.
(a) Let a tight parking function be one whose increasing rearrangement consists of k copies
of 1 followed by the numbers k + 1 through n. Since parking functions remain park-
ing functions when coordinates are reordered, there are n!/k! parking functions with this
increasing rearrangement and hence

∑n
k=1 n!/k! tight parking functions of length n. The

sum evaluates to 
n!(e − 1)�. We prove by induction on n that the tight parking functions
are exactly the vertices of Pn.

Suppose first that n occurs in the parking function a. By the reordering criterion, n can
only occur once. Every vertex of a face containing a in its interior must also have n in
the same place. Deleting n from a parking function of length n always leaves a parking
function of length n− 1. This applies both to a and to the vertices of any face containing
a. Thus if the parking function obtained by deleting n from a is a vertex in Pn−1, then a
is a vertex of Pn. The converse holds as well. By the induction hypothesis, a is a vertex if
and only if it is tight.

Suppose next that n does not occur in a. If every position in a is 1, then a minimizes
the sum of entries over all parking functions. Hence it is a vertex; also it is tight. If some
position in a is not 1, then a is not tight. Pick a largest entry of a, and let a+ and a− be the
results of replacing this entry with n or 1, respectively. These are both parking functions:
for a− we have only lowered b, and for a+ we have only changed bn to n. Since the largest
entry was not 1 or n, a is in the interior of the segment joining a− and a+ and hence is not
a vertex.
(b) There are 2n − 1 such faces. The faces of a polytope are the sets of points where some
linear function is maximized, and such a set is the convex hull of the vertices that achieve
the maximum. By the reordering property of parking functions, when a linear function
x �→ α · x is maximized at a the coordinate values for α and a will be in the same order.
That is, α · a = β · b, where β is the increasing rearrangement of α and b is the increasing
rearrangement of a.

Furthermore, if the first r entries of β are negative, then at a maximum the first r entries
of b are all 1. Similarly, if the last s entries of β are positive, then at a maximum the last s
entries of b are (n+ 1− s, . . . , n) (after possibly re-sorting the places where β has a run
of equal entries). That is, if β has m equal positive entries, then those m entries of b are m
consecutive integers in some order; in particular, the sum of those m entries is fixed.

Putting this together, we see that if α has r negative entries and t distinct positive values,
then the set of points a maximizing α · x has codimension at least r + t (we fix one entry
for each negative entry in α and one sum of entries for each positive value).

Thus (n− 1)-dimensional faces must correspond to α with r + t = 1. Up to rescaling,
faces must correspond either to α being 1 on some set S of coordinates and 0 elsewhere
(which we denote by αS), or to α being −1 in one coordinate and 0 elsewhere.

If |S| = n− 1, then the codimension-1 hyperplane αS · x = n|S| −
(|S|

2

)
passes through

all the vertices whose coordinates in the S positions are a permutation of {n+1−|S|, . . . , n}
and in the other positions are any parking function of length n − |S|. Thus we obtain a
codimension-1 face that is isometric to the product Pn−|S| ×Q|S|, where Qk is the convex
hull of the points that are permutations of (1, 2, . . . , k). Note that Pn−|S| has dimension
n − |S|, since n − |S| = 1, and Q|S| has dimension |S| − 1. The product has dimension
n− 1. If |S| = n− 1, then since P1 is only a single point we obtain a face of codimension
2 and dimension n− 2, contributing nothing to our count.

If α has a single −1 and zeroes elsewhere, then we get the face of codimension 1 (and
dimension n− 1) where that coordinate is fixed to 1.

The first case gives 2n − n− 1 faces (corresponding to nonempty subsets of coordinates
with size other than n− 1), and the second case gives n faces. Hence the number of faces
of Pn is 2n − 1.
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(c) No solution is available.

(d) Letting Vn denote the n-dimensional volume of Pn, we prove

Vn =
n∑
s=1

(
n− 1

s − 1

)
nn−s

2s

s∑
m=0

(−1)s−m
(
s

m

)
(2m− 1)!!.

Let Wk denote the (k − 1)-dimensional volume of the polytope Qk in part (b). We first
derive a closed formula for Wk . The polytope Qk has

(
k

r

)
faces isometric to Qr ×Qk−r ,

corresponding to fixing r coordinates with sum r(r + 1)/2, leaving the remaining k − r
coordinates to sum to k(k + 1)/2− r(r + 1)/2, which equals (k − r)(k + r + 1)/2. (The
proof of this is essentially the same as part (b) above.)

The distance from the center ((k + 1)/2, (k + 1)/2, . . . , (k + 1)/2) of Qk to the plane
of such a face is √

r(k − r)2/4+ (k − r)r2/4 = √kr(k − r)/2.
Hence

Wk = 1

2(k − 1)

k−1∑
r=1

(
k

r

)
WrWk−r

√
kr(k − r).

This recurrence yields Wk = kk−3/2 using induction and the identity

2(k − 1)kk−2 =
k−1∑
r=1

(
k

r

)
rr−1(k − r)k−r−1. (∗)

The identity (∗) appears in the book of Lovász (Combinatorial Problems and Exercises,
North-Holland, 1979). It has both an analytic proof using generating functions and a bijec-
tive proof (due to L. Smiley) using Cayley’s formula, which states that there are kk−2 trees
with vertex set [k], where [k] = {1, . . . , k}. With nways to distinguish one vertex as a root,
there are kk−1 rooted trees with vertex set [k]. Both sides of the identity count the ordered
pairs of rooted trees whose vertex sets have union [k].

Splitting Pn into cones with vertex at the point (1, , . . . , 1), and invoking the solution
of part (b), we see that Pn is the union, over values of k other than n− 1, of

(
n

k

)
cones with

base Pn−k ×Qk and height
√
k(2n− k − 1)/2. Thus

Vn = 1

n

n∑
k=1

(
n

k

)
Vn−kWk

√
k(2n− k − 1)

2
= 1

2n

n∑
k=1

(
n

k

)
Vn−kkk−1(2n− k − 1).

In this sum, we have included the term for k = n− 1, but the computation remains correct
since V1 = 0. Let V be the exponential generating function of the sequence 〈Vn〉, so

V (z) =
∞∑
n=0

Vn

n!
zn =

∞∑
n=1

1

2n

n∑
k=1

(
n

k

)
Vn−kkk−1(2n− k − 1)

zn

n!
. (∗∗)

Let F(z) =∑∞n=1 n
n−1zn/n!. Differentiating (∗∗) and breaking the factor 2n − k − 1

into three pieces, we obtain

2V ′(z) =
∞∑
n=1

n∑
k=1

(
n

k

)
Vn−kkk−1(2n− 2k + k − 1)

zn−1

n!

= 2F(z)V ′(z)+ F ′(z)V (z)− F(z)V (z)
z

= 2F(z)V ′(z)+
(
F ′(z)− F(z)

z

)
V (z). (∗∗∗)
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We next study F ′ − F/z. Again using Cayley’s formula, F is the exponential generating
function (EGF) for rooted labeled trees: there are nn−1 with vertex set [n]. To form such a
rooted tree, one chooses a root label and a rooted forest on the remaining labels, with any
number of components. The EGF for choosing the root is just z, and the two choices are
enumerated by the product of the EGFs, which yields the standard relation F = zeF (from
which Cayley’s formula can be obtained by Lagrange inversion).

Taking the logarithm of F = zeF yields logF = F + log z, and differentiating yields
F ′/F = F ′ + 1/z, or F ′ − F/z = FF ′. Equation (∗∗∗) then becomes

V ′

V
= FF ′

2(1− F) .

Integrating yields logV = − (F + log(1− F)) /2, and hence

V (z) = e−F(z)/2√
1− F(z) .

We now have both a recurrence and an EGF for Vn, and we have left the realm of geom-
etry. A more explicit formula for Vn as a double sum can be derived from the generating
function. The standard expansions of ex and (1− 4x)−1/2 yield

e−F/2√
1− F =

∞∑
k=0

(−1)kF k

k!2k

∞∑
m=0

(
2m

m

)
Fm

4m
=
∞∑
s=0

s∑
m=0

(−1)s−m

(s −m)!2s+m
(

2m

m

)
F s.

Also, the series expansion for F s is known to be

F s(z) =
∞∑
r=s

srr−s−1

(r − s)!z
r ,

since the coefficient [zr ]F s(z) of zr in F s(z) is given by

1

2πi

∮
F s(z)

zr+1
dz = 1

2πi

∮
(1− F)erF
F r+1−s dF = [F r−s](1− F)erF

= rr−s

(r − s)! −
rr−s−1

(r − s − 1)!
= srr−s−1

(r − s)! .

Finally, set r = n and plug this expression for the coefficient of zn in F s into the expan-
sion of e−F/2/

√
1− F in terms of F . Since we defined V to be an EGF, we seek the

coefficient of zn/n! and hence must introduce n! also into the numerator. After a little
algebra, we read off the formula

Vn =
n∑
s=1

(
n− 1

s − 1

)
nn−s

2s

s∑
m=0

(−1)s−m
(
s

m

)
(2m− 1)!!.

Editorial comment. The inner sum in the formula for Vn is the well-known inclusion-
exclusion formula for the number of ways to form s couples into pairs of people with
no couple paired (sequence A053871 in the OEIS). Also, the generating function for V
and standard techniques yield

Vn ∼ 21/4π1/2

�(1/4)e1/2
· nn−1/4

(
1+O(n−1/2)

)
.

Parts (a) and (b) also solved by A. Amanbayeva & D. Wang and the proposer.
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An Integral Bound

12193 [2020, 564]. Proposed by Florin Stanescu, Serban Cioculescu School, Gaesti,
Romania. Suppose that f : [0, 1]→ R has a continuous third derivative and f (0) = f (1).
Prove ∣∣∣∣

∫ 1

0
f ′(x)xk−1(1− x)k−1 dx

∣∣∣∣ ≤ (k − 1)k!(k − 1)!

6 (2k + 1)!
max

0≤x≤1

∣∣f ′′′(x)∣∣
where k is a positive integer.

Solution by Koopa Tak Lun Koo, Chinese STEAM Academy, Hong Kong, China. We pro-
ceed by induction on k. For the base case k = 1, the left side is |f (1)− f (0)| = 0 and the
inequality is immediate.

For the inductive step, let gk(x) = xk(1− x)k and Ik =
∫ 1

0 f
′(x)gk−1(x) dx. One easily

checks that

g′′k (x) = −2k(2k − 1)gk−1(x)+ k(k − 1)gk−2(x). (∗)
For k ≥ 2, gk(0) = gk(1) = g′k(0) = g′k(1) = 0, so integrating by parts twice yields∫ 1

0
f ′(x)g′′k (x) dx =

[
f ′(x)g′k(x)

]1

0
−
[
f ′′(x)gk(x)

]1

0
+
∫ 1

0
f ′′′(x)gk(x) dx

=
∫ 1

0
f ′′′(x)gk(x) dx.

Using (∗) this yields

−2k(2k − 1)Ik + k(k − 1)Ik−1 =
∫ 1

0
f ′′′(x)gk(x) dx.

From the triangle inequality and gk(x) ≥ 0 for x ∈ [0, 1], we get

2k(2k − 1) |Ik| ≤ k(k − 1) |Ik−1| +
∣∣∣∣
∫ 1

0
f ′′′(x)gk(x) dx

∣∣∣∣
≤ k(k − 1) |Ik−1| + max

0≤x≤1
|f ′′′(x)|

∣∣∣∣
∫ 1

0
gk(x) dx

∣∣∣∣ .
Recognizing

∫ 1
0 gk(x) dx as a beta integral, we have∫ 1

0
gk(x) dx = B(k + 1, k + 1) = (k!)2/(2k + 1)!.

Using this together with the induction hypothesis gives

2k(2k − 1) |Ik| ≤ (k − 2)k!(k − 1)!

6(2k − 1)!
max

0≤x≤1
|f ′′′(x)| + (k!)2

(2k + 1)!
max

0≤x≤1
|f ′′′(x)|,

which after simplifying becomes

|Ik| ≤ (k − 1)k!(k − 1)!

6(2k + 1)!
max

0≤x≤1
|f ′′′(x)|,

completing the induction.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), P. Bracken, R. Chapman (UK), C. Chiser
(Romania), R. Guadalupe (Philippines), F. Holland (Ireland), O. Kouba (Syria), K.-W. Lau (China), J. H. Lind-
sey II, M. Omarjee (France), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), E. I. Verriest, L. Zhou, and
the proposer.
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Regular Polygons Inscribed in a Cube

12195 [2020, 659]. Proposed by Joseph DeVincentis, Salem, MA, James Tilley, Bedford
Corners, NY, and Stan Wagon, Macalester College, St. Paul, MN. For which integers n
with n ≥ 3 can a regular n-gon be inscribed in a cube? The vertices of the n-gon must all
lie on the cube but may not all lie on a single face.

Composite solution by Eugen J. Ionaşcu, Columbus State University, Columbus, GA, and
Yury J. Ionin, Champaign, IL. An inscribed n-gon exists if and only if 3 ≤ n ≤ 9 or n = 12.
We work in the standard unit cube. We first show that regular n-gons embed in the cube
for n ∈ {3, 4, 6, 8, 12}.

For n = 3, corners (1, 0, 0), (0, 1, 0), and (0, 0, 1) yield an equilateral triangle.
For n = 4, points (0, 0, 1/2), (1, 0, 1/2), (1, 1, 1/2), and (0, 1, 1/2) determine a square

embedded in the cube. Truncating it yields a regular octagon with all vertices on the faces
of the cube, which takes care of n = 8.

For n = 6, points (1/2, 0, 1), (0, 1/2, 1), (0, 1, 1/2), (1/2, 1, 0), (1, 1/2, 0), and
(1, 0, 1/2) determine a regular hexagon embedded in the cube. Truncating it yields a
regular 12-gon with all vertices on the faces of the cube, which takes care of n = 12.

Next, we give constructions for n ∈ {5, 7, 9}, showing that a regular n-gon can be
inscribed in a polygon embedded in the cube.

For n = 5, we start with a regular pentagon ABCDE. Let lines AB and DE intersect
at Q, and let the line through C perpendicular to CQ intersect lines AB and DE at R
and S, respectively, as in Figure 1a. The isosceles triangle QRS has apex angle π/5. With
Q = (0, 0, a), R = (0, b, 0), and S = (b, 0, 0), the apex angle ofQRS has cosine equal to
a2/(a2 + b2). We may choose real numbers a, b ∈ (0, 1) such that this equals cos(π/5).

For n = 7, we start with a regular heptagon ABCDEFG. Let the line through A paral-
lel to DE intersect lines FG and BC at Q and R, respectively. Let line DE intersect lines
BC and FG at S and T , respectively, as in Figure 1b. NowQRST is an isosceles trapezoid
with acute angles 3π/7. An isosceles trapezoid is uniquely determined, up to similarity, by
the measure of its acute angles and the ratio k of the shorter base to the longer base. By the
law of sines,

k = QR

ST
= 2 sin(2π/7)/ sin(4π/7)

1+ 2 sin(2π/7)/ sin(3π/7)
= 2 sin(2π/7)

sin(3π/7)+ 2 sin(2π/7)
.

Set T = (a, 0, 0), S = (0, a, 0), Q = (ka, 0, 1), and R = (0, ka, 1). It is required that
a ∈ (0, 1) satisfies

cos(3π/7) =
−→
TQ · −→T S
TQ · T S =

(1− k)a√
2 ·√(1− k)2a2 + 1

.

March 2022] PROBLEMS AND SOLUTIONS 291



Solving for a yields

a =
√

2 cos(3π/7)

(1− k)√1− 2 cos2(3π/7)
≈ 0.8633.

For n = 9, first observe that for 0 < a < 1, the plane x − y + z = a intersects the
cube in a hexagon QRSTUV , where Q = (0, 0, a), R = (0, 1 − a, 1), S = (a, 1, 1),
T = (1, 1, a),U = (1, 1− a, 0), and V = (a, 0, 0). We compute thatQR = ST = UV =
(1 − a)√2, that QV = RS = T U = a√2, and that all six angles are equal. Hence they
measure 2π/3. Let B, E, and H be the midpoints of RS, T U , and QV , respectively. Let
points A and I on QR, C and D on ST , and F and G on UV be such that angles ABR,
CBS, DET , FEU , GHV , and IHQ, each measure π/9 (see Figure 1c). All the angles
of nonagon ABCDEFGHI measure 7π/9. Finally, by the law of sines, six sides of the
nonagon have length a

√
6/(4 sin(2π/9)) and three sides have length

(1− a)√2− 2 · a sin(π/9)√
2 sin(2π/9)

.

Setting the two lengths equal and solving for a yields

a = 4 sin(2π/9)√
3+ 4 sin(π/9)+ 4 sin(2π/9)

≈ 0.4534.

We conclude by showing the impossibility of inscribing a regular n-gon for n > 12 and
n ∈ {10, 11}.

The vertices of a regular n-gon inscribed in the unit cube lie in the intersection of the
cube with the plane containing the n-gon. Thus a face of the cube contains at most two
vertices of the n-gon, which yields n ≤ 12.

Next, we exclude n = 11. Since no two sides of a regular 11-gon are parallel, opposite
faces of the cube together contain at most three vertices of the 11-gon, but this limits the
number of vertices to 9.

Finally, for n = 10, consider a regular inscribed
10-gon ABCDEFGHIJ . Since it lies in the
intersection of a plane P with the cube, opposite
faces of the cube cannot together contain exactly
three vertices. Any four vertices on opposite faces
must form opposite sides of the 10-gon. Also, the
vertices of opposite sides of the 10-gon must form
a rectangle. Thus the intersection of P with the
cube must be a hexagon QRSTUV with opposite
sides parallel. We may assume that P intersects the
plane z = 1 in QR and the xy-plane in T U with
the 10-gon inscribed as in Figure 2.

Figure 2.

The distance between sides QV and ST is the same as between sides RS and UV .
This shows that the dihedral angle α between P and the yz-plane equals the dihedral angle
β between P and the xz-plane. Consequently, P is symmetric with respect to the plane
x = y. This symmetry implies SV = √2. Because triangles CDS and HIV are isosceles,
the center O of the 10-gon is at the midpoint of SV .

We calculate the circumradius r = OC using the law of sines as follows:

r = OS sin(3π/10)

sin(3π/5)
= 1

2
√

2 cos(3π/10)
.
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Let γ denote the dihedral angle between P and the xy-plane. It satisfies

cos2 γ = 1− sin2 γ = 1−
(

1

2r

)2

= 1− 2 cos2(3π/10) = cos(2π/5) =
√

5− 1

4
.

The distance between sides RS and UV is 2r cos(π/10), so

cos2 α=cos2 β=1−sin2 α=1− 2 cos2(3π/10)

cos2(π/10)
=1−2

(
4 cos2(π/10)−3

)2=√5−2.

It is well known and easy to prove that if a plane has dihedral angles α, β, and γ with the
yz-, xz-, and xy-planes, then

cos2 α + cos2 β + cos2 γ = 1.

This yields a contradiction, because

2 cos2 α + cos2 γ = 9
√

5− 17

4
= 1.

Editorial comment. A few solvers interpreted the problem as requiring that the entire n-gon
be embedded in the cube, which is possible if and only if n = 3, 4, 6.

Also solved by R. Stong and the proposers.

CLASSICS

We solicit contributions of classics from readers, who should include the problem state-
ment, solution, and references with their submission. The solution to the classic problem
published in one issue will appear in the subsequent issue.

C3. Attributed to Frederik Schuh, contributed by the editors. Alice and Bob play a game
in which they take turns removing squares from an m-by-n grid of squares. We label the
square in row i and column j with the pair (i, j). A legal move in this game consists
of selecting one of the remaining squares (i, j) and removing all the squares (a, b) with
i ≤ a ≤ m and j ≤ b ≤ n that were not were not already removed by a previous move.
The players alternate moves, with Alice going first, and the player who removes the square
(1, 1) loses. Show that Alice has a winning strategy.

A Curious Characterization of the Fibonacci Numbers

C2. Ira Gessel [1972], contributed by the editors. Prove that a positive integer n is a
Fibonacci number if and only if either 5n2 + 4 or 5n2 − 4 is a perfect square.

Solution. The Fibonacci numbers are defined by: F0 = 0, F1 = 1, and Fk+2 = Fk + Fk+1

when k ≥ 0. Using the well-known identity Fk−1Fk+1 = F 2
k + (−1)k , we obtain

5F 2
k + (−1)k4 = 5F 2

k + 4(Fk−1Fk+1 − F 2
k )

= (Fk+1 − Fk−1)
2 + 4Fk−1Fk+1 = (Fk+1 + Fk−1)

2.

This shows that 5n2 + 4 or 5n2 − 4 is a perfect square when n is Fibonacci.
For the converse, we prove that ifm and n are positive integers satisfying 5n2 ± 4 = m2,

then there exists some positive integer k such that n = Fk and m = Fk−1 + Fk+1.
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The proof is by induction on n. For n = 1, there are two cases: Either m = 1, in which
case n = F1 and m = F0 + F2, or m = 3, in which case n = F2 and m = F1 + F3.

For the induction step, suppose n ≥ 2, the result holds for smaller values of n, and for
some positive integer m, 5n2 ± 4 = m2. Note that

m2 ≤ 5n2 + 4 ≤ 5n2 + n2 = 6n2 < 9n2,

so m < 3n. Also

m2 ≥ 5n2 − 4 ≥ 5n2 − n2 = 4n2,

so m ≥ 2n.
Let n1 = (m− n)/2. Since the parities of n and m are the same, n1 is an integer, and

from 2n ≤ m < 3n we get n/2 ≤ n1 < n. Let m1 = (5n − m)/2. Again we see that m1

is an integer and m1 > (5n− 3n)/2 = n. So n1 and m1 are positive integers and n1 < n.
Also:

5n2
1 =

5(n2 − 2nm+m2)

4
= 5(6n2 ± 4− 2nm)

4
= 15n2 − 5nm

2
± 5,

m2
1 =

25n2 − 10nm+m2

4
= 30n2 ± 4− 10nm

4
= 15n2 − 5nm

2
± 1.

It follows that 5n2
1 ∓ 4 = m2

1. By the induction hypothesis, there is a positive integer k such
that n1 = Fk and m1 = Fk−1 + Fk+1.

From the equations n1 = (m− n)/2 and m1 = (5n−m)/2, we get

n = n1 +m1

2
= Fk + Fk−1 + Fk+1

2
= 2Fk+1

2
= Fk+1 and

m = 5n1 +m1

2
= 5Fk + Fk−1 + Fk+1

2
= 2Fk + 2Fk+2

2
= Fk + Fk+2.

Editorial comment. The problem appeared as Problem H-187 in Fibonacci Quarterly 10
(1972) 417–419. The equation 5n2 ± 4 = m2 can be rearranged to read m2 − 5n2 = ±4,
which is a variant of Pell’s equation, and our proof that n in this equation must be a
Fibonacci number is based on a standard method for solving Pell’s equation. An alter-
native way to prove that n is a Fibonacci number is to let j = (m+ n)/2 and then show
that gcd(j, n) = 1 and |j/n − φ| < 1/(2n2), where φ is the golden mean (1 +√5)/2.
It follows that j/n is a convergent of the continued fraction for φ, and it is well known
that these convergents are ratios of successive Fibonacci numbers (see G. H. Hardy and
E. M. Wright (2008), An Introduction to the Theory of Numbers, 6th ed., Oxford: Oxford
Univ. Press, pp. 190, 196). Yet another proof begins by rewriting 5n2 ± 4 = m2 in the form
(m+√5n)/2 · (m−√5)/2 = ±1 and then using the fact that any unit in the ring Z[φ] is
of the form ±φk .

There is a connection to Hilbert’s tenth problem about Diophantine equations. A set
X ⊂ N

r is called Diophantine if there is a polynomial p with integer coefficients in r + s
variables such that a ∈ X if and only if there exists b ∈ N

s such that p(a, b) = 0. This
problem shows that the set of Fibonacci numbers is Diophantine, by setting p(x, y) =
(5x2 + 4− y2)(5x2 − 4− y2). In 1961, Martin Davis, Hilary Putnam, and Julia Robinson
showed that a negative answer to Hilbert’s tenth problem follows from the existence of
a Diophantine set of the form {(n, f (n)) : n ∈ N}, where f has exponential growth. In
1970, Y. V. Matiyasevich showed that the set {(n, F2n) : n ∈ N} is Diophantine, settling
Hilbert’s problem. It is not hard to use this to prove that {(n, Fn) : n ∈ N} is Diophantine.
The full story can be found in M. R. Davis (1973), Hilbert’s tenth problem is unsolvable,
Amer. Math. Monthly 80, 233–269.
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SOLUTIONS

Evaluating an Integral with Leibniz’s Help

12184 [2020, 461]. Proposed by Paolo Perfetti, Universitá degli Studi di Roma “Tor Ver-
gata,” Rome, Italy. Prove∫ ∞

1

ln(x4 − 2x2 + 2)

x
√
x2 − 1

dx = π ln(2+√2).

Solution by Warren P. Johnson, Connecticut College, New London, CT. For positive num-
bers a and b, we consider the integral

I (a, b) =
∫ π/2

0
ln(a2 cos2 θ + b2 sin2 θ) dθ.

By substituting θ = π/2 − φ, we see that I (a, b) = I (b, a). The Leibniz integral rule
yields

∂I

∂a
=
∫ π/2

0

2a cos2 θ dθ

a2 cos2 θ + b2 sin2 θ
and

∂I

∂b
=
∫ π/2

0

2b sin2 θ dθ

a2 cos2 θ + b2 sin2 θ
, (1)

and it follows that

a
∂I

∂a
+ b ∂I

∂b
=
∫ π/2

0
2 dθ = π. (2)

Also, using the substitution b tan θ = a tanφ we see that

b
∂I

∂a
+ a ∂I

∂b
=
∫ π/2

0

2ab dθ

a2 cos2 θ + b2 sin2 θ

=
∫ π/2

0

2ab sec2 θ dθ

a2 + b2 tan2 θ
=
∫ π/2

0
2 dφ = π. (3)

When a 	= b, the solution to (2) and (3) is

∂I

∂a
= ∂I

∂b
= π

a + b ,

and it is easily checked from (1) that this is also correct when a = b.
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Since I is symmetric in a and b, integrating with respect to either a or b gives I (a, b) =
π ln(a + b)+K for some constant K . Setting b = a we find

K = I (a, a)− π ln(2a) = π ln a − π ln(2a) = −π ln 2,

so

I (a, b) =
∫ π/2

0
ln
(
a2 cos2 θ + b2 sin2 θ

)
dθ = π ln

(
a + b

2

)
. (4)

From this we can derive the well-known integral∫ π/2

0
ln(cos θ) dθ = lim

b→0+
1

2

∫ π/2

0
ln(cos2 θ + b2 sin2 θ) dθ

= lim
b→0+

π

2
ln

(
1+ b

2

)
= −π

2
ln 2. (5)

(We omit the justification of this limit calculation, since the result is well known.) Com-
bining (4) and (5) we have∫ π/2

0
ln(a2 + b2 tan2 θ) dθ =

∫ π/2

0
ln(a2 cos2 θ + b2 sin2 θ)− 2 ln(cos θ) dθ

= π ln

(
a + b

2

)
+ π ln 2 = π ln(a + b). (6)

With this in hand, we turn to the integral in the problem, which we denote by P . Using
the substitution u = √x2 − 1, we obtain

P =
∫ ∞

0

ln
(
1+ u4

)
u2 + 1

du.

The further substitution v = 1/u shows that we also have

P =
∫ ∞

0

ln(1+ 1/u4)

u2 + 1
du,

and averaging these two expressions yields

P =
∫ ∞

0

ln(u2 + 1/u2)

u2 + 1
du.

Now substitute v = u− 1/u to get

P =
∫ ∞
−∞

ln
(
v2 + 2

)
v2 + 4

dv = 2
∫ ∞

0

ln
(
v2 + 2

)
v2 + 4

dv.

Finally, substituting v = 2 tan θ yields

P =
∫ π/2

0
ln
(
2+ 4 tan2 θ

)
dθ,

which by (6) is π ln(2+√2).

Also solved by Z. Ahmed (India), K. F. Andersen (Canada), F. R. Ataev (Uzbekistan), M. Bataille (France),
N. Batir (Turkey), A. Berkane (Algeria), N. Bhandari (Nepal), K. N. Boyadzhiev, P. Bracken, B. Bradie,
B. S. Burdick, W. Chang, R. Chapman (UK), H. Chen, Ó. Ciaurri (Spain), B. E. Davis, P. De & B. Sury
(India), A. Eydelzon, G. Fera (Italy), P. Fulop (Hungary), M. L. Glasser, H. Grandmontagne (France), N. Gri-
vaux (France), J. A. Grzesik, L. Han, E. A. Herman, N. Hodges (UK), E. J. Ionaşcu, W. Janous (Austria),
O. Kouba (Syria), K.-W. Lau (China), G. Lavau (France), K. Mahanta (India), L. Matejı́c̆ka (Slovakia), K. Nel-
son, Q. M. Nguyen (Canada), M. Omarjee (France), M. A. Prasad (India), K. Sarma (India), V. Schindler
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(Germany), S. Sharma (India), F. Sinani (Kosovo), A. Stadler (Switzerland), A. Stenger, S. M. Stewart (Aus-
tralia), R. Stong, R. Tauraso (Italy), E. I. Verriest, M. Vowe (Switzerland), T. Wiandt, H. Widmer (Switzerland),
Y. Xiang (China), M. R. Yegan (Iran), FAU Problem Solving Group, and the proposer.

A Class of Matrices with Determinant 1

12185 [2020, 659]. Proposed by George Stoica, Saint John, NB, Canada. Let n1, . . . , nk
be pairwise relatively prime odd integers greater than 1. For i ∈ {1, . . . k}, let fi(x) =∑ni

m=1 x
m−1. Let A be a 2k-by-2k matrix with real entries such that det fj (A) = 0 for all

j ∈ {1, . . . , k}. Prove detA = 1.

Solution by Nicolás Caro, Universidade Federal de Pernambuco, Recife, Brazil. For each i,
the setUi of complex roots of the polynomial fi consists precisely of the ni th roots of unity
other than 1. When i 	= j , there exist integers r and s such that rni + snj = 1, and so if
λ ∈ C satisfies λni = λnj = 1, then λ = (λni )r (λnj )s = 1. Thus the sets U1, . . . , Uk are
pairwise disjoint. Moreover, λ ∈ Ui implies λ ∈ Ui and λ 	= λ (because ni is odd and
greater than 1), and of course λλ = 1.

By the spectral mapping theorem, for each j there exists an eigenvalue λj of A such
that fj (λj ) = 0, that is λj ∈ Uj . Since A is a real matrix, λj is also an eigenvalue of A,
and therefore the 2k values λ1, . . . , λk, λ1, . . . , λk are precisely the eigenvalues ofA. Since
detA is equal to the product of these eigenvalues, the determinant is 1.

Also solved by K. F. Andersen (Canada), R. Chapman (UK), J.-P. Grivaux (France), E. A. German, R. A. Horn,
O. Kouba (Syria), G. Lavau (France), S. Miao (China), É. Pité, K. Sarma (India), A. Stadler (Switzerland),
A. Stenger, R. Stong, B. Sury (India), E. I. Verriest, and the proposer.

A Median and Symmedian Produce Perpendicular Lines

12187 [2020, 462]. Proposed by Khakimboy Egamberganov, Sorbonne University, Paris,
France. Given a scalene triangle ABC, let M be the midpoint of BC, and let m and s
denote the median and symmedian lines, respectively, from A. (The symmedian line from
A is the reflection of the median from A across the angle bisector from A.) Let K be the
projection of C onto m, and let L be the projection of B onto s. Let P be the intersection
of BL and CK , and let Q be the intersection of KL and BC. Prove that PM and AQ are
perpendicular.

Solution by Haoran Chen, Jiangsu, China. We use a coordinate system in which A is the
origin and the bisector of the angle atA is the positive x-axis. Thus the coordinates ofB and
C are (b, kb) and (c,−kc), respectively, for some b, c, and k, where b, c > 0 and k 	= 0.
Since the triangle is scalene, b 	= c. The coordinates of M are ((b + c)/2, k(b − c)/2), so
the equations of m and s are y = λx and y = −λx, respectively, where

λ = k(b − c)
b + c .

The line through C perpendicular to m has slope −1/λ, and therefore its equation is

y + kc = −x − c
λ

. (1)

Intersecting this line with m, we find that

K =
(
c(1− kλ)
λ2 + 1

,
cλ(1− kλ)
λ2 + 1

)
.

Similarly, the equation of the line through B perpendicular to s is

y − kb = x − b
λ

, (2)
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and therefore

L =
(
b(1− kλ)
λ2 + 1

,−bλ(1− kλ)
λ2 + 1

)
.

Equations (1) and (2) are the equations of the lines CK and BL, and intersecting them we
find that

P =
(
(b + c)(1− kλ)

2
,
(c − b)(1− kλ)

2λ

)
.

If kλ = 1, thenK = L = A = (0, 0), but the statement of the problem presupposes that
K and L determine a line. We therefore assume kλ 	= 1. Intersecting the linesKL and BC
we obtain, after some calculation,

Q =
(

2bc

(b + c)(λ2 + 1)
,− 2bck2λ

(b + c)(λ2 + 1)

)
.

Finally, using the coordinates for P , M , A, and Q, we compute

slope of PM = b − c
kλ2(b + c) =

1

k2λ
,

slope of AQ = −k2λ,

and the conclusion follows.

Editorial comment. It is not necessary that �ABC be scalene; all that is required is the
condition AB 	= AC.

There are some other interesting geometrical relationships in the configuration in this
problem. Using the coordinates given above, we can compute

slope of KL = (b + c)λ
c − b = −k,

slope of AP = (c − b)
λ(b + c) = −

1

k
.

It follows that KL ‖ AC and AP ⊥ AB.
The case kλ = 1, which was excluded in the solution above, occurs when ∠CAM is a

right angle. The configuration of the points and lines in this problem varies significantly
depending on whether ∠CAM is acute or obtuse and whether or not m and s are perpen-
dicular. A few solvers gave synthetic solutions that were not completely general because
they did not take into account the full range of possible configurations. Most solvers used
analytic methods.

The proposer’s solution shows that AQ is the radical axis of the circles with diameters
AP and AM . This implies that AQ is perpendicular to the line through the centers of these
two circles, which is parallel to PM .

Also solved by J. Chen (China), C. Curtis, G. Fera (Italy), J.-P. Grivaux (France), N. Hodges (UK), W. Janous
(Austria), J. H. Lindsey II, C. R. Pranesachar (India), V. Schindler (Germany), A. Stadler (Switzerland),
R. Stong, T. Wiandt, L. Zhou, and the proposer.

Perfect Paths through the Positive Integers

12188 [2020, 563]. Proposed by H. A. ShahAli, Tehran, Iran.
(a) Is there a permutation of the positive integers with the property that every pair of con-
secutive elements sums to a perfect square?
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(b)* Is there a permutation of the positive integers with the property that every pair of
consecutive elements sums to a perfect cube?

Solution by Texas State University Problem Solvers, San Marcos, TX. The answer to both
questions is yes. We prove the more general claim that for every k ∈ N there is a permuta-
tion of N such that every pair of consecutive elements sums to a perfect kth power. This is
trivial for k = 1, so consider k ≥ 2.

Let G be the graph with vertex set N in which u and v are adjacent when u + v is a
kth power. It suffices to find an infinite path n1, n2, . . . through G that visits every vertex
exactly once. For u ∈ N, let Gu be the subgraph of G induced by {n ∈ N : n ≥ u}. For
x, y ∈ N, write x → y when Gx has a path from x to y.

We first prove the xyz-property: If y, z ∈ V (Gx), then x → z and y → z imply x → y.
This holds because the actual edges ofG in a path inGu witnessing u→ v are undirected.
Following a path from x to z and then a path from z to y in G yields a walk from x to y
in G, which contains a path from x to y. Furthermore, since the edges came from Gx and
Gy , they all lie in Gx , so x → y.

We prove v→ v + k! for every positive integer v and then use this to show v→ v + 1
as well, establishing that Gv is connected for every v ∈ N. We then inductively construct
the desired path.

Define polynomials g1, . . . , gk by g1(m) = (m + 1)k − mk and gj (m) =
gj−1(m+ 1)− gj−1(m) for 2 ≤ j ≤ k. Note inductively that gj is a polynomial of
degree k − j with leading coefficient

∏j−1
i=0 (k − i), and all of its coefficients are non-

negative. In particular, gk(m) = k!. Also define polynomials f1, . . . , fk by f1(m) = 0 and
fj (m) =∑j

i=2 gi(m) for 2 ≤ j ≤ k. Note that fj+1 is a polynomial of degree k − 2 when
1 ≤ j < k. Since gi(n) ≥ 0 for all n ∈ N, we have 0 ≤ fj (m) ≤ fj+1(m) for m ∈ N and
1 ≤ j ≤ k − 1. Choose M ∈ N so that g1(m) > 2fk(m+ 1) when m ≥ M , which we can
do since g1 has higher degree than fk .

Given 1 ≤ i ≤ k, we now prove by induction on i that v→ v + gi(m)whenm and v are
distinct positive integers such thatm ≥ M andmk > 2v + 2fi(m). For i = 1, the condition
is mk > 2v, and the list (v,mk − v, (m+ 1)k −mk + v) provides a path of length 2 from
v to v + g1(v) in Gv , yielding v→ v + g1(m).

Now consider i > 1, with m ≥ M and mk > 2v + 2fi(m). Since fi(m) ≥ 0 and
g1(m) > fk(m+ 1) ≥ fi−1(m+ 1), we have

(m+ 1)k = mk + g1(m) > 2v + 2fi−1(m+ 1),

so v→ v + gi−1(m+ 1) by applying the hypothesis for i − 1 to m+ 1 and v. Also,

mk > 2v + 2fi(m)) = 2(v + gi(m))+ 2fi−1(m).

This allows us to apply the hypothesis for i − 1 to m and v + gi(m) to obtain (v +
gi(m))→ (v + gi(m)+ gi−1(m)). Since gi(m)+ gi−1(m) = gi−1(m + 1), this becomes
(v + gi(m))→ (v + gi−1(m + 1). Now the xyz-property yields v → v + gi(m), estab-
lishing the claim.

Given v ∈ N, we can choose m with m ≥ M and mk > v + fk(m), because fk is
a polynomial of degree k − 2. We then have v → v + gk(m) = v + k!. It follows that
v → v + n · k! for all n ∈ N. Let r be a multiple of k! such that rk > 2v. Since also
(r + 1)k > 2(2k − v), the list (v, rk − v, (r + 1)k − (rk − v)) provides a path of length 2
in Gv showing v→ (r + 1)k − (rk − v). Since (r + 1)k − (rk − v)− (v + 1) is a multi-
ple of r , it is also a multiple of k!, so v + 1→ (r + 1)k − (rk − v). Now the xyz-property
yields v→ v + 1. Hence Gv is connected.

Finally, we construct the required path through the positive integers inductively. Let
S1 = (1). For j ∈ N, let Sj be a finite list of distinct positive integers such that the sum
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of any two consecutive elements in the list is a kth power. We extend Sj to a longer such
list Sj+1 containing the smallest positive integer p not in Sj as follows. Let q be the last
element of Sj , and let r be the largest element of Sj . Choose positive integers n and m
such that mk − p > nk − q > r . Let u = nk − q and v = mk − p. Choose a path P in
Gu from u to v. Obtain Sj+1 from Sj by appending P and then p. Since u > r , all the
integers appended to the list have not previously occurred in the list, the first element that
was missing is now included, and any two consecutive elements in the list sum to a kth
power. Since we iteratively extend the list in a way that includes the least integer missing
from the previous list, each positive integer appears eventually.

Also solved by E. J. Ionaşcu, J. R. Roche, K. Schilling, and R. Stong. Part (a) also solved by O. P. Lossers
(Netherlands) and the proposer.

Integrating a Rational Function

12189 [2020, 563]. Proposed by Hidefumi Katsuura, San Jose State University, San Jose,
CA. Evaluate ∫ 1

0

(k + 1)xk −∑k
m=0 x

mk

xk(k+1) − 1
dx,

where k is a positive integer.

Solution by Giuseppe Fera and Giorgio Tescaro, Vicenza, Italy. The value of the integral is
ln(k + 1)/k. To prove this, we start with the fact that for x 	= 1,

k∑
m=0

xmk = xk(k+1) − 1

xk − 1
.

Substituting this formula in the integrand, using a limit to avoid the singularity at x = 1,
and then making the change of variable y = xk+1, we see that∫ 1

0

(k + 1)xk −∑k
m=0 x

mk

xk(k+1) − 1
dx = lim

a→1−

(∫ a

0

(k + 1)xk dx

xk(k+1) − 1
−
∫ a

0

dx

xk − 1

)

= lim
a→1−

(∫ ak+1

0

dy

yk − 1
−
∫ a

0

dx

xk − 1

)

= lim
a→1−

∫ a

ak+1

dx

1− xk .

To evaluate this limit, consider any a with 0 < a < 1. When ak+1 ≤ x ≤ a, set

g(x) =
k−1∑
m=0

xm = 1− xk
1− x .

Note that g is increasing on [ak+1, a], so

(1− x)g(ak+1) ≤ (1− x)g(x) ≤ (1− x)g(a).
Inverting and substituting for g(x), we get

1

g(a)
· 1

1− x ≤
1

1− xk ≤
1

g(ak+1)
· 1

1− x ,

192 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 129



and integrating yields

1

g(a)

∫ a

ak+1

dx

1− x ≤
∫ a

ak+1

dx

1− xk ≤
1

g(ak+1)

∫ a

ak+1

dx

1− x .

Since ∫ a

ak+1

dx

1− x = ln

(
1− ak+1

1− a
)
= ln

(
k∑

m=0

am

)
,

we arrive at the bounds

1

g(a)
ln

(
k∑

m=0

am

)
≤
∫ a

ak+1

dx

1− xk ≤
1

g(ak+1)
ln

(
k∑

m=0

am

)
.

Finally, we have lima→1− g(ak+1) = lima→1− g(a) = lima→1−
∑k−1

m=0 a
m = k, and

lim
a→1−

ln

(
k∑

m=0

am

)
= ln(k + 1).

Therefore, by the squeeze theorem,∫ 1

0

(k + 1)xk −∑k
m=0 x

mk

xk(k+1) − 1
dx = lim

a→1−

∫ a

ak+1

dx

1− xk =
ln(k + 1)

k
.

Also solved by U. Abel & V. Kushnirevych (Germany), T. Akhmetov (Russia), K. F. Andersen (Canada),
N. Batir (Turkey), A. Berkane (Algeria), R. Boukharfane (Saudi Arabia), P. Bracken, B. Bradie, N. Caro
(Brazil), R. Chapman (UK), H. Chen, R. Dempsey, A. Dixit (India) & S. Pathak (US), S. P. I. Evan-
gelou (Greece), M. L. Glasser, E. A. Herman, N. Hodges (UK), F. Holland (Ireland), W. Janous (Austria),
K. T. L. Koo (China), O. Kouba (Syria), H. Kwong, K.-W. Lau (China), G. Lavau (France), O. P. Lossers
(Netherlands), L. Matejı́c̆ka (Slovakia), M. Omarjee (France), Á. Plaza (Spain), K. Sarma (India), V. Schindler
(Germany), A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong, R. Tauraso (Italy), T. Wiandt,
M. Wildon (UK), L. Zhou, and the proposer.

An Incenter is an Orthocenter

12190 [2020, 563]. Proposed by Leonard Giugiuc, Drobeta-Turnu Severin, Romania, and
Gabriela Negutescu, Telea, Romania. LetABC be a triangle, and letD,E, and F be points
on BC, CA, and AB, respectively, such that AD, BE, and CF are concurrent at P . It is
well known that if P is the orthocenter of ABC, then P is the incenter of DEF . Prove the
converse.

Solution by Titu Zvonaru, Comăneşti, Romania. We show that if AD is the angle bisector
of ∠EDF , then AD is perpendicular to BC. Combining this with similar statements about
BE and CF , it then follows that if P is the incenter of DEF , then P is the orthocenter of
ABC, as desired.

Let 
 be the line throughA parallel to BC, and letM andN be the points whereDE and
DF , respectively, intersect 
. Since �CDE is similar to �AME and �BDF is similar to
�ANF , we have

CE

EA
= DC

AM
and

AF

FB
= AN

BD
.

By Ceva’s theorem,

BD

DC
· CE
EA
· AF
FB
= 1.
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Combining these three equations yieldsAM = AN . Consequently, in�MDN ,DA is both
the angle bisector and median at D. It follows that �MDN is isosceles, withMD = ND,
and hence AD is perpendicular to 
 and thus to BC.

Editorial comment. The problem statement here corrects a typographical error that
appeared in the original problem statement.

Also solved by R. Boukharfane (Saudi Arabia), R. B. Campos (Spain), H. Chen (China), C. Chiser (Romania),
P. De (India), G. Fera (Italy), N. Hodges (UK), I. Patrascu & I. Cotoi (Romania), Y. Ionin, M. Kaplan &
M. Goldenberg, K. T. L. Koo (China), O. Kouba (Syria), S. S. Kumar, Y. Lee (Korea), J. H. Lindsey II, M. Mihai
& D. Ş. Marinescu (Romania), C. R. Pranesachar (India), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy),
M. Tetiva (Romania), T. Wiandt, L. Zhou, and the proposers.

Fermat Strikes Twice

12192 [2020, 564]. Proposed by Péter Kórus, University of Szeged, Szeged, Hungary. Find
all triples (a, b, c) of positive integers such that (c, c2) is a point on the graph of y = x2

with minimum sum of distances to (0, a) and (0, b).

Solution by Nigel Hodges, Gloucestershire, UK. There are no such triples.
Let f (x) = √x2 + (x2 − a)2 + √x2 + (x2 − b)2. We want to have f minimized at

x = c, so we must have f ′(c) = 0. The derivative of f is given by

f ′(x) = x + 2(x2 − a)x√
x2 + (x2 − a)2 +

x + 2(x2 − b)x√
x2 + (x2 − b)2 .

If a = b, then f ′(c) = 0 implies 2c2 = 2a − 1, which cannot happen when a and c are
integers. Hence we may assume a 	= b. The condition f ′(c) = 0 with c > 0 becomes

2c2 − 2a + 1√
c2 + (c2 − a)2 = −

2c2 − 2b + 1√
c2 + (c2 − b)2 .

Squaring both sides and simplifying yields

(b − a) (4c4 + 2c2 + a + b − 4ab
) = 0.

Since a 	= b, this equation is equivalent to (4c2 + 1)2 = (4a − 1)(4b− 1). Since 4a − 1 ≡
3 (mod 4), the right side must have a prime factor p congruent to 3 modulo 4. This prime
p must also divide the left side, so (2c)2 ≡ −1 (mod p). Now Fermat’s little theorem and
the fact that (p − 1)/2 is odd yield the contradiction

1 ≡ (2c)p−1 ≡ (−1)(p−1)/2 ≡ −1 (mod p).

Editorial comment. Allen Stenger invoked Fermat in a different way, expressing the prob-
lem in terms of Fermat’s principle of least time in optics, which corresponds to the angle
of incidence equaling the angle of reflection.

Also solved by N. Caro (Brazil), R. Chapman (UK), H. Chen (China), K. Gatesman, E. J. Ionaşcu, O. Kouba
(Syria), A. Stadler (Switzerland), A. Stenger, R. Stong, R. Tauraso (Italy), T. Wiandt, H. Widmer (Switzerland),
L. Zhou, and the proposer.

CLASSICS

We solicit contributions of classics from readers, who should include the problem state-
ment, solution, and references with their submission. The solution to the classic problem
published in one issue will appear in the subsequent issue.

C2. Ira Gessel [1972], contributed by the editors. Prove that a positive integer n is a
Fibonacci number if and only if 5n2 + 4 or 5n2 − 4 is a perfect square.
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The Lion and the Man

C1. Attributed to Richard Rado in the 1930s, contributed by the editors. A lion and a man
are in an enclosure. The maximum speed of the lion is equal to the maximum speed of the
man. Can the lion catch the man?

Solution. We assume that the lion and the man start at different locations, and we show that
the man can evade capture forever.

If the man starts on the boundary of the enclosure, then he first moves into the interior.
As long as he does this by traveling less than half the distance to the lion, he won’t be
caught during this step. Once he is in the interior, we can let D be an open disk centered
at the man’s location that is entirely contained in the enclosure. We now give a strategy
that the man can follow to evade capture while staying inside D and therefore inside the
enclosure.

Let the unit of distance be chosen so that D has radius 2, and let the unit of time be
chosen so that the maximum speed of both lion and man is 1. The strategy proceeds in
stages. In stage 1, the man starts running directly away from the lion and runs at maximum
speed in a straight line for 1 unit of time. Since the lion cannot run faster than the man, the
man cannot be caught during stage 1. For n ≥ 2, at stage n the man travels at maximum
speed a distance 1/n in a direction that is perpendicular to the line L that passes through
his location at the beginning of the stage and the center ofD. There are two such directions
to choose from, and the man chooses based on the location of the lion. If the lion is in one
of the half planes determined by L, then the man runs into the other half plane. The man
can run either way if the lion is on L. Every point that the man visits during stage n is
closer to the man’s position at the beginning of the stage than it is to the lion’s position, so
the man evades capture during stage n.

The time elapsed during the first n stages is
∑n

k=1 1/k, which diverges as n approaches
infinity. On the other hand, the distance between the man and the center of D after n
stages, by repeated use of the Pythagorean theorem, is

√∑n
k=1 1/k2, which converges as

n approaches infinity and in particular is bounded (generously) by 2. Thus the man evades
capture forever while remaining inside D.

Editorial comment. We have treated the lion and man as points and assumed that to cap-
ture the man, the lion must reduce the distance between them to zero in finite time. The
solution given shows that certain details of the problem don’t matter, such as the shape of
the enclosure or the initial positions of the man and lion (as long as they are distinct).

The problem has a colorful history. It was proposed by Richard Rado in the 1930s,
with the enclosure being a disk, and solved as above by Abram Besicovitch in 1952. The
problem was popularized by John Littlewood in his book A Mathematician’s Miscellany
(see B. Bollobás, ed. (1986), Littlewood’s Miscellany, Cambridge: Cambridge Univ. Press,
pp. 114–117). For further details and generalizations see Bollobás, B., Leader, I., and Wal-
ters, M. (2012), Lion and man—can both win?, Israel J. Math. 189: 267–286.

It is tempting to think that the man’s best strategy is to stay as far from the lion as
possible, and in the case of a circular enclosure this means that the man would run to
the boundary and then run around the boundary (perhaps sometimes changing direction).
However, if the man stays on the boundary, then the lion can catch the man by running
outward from the center of the enclosure while staying on the radius from the center to
the man. Thus, in order to avoid capture, the man must step into the interior of the enclo-
sure. This gives him the freedom to move in any direction—a freedom that is exploited in
Besicovitch’s solution.
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SOLUTIONS

Brianchon’s Theorem on a Hidden Conic

12177 [2020, 372]. Proposed by Dao Thanh Oai, Thai Binh, Vietnam, and Cherng-tiao
Perng, Norfolk, VA. Let C be a nondegenerate conic, and let l be a line. Suppose that
A1, . . . , A2n and B1, . . . , B2n are points on C such that AiAi+1 and BiBi+1 intersect at a
point on l for i = 1, . . . , 2n− 1.
(a) Show that A2nA1 and B2nB1 intersect at a point on l.
(b) Let n = 3 and take subscripts modulo 6. For i = 1, . . . , 6, suppose that AiBi and
Ai+1Bi+1 intersect at a point Di . Prove that the three lines D1D4, D2D5, and D3D6 are
concurrent.

Solution by Richard Stong, Center for Communications Research, San Diego, CA.
(a) The case n = 1 is trivial. For the case n = 2, we note that applying Pascal’s
theorem to the hexagon A1A2A3B1B2B3 shows that the intersection points A1A2 ∩ B1B2,
A2A3 ∩ B2B3, and A3B1 ∩ B3A1 are collinear. Since the first two are on l, it follows that
the third is as well. Applying Pascal’s theorem again to the hexagonA1B3B4B1A3A4 shows
thatA1B3 ∩ B1A3, B3B4 ∩A3A4, and B4B1 ∩A4A1 are collinear. Again since the first two
are on l, it follows that the third is as well, proving the case n = 2. The cases n > 2 fol-
low immediately from the n = 2 case and induction. Using the n = 2 case we conclude
that A1A4 and B1B4 meet on l, and therefore we can drop the indices 2 and 3 and use the
induction hypothesis.

(b) By a projective transformation, we may assume l is the line at infinity. If C is disjoint
from l, then C is an ellipse, and by a further affine transformation we may assume C is a
circle. It suffices to prove the result in this case: If C is tangent to l, then C is a parabola.
The result for parabolas follows from continuity by treating them as limits of ellipses. If
C meets l in two points, then C is a hyperbola. This case follows from the circle case by
an argument using analytic continuation. The result for the circle x2 + y2 = 1 means that
a certain analytic function of the x-coordinates of the points A1, . . . , A6, B1 (which deter-
mine the remaining coordinates) vanishes for all real values of these coordinates between
−1 and 1. By analytic continuation, the same function is 0 for purely imaginary values
of these coordinates, which implies the result for the hyperbola y2 − x2 = 1; an affine
transformation reduces any hyperbola to this case.
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If C is a circle and l is the line at infinity, then the statement that AiAi+1 and BiBi+1

meet on l says thatAiAi+1 andBiBi+1 are parallel and hence ∠AiAi+1Bi = ∠Ai+1BiBi+1.
Thus the chords AiBi and Ai+1Bi+1 subtend the same arc of the circle and hence are
congruent. It follows that there is a smaller concentric circle simultaneously tangent to all
the chords AiBi at their midpoints. Thus the hexagon D1D2D3D4D5D6 has an inscribed
circle. Brianchon’s theorem then states that the principal diagonals of this hexagon are
concurrent, which is the desired conclusion.

Also solved by L. Zhou and the proposer.

Every Function has Some Continuity

12178 [2020, 373]. Proposed by Stephen Portnoy, University of Illinois, Urbana, IL. Given
any function f : R→ R, show that there is a real number x and a sequence x1, x2, . . . of
distinct real numbers such that xn→ x and f (xn)→ f (x) as n→∞.

Solution by Supravat Sarkar, Indian Statistical Institute, Bangalore, India. Let A =
{(x, f (x)) : x ∈ R}. The set A is an uncountable subset of R2, which implies that some
point of A must be a limit point of A. To see this, suppose it is not true. Now every point
in A has an open neighborhood in R

2 that contains no other point in A. Thus the subspace
topology of A is discrete. Any uncountable set with discrete topology is not second count-
able, but being a subspace of the second countable space R

2, A must be second countable.
This is a contradiction.

Let (x, f (x)) be an element of A that is a limit point of A. There exist distinct points
(xn, f (xn)) in A converging to (x, f (x)) as n→∞. Hence the numbers x1, x2, . . . are
distinct and xn→ x and f (xn)→ f (x) as n→∞.

Editorial comment. Jacob Boswell and Charles Curtis gave an example showing that the
analogous result for functions from Q to Q need not hold. Jean-Pierre Grivaux, Klaas Pieter
Hart, Kenneth Schilling, and Richard Stong all proved the stronger statement that for all
but countably many x, such a sequence can be found. Celia Schacht pointed out that a proof
of this stronger statement can be found in W. H. Young (1907), A theorem in the theory of
functions of a real variable, Rendiconti del Circolo Matematico di Palermo 24(1), 187–192.
Éric Pité, Stephen Scheinberg, and George Stoica observed that the result in the problem
follows from a theorem of H. Blumberg saying that for every function f : R→ R, there is
a dense subset D of R such that the restriction of f to D is continuous; see H. Blumberg
(1922), New properties of all real functions, Trans. Amer. Math. Soc. 24(2), 113–128.

Also solved by K. F. Andersen (Canada), J. Boswell & C. Curtis, R. Chapman (UK), H. Chen (China), T. Corso
(Germany), G. A. Edgar, G. Fera & G. Tescaro (Italy), O. Geupel (Germany), J.-P. Grivaux (France), K. P. Hart
(Netherlands), D. Hensley, E. A. Herman, E. J. Ionaşcu, B. Karaivanov (USA) & T. S. Vassilev (Canada),
J. C. Kieffer, L. Matejı́c̆ka (Slovakia), A. Natian, J. Nieto (Venezuela), J. Olson, M. Omarjee (France),
A. Pathak, L. J. Peterson, É. Pité, K. Sarma (India), C. Schacht, S. Scheinberg, K. Schilling, E. Schmeichel,
A. Stadler (Switzerland), G. Stoica (Canada), R. Stong, R. Tauraso (Italy), Northwestern University Math
Problem Solving Group, and the proposer.

Factorials are Rarely Good

12179 [2020, 373]. Proposed by Nick MacKinnon, Winchester College, Winchester, UK.
A positive integer n is good if its prime factorization 2a1 3a2 · · ·pamm has the property that
ai/ai+1 is an integer whenever 1 ≤ i < m. Find all n greater than 2 such that n! is good.

Solution by Celia Schacht, North Carolina State University, Raleigh, NC. The values of n
such that n! is good are 3, 4, 5, 6, 7, 10, and 11.
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We have n! = ∏
p∈Pn

pαp(n), where Pn is the set of primes less than or equal to n and

αp(n) =

⌊
logp n

⌋∑
k=1

⌊
n

pk

⌋
.

We focus on the relative sizes of α5(n) and α7(n). Note that n/5 ≥ n/7 + 1 implies

n/5� > 
n/7� and holds when n ≥ 17.5. Explicit checking shows that 
n/5� > 
n/7�
also holds for n ∈ {15, 16, 17}. Since

⌊
n/5k

⌋ ≥ ⌊n/7k⌋ for all k, for n ≥ 15 we conclude

α5(n) > α7(n). (1)

We complete the argument by showing

α5(n) < 2α7(n) (2)

for n ≥ 28. When (1) and (2) both hold, n cannot be good, since α5(n)/α7(n) is strictly
between 1 and 2. Hence these inequalitites reduce the problem to checking explicitly which
n less than 28 are good, and these turn out to be only 3, 4, 5, 6, 7, 10, and 11.

To prove (2), we need an upper bound on α5(n) and a lower bound on α7(n). We com-
pute

α5(n) =

log5 n�∑
k=1

⌊ n
5k

⌋
≤

log5 n�∑
k=1

n

5k
= n

5
· 1− 1/5
log5 n�

1− 1/5
≤ n(1− 1/n)

4
= n− 1

4

and

α7(n) =

log7 n�∑
k=1

⌊ n
7k

⌋
≥

log7 n�∑
k=1

n

7k
− ⌊log7 n

⌋

= n

7
· 1− 1/7
log7 n�

1− 1/7
− ⌊log7 n

⌋ ≥ n(1− 7/n)

6
− ⌊log7 n

⌋

= n− 7

6
− ⌊log7 n

⌋
.

Hence to prove (2) it suffices to show (n− 1)/4 < (n− 7)/3− 2
⌊

log7 n
⌋

, which simpli-
fies to 24

⌊
log7 n

⌋+ 25 < n and holds when n ≥ 74. It is also easily checked that (2) holds
when 28 ≤ n ≤ 73.

Also solved by S. Chandrasekhar (India), R. Chapman (UK), W. Chang, G. Fera (Italy), D. Fleischman,
O. Geupel (Germany), N. Hodges (UK), Y. J. Ionin, W. Janous (Austria), M. Kaplan & M. Goldenberg,
O. Kouba (Syria), S. S. Kumar, J. H. Lindsey II, O. P. Lossers (Netherlands), R. Martin (Germany) J. H. Nieto
(Venezuela), S. Omar (Morocco), É. Pité, C. R. Pranesachar (India), M. A. Prasad (Inda), A. Stadler (Switzer-
land), R. Stong, R. Tauraso (Italy), D. Terr, F. A. Velandia & J. F. González (Columbia), L. Zhou, Eagle Prob-
lem Solvers, and the proposer.

A Combination of Betas

12180 [2020, 373]. Proposed by Pablo Fernández Refolio, Madrid, Spain. Prove

∞∑
n=0

(4n
2n

)2
28n(2n+ 1)

= 2

π
−
√

2C2

π3/2
+
√

2π

2C2
,

where C = ∫∞0 t−1/4e−t dt .
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Solution by Quan Minh Nguyen, William Academy, Toronto, ON, Canada. Let S denote the
requested sum. Using Wallis’s integral, we see that

S =
∞∑
n=0

(4n
2n

)2
28n(2n+ 1)

=
∞∑
n=0

( (4n
2n

)
24n(2n+ 1)

· 2

π

∫ π/2

0
sin4n x dx

)

= 2

π

∫ π/2

0

∞∑
n=0

(4n
2n

)
(2n+ 1)

(
sin2 x

4

)2n

dx.

Recall the generating function for the Catalan numbers:
∞∑
n=0

Cnt
n =

∞∑
n=0

(2n
n

)
n+ 1

tn = 1−√1− 4t

2t
, 0 < |t | ≤ 1

4
.

(The singularity at t = 0 is removable.) Replacing t with −t in this equation and then
averaging the two equations yields

∞∑
n=0

(4n
2n

)
2n+ 1

t2n =
√

1+ 4t −√1− 4t

4t
, 0 < |t | ≤ 1

4
.

Setting t = (sin2 x)/4 in this equation, we obtain

S = 2

π

∫ π/2

0

√
1+ sin2 x −

√
1− sin2 x

sin2 x
dx

= 2

π

∫ π/2

0

(√
1+ sin2 x − cos x

)
csc2 x dx.

To evaluate the integral, we begin by using integration by parts to get

S = − 2

π
cot x

(√
1+ sin2 x − cos x

)∣∣∣∣
π/2

0

+ 2

π

∫ π/2

0

(
cos2 x√

1+ sin2 x
+ cos x

)
dx

= 2

π
+ 2

π

∫ π/2

0

cos2 x√
1+ sin2 x

dx.

Substituting u = sin x and then t = u4, and recognizing Beta functions, we obtain

S = 2

π
+ 2

π

∫ 1

0

√
1− u2

√
1+ u2

du = 2

π
+ 2

π

(∫ 1

0

1√
1− u4

du−
∫ 1

0

u2

√
1− u4

du

)

= 2

π
+ 1

2π

(∫ 1

0
t−3/4(1− t)−1/2 dt −

∫ 1

0
t−1/4(1− t)−1/2 dt

)

= 2

π
+ 1

2π

(
B

(
1

4
,

1

2

)
− B

(
3

4
,

1

2

))
.

Using Euler’s reflection formula �(3/4)�(1/4) = π√2 and recognizing that C = �(3/4),
we compute

B

(
1

4
,

1

2

)
= �(1/4)�(1/2)

�(3/4)
=
√

2π3/2

C2

and

B

(
3

4
,

1

2

)
= �(3/4)�(1/2)

�(5/4)
= 23/2C2

√
π

.
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Hence

S = 2

π
−
√

2C2

π3/2
+
√

2π

2C2
.

Also solved by A. Berkane (Algeria), P. Bracken, R. Chapman (UK), H. Chen, G. Fera (Italy), P. Fulop (Hun-
gary), L. Glasser, O. Kouba (Syria), K.-W. Lau (China), A. D. Pirvuceanu (Romania), V. Schindler (Germany),
F. Sinani (Kosovo), A. Stadler (Switzerland), S. M. Stewart (Australia), R. Stong, R. Tauraso (Italy), M. Vowe
(Switzerland), T Wiandt, and the proposer.

A Sum of an Integral of a Fractional Part Yields Gamma

12181 [2020, 461]. Proposed by Shivam Sharma, University of Delhi, New Delhi, India.
Prove

∞∑
k=2

1

k

∫ 1

0

{
1
k
√
x

}
dx = γ,

where {x} equals x − 
x�, the fractional part of x, and γ is limn→∞
(− ln n+∑n

i=1(1/i)
)
,

the Euler–Mascheroni constant.

Solution by Gérard Lavau, Fontaine lès Dijon, France. For integers n and k with n ≥ 1 and
k ≥ 2, we have 
1/ k

√
x� = n if and only if 1/(n+ 1)k < x ≤ 1/nk . For such x, we have

{1/ k
√
x} = 1/ k

√
x − n, so∫ 1

0

{
1
k
√
x

}
dx =

∞∑
n=1

∫ 1/nk

1/(n+1)k

(
1
k
√
x
− n
)
dx

=
∞∑
n=1

[
k

k − 1

(
1

nk−1
− 1

(n+ 1)k−1

)
− n

(
1

nk
− 1

(n+ 1)k

)]

=
∞∑
n=1

[
1

k − 1

(
1

nk−1
− 1

(n+ 1)k−1

)
− 1

(n+ 1)k

]

= 1

k − 1

∞∑
n=1

(
1

nk−1
− 1

(n+ 1)k−1

)
−
∞∑
n=2

1

nk
= 1

k − 1
− (ζ(k)− 1),

where the first sum in the last line is a telescoping series and ζ is the Riemann zeta function.
Therefore

∞∑
k=2

1

k

∫ 1

0

{
1
k
√
x

}
dx =

∞∑
k=2

(
1

k(k − 1)
− ζ(k)− 1

k

)
.

The desired result now follows from the formulas
∞∑
k=2

1

k(k − 1)
= 1 and

∞∑
k=2

ζ(k)− 1

k
= 1− γ.

The first of these formulas can be derived by using partial fractions to rewrite the sum as
a telescoping series. The second was proved by Euler (see page 111 in J. Havil (2003),
Gamma: Exploring Euler’s Constant, Princeton: Princeton University Press).

Also solved by Z. Ahmed (India), K. F. Andersen (Canada), M. Bataille (France), A. Berkane (Algeria),
N. Bhandari (Nepal), G. E. Bilodeau, R. Boukharfane (Saudi Arabia), J. Boswell & C. Curtis, P. Bracken,
B. Bradie, B. S. Burdick, F. Cardona (Columbia), J. N. Caro Montoya (Brazil), W. Chang, R. Chapman (UK),
H. Chen, C. Chiser (Romania), B. E. Davis, M. Dinca & D. S. Marinescu (Romania), A. Dixit (Canada) &
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S. Pathak (USA), A. Eydelzon, G. Fera (Italy), M. L. Glasser, N. Grivaux (France), J. A. Grzesik, E. A. Herman,
N. Hodges (UK), W. Janous (Austria), S. Kaczkowski, M. Kaplan, K. T. L. Koo (China), O. Kouba (Syria),
S. S. Kumar, P. Lalonde (Canada), K.-W. Lau (China), R. Molinari, S. E. Muñoz (Venezuela), K. Nelson,
Q. M. Nguyen (Canada), M. Omarjee (France), S.-H. Park (Korea), Á. Plaza (Spain), C. R. Pranesachar (India),
M. A. Prasad (India), K. Sarma (India), E. Schmeichel, B. Shala (Slovenia), F. Sinani (Kosovo), S. Singhania
(India), A. Stadler (Switzerland), S. M. Stewart (Australia), R. Tauraso (Italy), H. Vinuesa (Spain), T. Wiandt,
H. Widmer (Switzerland), M. Wildon (UK), Y. Xiang (China), L. Zhou, and the proposer.

Bounding Circumradii of Corner Triangles

12182 [2020, 461]. Proposed by George Apostolopoulos, Messolonghi, Greece. Let R and
r be the circumradius and inradius, respectively, of triangle ABC. Let D, E, and F be
chosen on sides BC, CA, and AB so that AD, BE, and CF bisect the angles of ABC. Let
RA, RB , and RC denote the circumradii of triangles AEF , BFD, and CDE, respectively.
Prove RA + RB + RC ≤ 3R2/(4r).

Solution by Michel Bataille, Rouen, France. Let a, b, and c be the sides of ABC
opposite angles A, B, and C, respectively. The law of sines gives a = 2R sinA and
EF = 2RA sinA, and hence RA = R · EF/a. Similar results hold for RB and RC , so the
requested inequality is equivalent to

EF

a
+ FD

b
+ DE

c
≤ 3R

4r
.

Since BE bisects ∠ABC, AE/c = EC/a = (EC + AE)/(a + c) = b/(a + c), so
AE = bc/(a + c). Similarly, AF = bc/(a + b), and using the law of cosines, we obtain

EF 2 = AE2 + AF 2 − 2AE · AF · cosA = b2c2

(a + c)2 +
b2c2

(a + b)2 −
bc(b2 + c2 − a2)

(a + b)(a + c)
= bc

(a + b)2(a + c)2 ·
(
a2(a + b)(a + c)− a(a + b + c)(b − c)2)

≤ bc

(a + b)2(a + c)2 · a
2(a + b)(a + c) = a2bc

(a + b)(a + c) .

By the AM–GM inequality,

EF ≤ a
√
bc√

(a + b)(a + c) ≤
a
√
bc√

2
√
ab · 2√ac

=
√
a

4
√
b 4
√
c

2
≤ 2a + b + c

8
.

Similarly, FD ≤ (2b + c + a)/8 and DE ≤ (2c + a + b)/8. Therefore

EF

a
+ FD

b
+ DE

c
≤ 3

4
+ 1

8

(
b

a
+ c

a
+ c
b
+ a
b
+ a
c
+ b
c

)

= 3

8
+ (a + b + c)(ab + bc + ca)

8abc
.

With s = (a + b+ c)/2, we have ab+ bc+ ca = s2 + r2 + 4rR and abc = 4srR. Apply-
ing Gerretsen’s inequality s2 ≤ 4R2 + 3r2 + 4rR and Euler’s inequalityR ≥ 2r , we obtain

EF

a
+ FD

b
+ DE

c
≤ 3

8
+ 2s(s2 + r2 + 4rR)

32srR
= s2 + r2 + 10rR

16rR

≤ 2R2 + 2r2 + 7rR

8rR
= 6R2 − (R − 2r)(4R + r)

8rR
≤ 6R2

8rR
= 3R

4r
,

which completes the proof.
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Also solved by M. Dinc̆a & M. Ursărescu (Romania), G. Fera (Italy), N. Hodges (UK), W. Janous (Austria),
C. R. Pranesachar (India), V. Schindler (Germany), S. Singhania (India), A. Stadler (Switzerland), R. Stong,
R. Tauraso (Italy), M. Vowe (Switzerland), T. Wiandt, and the proposer.

A Gaussian Binomial Identity

12183 [2020, 461]. Proposed by Hideyuki Ohtsuka, Saitama, Japan. Let
[
n

k

]
q

denote the
Gaussian binomial coefficient

(1− qn)(1− qn−1) · · · (1− qn−k+1)

(1− qk)(1− qk−1) · · · (1− q) .

For integers m, n, and r with m ≥ 1 and n ≥ r ≥ 0, prove

n∑
k=0

(−1)kq(
k+1

2 )−rk

1− qk+m
[n
k

]
q
= qrm

1− qm
[
m+ n
m

]−1

q

.

Solution I by Albert Stadler, Herrliberg, Switzerland. We use induction on n. For n = r =
0, both sides of the proposed identity equal 1/ (1− qm).

We extend the definition of
[
n

k

]
q

in the standard way by setting it to 0 when k /∈ [0, n].
We use the well-known and easily-proved analogues of the Pascal identities for the Gaus-
sian binomial coefficients:[

n+ 1

k

]
q

=
[n
k

]
q
+ qn−k+1

[
n

k − 1

]
q

= qk
[n
k

]
q
+
[

n

k − 1

]
q

. (∗)

For the induction step, we obtain the truth of the statement for n+ 1 from its truth for
n. First suppose 0 ≤ r ≤ n. Using the first equation in (∗) and then reindexing the second
sum,

n+1∑
k=0

(−1)kq(
k+1

2 )−rk

1− qk+m
[
n+ 1

k

]
q

=
n+1∑
k=0

(−1)kq(
k+1

2 )−rk

1− qk+m
([n
k

]
q
+ qn−k+1

[
n

k − 1

]
q

)

=
n∑
k=0

(−1)kq(
k+1

2 )−rk

1− qk+m
[n
k

]
q
+ qn

n∑
k=0

(−1)k+1q(
k+2

2 )−r(k+1)−k

1− qk+1+m
[n
k

]
q

=
n∑
k=0

(−1)kq(
k+1

2 )−rk

1− qk+m
[n
k

]
q
− qn+1−r

n∑
k=0

(−1)kq(
k+1

2 )−rk

1− qk+1+m
[n
k

]
q

= qrm

1− qm
[
m+ n
m

]−1

q

− qn+1−r · q
r(m+1)

1− qm+1

[
m+ n+ 1

m+ 1

]−1

q

=
[
m+ n+ 1

m

]−1

q

(
qrm

1− qm ·
1− qm+n+1

1− qn+1
− qn+1 · qrm

1− qm+1
· 1− qm+1

1− qn+1

)

=
[
m+ n+ 1

m

]−1

q

qrm

1− qm ,

as required.
It remains to prove the statement for r = n+ 1. The computation is similar:

n+1∑
k=0

(−1)kq(
k+1

2 )−(n+1)k

1− qk+m
[
n+ 1

k

]
q

=
n+1∑
k=0

(−1)kq(
k+1

2 )−(n+1)k

1− qk+m
(
qk
[n
k

]
q
+
[

n

k − 1

]
q

)
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=
n∑
k=0

(−1)kq(
k+1

2 )−nk

1− qk+m
[n
k

]
q
− q−n

n∑
k=0

(−1)kq(
k+1

2 )−nk

1− qk+1+m
[n
k

]
q

= qnm

1− qm
[
m+ n
m

]−1

q

− q−n · q
n(m+1)

1− qm+1

[
m+ n+ 1

m+ 1

]−1

q

=
[
m+ n+ 1

m

]−1

q

(
qnm

1− qm ·
1− qm+n+1

1− qn+1
− qnm

1− qm+1
· 1− qm+1

1− qn+1

)

=
[
m+ n+ 1

m

]−1

q

q(n+1)m

1− qm ,

completing the induction step.

Solution II by Pierre Lalonde, Plessisville, QC, Canada. More generally, we see that

n∑
k=0

(−1)k q(
k+1

2 )−rk

1− xqk
[n
k

]
q
= xr

1− x
n∏
k=1

1− qk
1− xqk ,

for n ≥ r ≥ 0. The proposed problem is the case x = qm.
The right side of the identity is a rational function in x with numerator of degree r and

denominator of degree n + 1, which is greater than r . The zeros of the denominator are
1/qk for 0 ≤ k ≤ n, which are formally distinct. Therefore, the partial fraction decompo-
sition of the right side is

xr

1− x
n∏
k=1

1− qk
1− xqk =

n∑
k=0

Ak

1− xqk ,

where

Ak = lim
x→1/qk

(1− xqk) · xr

1− x
n∏
i=1

1− qi
1− xqi = q

−rk
∏n
i=1(1− qi)∏k

i=1(1− q−i )
∏n−k
i=1 (1− qi)

= (−1)k q(
∑k
i=1 i)−rk ·

∏n
i=n+1−k(1− qi)∏k
i=1(1− qi)

= (−1)k q(
k+1

2 )−rk
[n
k

]
q
.

Hence

xr

1− x
n∏
k=1

1− qk
1− xqk =

n∑
k=0

(−1)k q(
k+1

2 )−rk

1− xqk
[n
k

]
q
,

as claimed.

Editorial comment. Several solvers used the method of the first solution. It can be adapted
to prove the generalization in the second solution. Hacer Bozdag mentioned a still more
general result, with two additional parameters and implying the claim, from E. Kılıç and
H. Prodinger (2016), Evaluation of sums involving Gaussian q-binomial coefficients with
rational weight functions, Int. J. Number Theory 12, 495–504.

Also solved by H. Bozdag (Turkey), R. Chapman (UK), N. Hodges (UK), W. P. Johnson, H. Kwong,
M. A. Prasad (India), R. Stong, R. Tauraso (Italy), L. Zhou, and the proposer.

The Distance Between Norms

12186 [2020, 462]. Proposed by Anatoly Eydelzon, University of Texas at Dallas,
Richardson, TX. For v = 〈x1, . . . , xn〉 in R

n, let ‖v‖p =
(∑n

i=1 |xi |p
)1/p

and ‖v‖∞ =
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max1≤i≤n |xi |; these are the usual p-norm and ∞-norm on R
n. For what v does the

series
∞∑
p=1

(
‖v‖p − ‖v‖∞

)
converge?

Solution by Óscar Ciaurri, Universidad de La Rioja, Logroño, Spain. When v is the zero
vector, the terms of the series are identically zero, and hence the series converges. Exclud-
ing this trivial case, we show that the given series S converges if and only if there is a
unique j ∈ {1, . . . , n} such that |xj | = ‖v‖∞.

Suppose there is a unique such j . By symmetry, we may assume j = 1. We have

‖v‖p − ‖v‖∞ = ‖v‖∞
⎛
⎝(1+

n∑
i=2

|xi |p
|x1|p

)1/p

− 1

⎞
⎠

and, by Bernoulli’s inequality (1+ z)r ≤ 1+ rz for 0 ≤ r ≤ 1 and z > −1, we have

‖v‖p − ‖v‖∞ ≤ ‖v‖∞
n∑
i=2

|xi |p
p|x1|p .

Summing over p, we obtain

S ≤ ‖v‖∞
n∑
i=2

∞∑
p=1

|xi |p
p|x1|p .

The inner series all converge since |xi |/|x1| < 1, and hence S converges.
Now suppose that there are at least two values j, k ∈ {1, . . . , n} such that ‖v‖∞ =

|xj | = |xk|. In this case, ‖v‖p ≥ (|xj |p + |xk|p)1/p = 21/p‖v‖∞, so ‖v‖p − ‖v‖∞ ≥
‖v‖∞(21/p − 1). Since

lim
p→∞

21/p − 1

1/p
= lim

t→0

2t − 1

t
= log 2 > 0,

the series
∑∞

p=1(2
1/p − 1) diverges by comparison to the harmonic series, and hence S

diverges.

Also solved by K. F. Andersen (Canada), N. Caro (Brazil), R. Chapman (UK), H. Chen (China), C. Curtis
& A. Appuhamy & J. Boswell, J. Freeman (Netherlands), J.-P. Grivaux (France), L. Han, E. A. Herman,
N. Hodges (UK), E. J. Ionaşcu, K. T. L. Koo (China), O. Kouba (Syria), J. H. Lindsey II, U. Milutinović
(Slovenia), M. Omarjee (France), Á. Plaza & K. Sasdarangani (Spain), M. A. Prasad (India), K. Sarma (India),
K. Schilling, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt, M. Wildon (UK), C.-Y. Wu,
and the proposer.

CLASSICS

Here each month we feature one classic problem, whose solution will appear in the
subsequent issue. Classics are problems of unusual elegance that are not new but deserve
to be better known. We solicit contributions of Classic problems from readers, who should
include the problem statement, solution, and references with their submission. We will not
be soliciting or publishing reader solutions to Classic problems that appear here.

C1. Attributed to Richard Rado in the 1930s, contributed by the editors. A lion and a man
are in an enclosure. The maximum speed of the lion is equal to the maximum speed of the
man. Can the lion catch the man?

January 2022] PROBLEMS AND SOLUTIONS 95



SOLUTIONS

Optimizing an Inequality

12169 [2020, 274]. Proposed by Leonard Giugiuc, Drobeta Turnu Severin, Romania. Let
n be an integer with n ≥ 2. Find the least positive real number α such that

(n− 1) ·
√

1+ α
∑

1≤i<j≤n(xi − xj )2 +
n∏
i=1

xi ≥
n∑
i=1

xi

for all nonnegative real numbers x1, . . . , xn.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. If x1 =
x2 = · · · = xn−1 = R and xn = 0, then the inequality states

(n− 1) ·
√

1+ (n− 1)αR2 ≥ (n− 1)R,

or

α ≥ 1

n− 1
− 1

(n− 1)R2
.

Letting R → ∞ we find α ≥ 1/(n − 1). We claim that the given inequality holds for
α = 1/(n− 1), and therefore this is the smallest possible value of α. Thus, we must show

(n− 1) ·
√

1+ 1

n− 1

∑
1≤i<j≤n(xi − xj )2 +

n∏
i=1

xi ≥
n∑
i=1

xi. (∗)

Note that since both sides of this inequality are continuous in each xk , it suffices to prove
the inequality for xk > 0.

Let S =∑n
i=1 xi and P = ∏n

i=1 xi . Since
∑

1≤i<j≤n(xi − xj )2 = n
∑n

i=1 x
2
i − S2, the

inequality can be written

(n− 1) ·
√√√√1+ 1

n− 1

(
n

n∑
i=1

x2
i − S2

)
+ P ≥ S.

Thus, for fixed S and P it suffices to prove (∗) when the xi are chosen to minimize
∑n

i=1 x
2
i .

Let g(x1, . . . , xn) =∑n
i=1 xi and h(x1, . . . , xn) =∑n

i=1 log xi . Since our two constraints
g = S and h = logP define a smooth compact manifold, this minimum must exist, and it
must occur either at a point that satisfies the Lagrange multiplier equations

2xi = λ+ μ

xi

for some λ and μ or at a point where ∇g and ∇h are linearly dependent. The Lagrange
multiplier equations are quadratic in xi , so they can be satisfied only at points where the
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xi take at most two distinct values. Also, ∇g and ∇h are linearly dependent only at points
where the xi are all equal. Therefore, it will suffice to prove (∗) at all points where the xi
take either one or two distinct positive values.

If the xi all have the same value y, then inequality (∗) becomes n− 1+ yn ≥ ny, which
is precisely Bernoulli’s inequality. Now assume that k of the xi equal y and n− k of them
equal z, where 0 < k < n and z < y. In that case, inequality (∗) becomes

(n− 1) ·
√

1+ k(n− k)
n− 1

(y − z)2 + ykzn−k ≥ ky + (n− k)z.

Bernoulli’s inequality gives yk ≥ 1+ k(y − 1) and zn−k ≥ 1+ (n− k)(z − 1). Thus,
if y > z ≥ 1 then

ykzn−k ≥ (1+ k(y − 1))(1+ (n− k)(z− 1))

≥ 1+ k(y − 1)+ (n− k)(z− 1) = ky + (n− k)z− (n− 1),

and the desired inequality follows.
Next, suppose z < y ≤ 1. If 1+ k(y − 1) and 1+ (n− k)(z− 1) are both nonnegative,

then we can reason as in the previous paragraph. If either one of them is negative, say
1+ (n− k)(z− 1) < 0, then (∗) follows from

ky + (n− k)z ≤ ky + (n− k − 1) ≤ k + (n− k − 1) = n− 1.

Thus, for the rest of the solution we may assume z < 1 < y. Suppose

z ≤ (n− k − 1)/(n− k).
Inequality (∗) would follow from

(n− 1) ·
√

1+ k(n− k)
n− 1

(y − z)2 ≥ ky + (n− k)z.

Since the left side is a decreasing function of z and the right side is an increasing function
of z, it suffices to prove this in the case z = (n− k − 1)/(n− k); that is, it suffices to prove

(n− 1) ·
√

1+ k(n− k)
n− 1

(
y − n− k − 1

n− k
)2

≥ ky + (n− k − 1).

After squaring and canceling a factor of k/(n− k) this reduces to

(n− k − 1)(n− k)n(y − 1)2 + (n− 1) ≥ 0,

which is clearly true.
Finally, suppose z > (n− k − 1)/(n− k). By Bernoulli’s inequality, it suffices to show

(n− 1) ·
√

1+ k(n− k)
n− 1

(y − z)2 + (1+ k(y − 1))(1+ (n− k)(z− 1)) ≥ ky + (n− k)z.

After some simplification, this reduces to(
(n− 1)− k(n− k)(1− z)2) (y − 1)2 + (n− 1)(1− z)2 ≥ 0,

which is true since (1 − z)2 < 1/(n − k)2 and n − 1 > k/(n − k), so the coefficient of
(y − 1)2 is positive.

Also solved by A. Stadler (Switzerland) and the proposer.
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The Base-5 Expansion of a Reciprocal

12170 [2020, 274]. Proposed by Jeffrey C. Lagarias, University of Michigan, Ann Arbor,
MI. Let p be a prime number congruent to 1 modulo 15. Show that the minimal period of
the base 5 expansion of 1/p cannot be equal to (p − 1)/15.

Solution by Joel Schlosberg, Bayside, NY. Let n = (p − 1)/30. Since p is odd, (p − 1)/15
is even, so n ∈ N. Since p ≡ 12 (mod 5), the quadratic reciprocity theorem implies that 5
is a quadratic residue modulo p. Therefore, 5 ≡ z2 (mod p) for some z ∈ Z. Since p � 5,
also p � z. Therefore, by Fermat’s little theorem,

515n ≡ 5(p−1)/2 ≡ zp−1 ≡ 1 (mod p).

Suppose that 2n is the minimal period of the base 5 expansion of 1/p. This means
that 2n is the least positive integer m such that p | (5m − 1). Since also p | (515n − 1),
the multiplicative order of 5 modulo p must divide gcd(2n, 15n), which equals n. Now
p | (5n − 1), a contradiction.

Also solved by R. Chapman (UK), A. Dixit (Canada) & S. Pathak (USA), S. M. Gagola, Jr., K. T. L. Koo
(China), O. P. Lossers (Netherlands), A. Nakhash, M. A. Prasad, A. Stadler (Switzerland), A. Stenger, R. Stong,
D. Terr, E. White & R. White, and the proposer.

A Tetrahedron and the Midpoints of its Edges

12172 [2020, 275]. Proposed by Hidefumi Katsuura, San Jose State University, San Jose,
CA. Let A, B, C, and D be four points in three-dimensional space, and let U , V , W , X, Y ,
and Z be the midpoints of AB, AC, AD, BC, BD, and CD, respectively.
(a) Prove

4
(
UZ2 + V Y 2 +WX2

) = AB2 + AC2 + AD2 + BC2 + BD2 + CD2.

(b) Prove

4
(
(AB · CD · UZ)2 + (AC · BD · V Y)2 + (AD · BC ·WX)2

)
≥ (AB · BC · CA)2 + (BC · CD ·DB)2 + (CD ·DA · AC)2 + (DA · AB · BD)2,

and determine when equality holds.

Solution by Li Zhou, Polk State College, Winter Haven, FL.
(a) By Apollonius’s theorem,

4WB2 = 2AB2 + 2BD2 − AD2,

4WC2 = 2AC2 + 2CD2 − AD2,

and

4WX2 = 2WB2 + 2WC2 − BC2 = AB2 + AC2 + BD2 + CD2 − AD2 − BC2.

Adding the last equation to the analogous expressions for 4UZ2 and 4V Y 2 establishes the
identity.
(b) Using the expressions above for 4WX2, 4V Y 2, 4UZ2, a computation shows that

4·((AB · CD · UZ)2 + (AC · BD · V Y)2 + (AD · BC ·WX)2)
− (AB ·BC ·CA)2 − (BC ·CD ·DB)2 − (CD ·DA·AC)2 − (DA·AB ·BD)2 (∗)
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is equal to

1

2
det

⎡
⎣ 2AD2 AD2 + BD2 − AB2 AD2 + CD2 − AC2

AD2 + BD2 − AB2 2BD2 BD2 + CD2 − BC2

AD2 + CD2 − AC2 BD2 + CD2 − BC2 2CD2

⎤
⎦ .

The determinant here is the Cayley–Menger determinant for the tetrahedron ABCD and
its value is 288�2, where � is the volume of ABCD. Hence (∗) is equal to 144�2, which
is clearly nonnegative. This yields the desired inequality, and equality holds if and only if
� = 0, in other words A, B, C, and D are coplanar.

Editorial comment. The Cayley–Menger determinant generalizes Heron’s formula for the
area of a triangle to simplices of higher dimension.

Also solved by M. Bataille (France), R. Chapman (UK), G. Fera & G. Tescaro (Italy), D. Fleischman,
E. A. Herman, W. Janous (Austria), M. Kaplan & M. Goldenberg, B. Karaivanov (USA) & T. S. Vassilev
(Canada), K. T. L. Koo (China), A. Stadler (Switzerland), R. Stong, T. Wiandt, and the proposer.

A Matrix Equation

12173 [2020, 275]. Proposed by Florin Stanescu, Serban Cioculescu School, Gaesti,
Romania. Suppose that X and Y are n-by-n complex matrices such that 2Y 2 = XY − YX
and the rank of X − Y is 1. Prove Y 3 = YXY .

Solution by Roger A. Horn, Tampa, FL. Let z and w be nonzero complex n-vectors such
that X − Y = zw∗. It suffices to show that if

2Y 2 = zw∗Y − Yzw∗, (1)

then Yzw∗Y = 0. Jacobson’s lemma (see page 126 of R. Horn and C. Johnson (2018),
Matrix Analysis, 2nd ed., New York: Cambridge University Press) states that if BC −
CB commutes with C, then BC − CB is nilpotent. Consequently, Y 2 (and hence Y ) is
nilpotent. The rank of Y 2 is at most 2, since it is the sum of two matrices whose ranks are
at most 1. Therefore, the Jordan canonical form of Y is a direct sum of nilpotent Jordan
blocks that are not larger than 4-by-4. There are three cases.

Case (a): Y 2 = 0 (no block larger than 2-by-2). If Y 2 = 0, then Y 2z = 0 and

0 = 2Y 3 = Y 2Y 2 = Yzw∗Y − Y 2zw∗ = Yzw∗Y. (2)

Case (b): Y 2 = 0 and Y 3 = 0 (the largest block is 3-by-3). We compute

0 = 2Y 4 = Y 2 2Y 2 = Y 2zw∗Y − Y 3zw∗ = (Y 2z)(w∗Y ).

Either w∗Y = 0 and we are done, or w∗Y = 0 and Y 2z = 0. In the latter case, (2) also
holds, and it ensures that Yzw∗Y = 0.

Case (c): Y 3 = 0 and Y 4 = 0 (the largest block is 4-by-4). Let v be a complex n-vector
such that Y 3v = 0. Suppose Yz = 0. We compute

0 = 2Y 5v = 2Y 2 Y 3v = zw∗Y 4v − Yzw∗Y 3v = −(w∗Y 3v)Yz,

so w∗Y 3v = 0. We also have

0 = 2Y 4v = 2Y 2 Y 2v = zw∗Y 3v − Yzw∗Y 2v = −(w∗Y 2v)Yz,

so w∗Y 2v = 0 as well. Now compute

2Y 3v = 2Y 2 Yv = zw∗Y 2v − Yzw∗Yv = −(w∗Yv)Yz, (3)
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which ensures w∗Yv = 0 since Y 3v = 0. Multiply (3) by Y to obtain

0 = 2Y 4v = −(w∗Yv)Y 2z,

so Y 2z = 0. Finally, use (1) to compute

2Y 3v = Y 2Y 2v = Yzw∗Yv − Y 2zw∗v = (w∗Yv)Yz,
which contradicts (3). We conclude Yz = 0 and hence Yzw∗Y = 0.

Editorial comment. Kyle Gatesman observed that the result holds when the hypothesis
2Y 2 = XY − YX is replaced by the more general kY 2 = XY − YX for some nonzero
k ∈ C. Several solvers noted that the conclusion Y 3 = YXY can be strengthened to Y 3 =
0 = YXY .

Also solved by M. Bataille (France), C. Chiser (Romania), K. Gatesman, N. Grivaux (France), L. Han,
E. A. Herman, N. Hodges (UK), K. T. L. Koo (China), C. P. A. Kumar (India), J. H. Lindsey II, O. P. Lossers
(Netherlands), M. Omarjee (France), K. Sarma (India), A. Stadler (Switzerland), R. Stong, J. Stuart, R. Tauraso
(Italy), E. I. Verriest, and the proposer.

Powers of 4 and 5 with the Same Leading Digits

12174 [2020, 372]. Proposed by Gregory Galperin, Eastern Illinois University, Charleston,
IL, and Yury J. Ionin, Central Michigan University, Mount Pleasant, MI.
(a) Let n be a positive integer, and suppose that the three leading digits of the decimal
expansion of 4n are the same as the three leading digits of 5n. Find all possibilities for
these three leading digits.
(b) Prove that for any positive integer k there exists a positive integer n such that the k
leading digits of the decimal expansion of 4n are the same as the k leading digits of 5n.

Solution by Oliver Geupel, Brühl, Germany. We prove the stronger claim that for any pos-
itive integer k there are exactly two k-digit numbers a that occur as the k leading digits of
the decimal expansions of 4n and 5n for some positive integer n. In particular, the condi-
tion for such a number a is the existence of a positive integer n and nonnegative integers
p and q such that 10pa ≤ 5n < 10p(a + 1) and 10qa ≤ 4n < 10q(a + 1). Notice that if
10pa = 5n then a ≤ 10qa ≤ 4n < 5n = 10pa, so p > 0. This implies that 10pa is even
and 5n is odd, which is a contradiction. Therefore we can strengthen the first inequality to
10pa < 5n < 10p(a + 1). The product of the second inequality with the square of the first
yields

102p+qa3 < 52n22n < 102p+q(a + 1)3.

Thus a power 10m lies between a3 and (a + 1)3. Since a has k digits, we have

103k−3 ≤ a3 < 10m < (a + 1)3 ≤ 103k.

Thusm ∈ {3k − 2, 3k − 1}, leaving only two candidates for a: �10k−2/3� and �10k−1/3�. In
the case k = 3, these numbers are 215 and 464.

Now suppose that a = �10β�, where β ∈ {k − 2/3, k − 1/3}. We prove that a occurs
as the k leading digits of the decimal expansions of 4n and 5n for some positive integer n.
This confirms that 215 and 464 are solutions to part (a) and proves the claim in part (b).

The inequality 10pa < 5n < 10p(a + 1) can be rewritten as

p + log10 a < n log10 5 < p + log10(a + 1).

Since log10 a < β < log10(a + 1), to satisfy the inequality we need to have p + β close to
n log10 5. Thus we begin by finding p and n for which these numbers are close.
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Let ε = min{β − log10 a, log10(a + 1)− β}, which is positive. Kronecker’s approxima-
tion theorem asserts that the positive integer multiples of an irrational number modulo 1 are
dense in (0, 1) (see, for example, Chapter XXIII of G. H. Hardy and E. M. Wright (1975),
An Introduction to the Theory of Numbers, 4th ed., Oxford: Clarendon Press). Therefore,
there exist infinitely many pairs of positive integers n and p such that |n log10 5− p− β| <
ε/2. Consider such pairs (n, p).

Taking logarithms in 4 = 100/25 yields log10 4 = 2(1− log10 5), so

|n log10 4− (2n− 2p − 3β)− β| = 2|p + β − n log10 5| < ε,

which can be rewritten as |n log10 4− q − β| < ε, where q is the integer 2n− 2p − 3β.
Among the pairs (n, p) satisfying the restriction involving ε, choose a pair with n large
enough so that q is positive. We obtain

q + log10 a ≤ q + β − ε < n log10 4 < q + β + ε ≤ q + log10(a + 1)

and, analogously,

p + log10 a < n log10 5 < p + log10(a + 1).

Thus 10qa < 4n < 10q(a + 1) and 10pa < 5n < 10p(a + 1). Consequently, the k-digit
number a occurs as the k leading digits of the decimal expansions of 4n and 5n.

Also solved by R. Chapman (UK), G. Fera (Italy), N. Hodges (UK), O. P. Lossers (Netherlands), A. Stadler
(Switzerland), R. Stong, R. Tauraso (Italy), L. Zhou, and the proposer. Part (a) also solved by D. Terr.

An Incenter-Centroid Inequality

12175 [2020, 372]. Proposed by Giuseppe Fera, Vicenza, Italy. Let I be the incenter and
G be the centroid of a triangle ABC. Prove

2 <
IA2

GA2
+ IB2

GB2
+ IC2

GC2
≤ 3.

Solution by Arkady Alt, San Jose, CA. Let a, b, and c be the lengths of the sides opposite
A, B, and C, letma ,mb, andmc be the corresponding median lengths, and let lA, lB , and lC
be the corresponding angle bisector lengths. Let r be the inradius and s the semiperimeter.

By the Pythagorean theorem, IA2 = r2 + (s − a)2. From Heron’s formula and the inra-
dius/semiperimeter formula for the area of a triangle, we have

r2 = (s − a)(s − b)(s − c)
s

.

Using 2s = a + b + c, we obtain

IA2 = (s − a)[(s − b)(s − c)+ (s − a)s]
s

= bc(s − a)
s

.

It is well known that GA = (2/3)ma . By Apollonius’s theorem,

m2
a = (2b2 + 2c2 − a2)/4.

Therefore GA2 = (2b2 + 2c2 − a2)/9, so

IA2

GA2
= 9bc(s − a)
s(2b2 + 2c2 − a2)

.

To establish the upper bound, we observe that

2b2 + 2c2 − a2 = (b + c)2 + (b − c)2 − a2 ≥ (b + c)2 − a2

= (b + c + a)(b + c − a) = 4s(s − a),
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and therefore

IA2

GA2
≤ 9bc(s − a)

4s2(s − a) =
9bc

4s2
.

Similarly, IB2/GB2 ≤ 9ac/(4s2) and IC2/GC2 ≤ 9ab/(4s2), so

IA2

GA2
+ IB2

GB2
+ IC2

GC2
≤ 9(ab + bc + ca)

4s2
.

By the Cauchy–Schwarz inequality, a2 + b2 + c2 ≥ ab + bc + ca, so

4s2 = (a + b + c)2 = a2 + b2 + c2 + 2(ab + bc + ca) ≥ 3(ab + bc + ca).
Therefore

IA2

GA2
+ IB2

GB2
+ IC2

GC2
≤ 9(ab + bc + ca)

3(ab + bc + ca) = 3.

For the lower bound, we start with

2b2 + 2c2 − a2 = (b + c)2 − (a2 − (b − c)2) < (b + c)2,
which holds because a2 > (b − c)2, which follows from the triangle inequality. Therefore

IA2

GA2
>

9bc(s − a)
s(b + c)2 =

9l2A
4s2

,

where in the last step we have used the known formula l2A = 4bcs(s − a)/(b + c)2. Simi-
larly,

IB2

GB2
>

9l2B
4s2

and

IC2

GC2
>

9l2C
4s2

,

so

IA2

GA2
+ IB2

GB2
+ IC2

GC2
>

9

4s2
(l2A + l2B + l2C).

The required lower bound now follows from the inequality

l2A + l2B + l2C > (8/9)s2

(see page 218, inequality 11.7 in D. S. Mitrinović, J. E. Pečarić, V. Volenec (1989), Recent
Advances in Geometric Inequalities, Dordrecht: Springer).

Editorial comment. Li Zhou cited experimental evidence from Geometer’s Sketchpad
for the following conjectures: The order of IA/GA, IB/GB, and IC/GC corresponds
inversely to the order of a, b, and c, and hence also to the order of angles A, B, and C.
Moreover, the sum of the two largest of IA2/GA2, IB2/GB2, and IC2/GC2 is already
at least 2.

Walter Janous strengthened the inequality to

2+ r

8R
≤ IA2

GA2
+ IB2

GB2
+ IC2

GC2
≤ 41

16
+ 7r

8R
,

where R is the circumradius of �ABC. That this upper bound is stronger follows from
2r ≤ R.
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Also solved by H. Bailey, S. Gayen (India), W. Janous (Austria), M. Kaplan & M. Goldenberg, P. Khalili,
K.-W. Lau (China), J. H. Lindsey II, C. R. Pranesachar (India), V. Schindler (Germany), A. Stadler
(Switzerland), R. Stong, R. Tauraso (Italy), T. Wiandt, T. Zvonaru (Romania), and the proposer.

A Diophantine Equation

12176 [2020, 372]. Proposed by Nikolai Osipov, Siberian Federal University, Krasnoyarsk,
Russia. Solve

xy3 + y2 − x5 − 1 = 0

in positive integers.

Solution by Mandyam A. Prasad, Mumbai, India. We show that the only solution in posi-
tive integers is (x, y) = (1, 1). When x = 1, the equation becomes y3 + y2 − 2 = 0, whose
only solution is y = 1. When y = 1, the equation becomes x − x5 = 0, whose only posi-
tive solution is x = 1.

Hence we may assume x ≥ 2 and y ≥ 2. The polynomial x4 − x − 1 is positive at x = 2
and has positive derivative for x ≥ 2, so x4 − x − 1 > 0 for x ≥ 2. Therefore

(x − 1)(x4 − x − 1) > 0.

Expanding yields x4 + x2 < x5 + 1. If y ≤ x, then

xy3 + y2 ≤ x4 + x2 < x5 + 1,

which contradicts the original equation. Therefore, we may assume x < y.
If x2 ≤ y, then

xy3 + y2 = x5 + 1 ≤ xy2 + 1,

which yields xy2(y − 1) ≤ 1− y2, contradicting y > 1. Hence y < x2.
Rewritten as (y2 − 1)(xy + 1) = x(x4 − y), the original equation implies x(x4 − y) ≡

0 (mod xy + 1). Multiplying by −x(y + y3) yields

−x6y − x6y3 + x2y2 + x2y4 ≡ −x(y + y3)x(x4 − y) ≡ 0 (mod x(xy + 1)).

The extra factor of x in the modulus is allowed because we multiplied by a multiple of x.
Using x2y ≡ −x (mod x(xy + 1)) and the original equation, we obtain

x5 + x3 − xy − xy3 = x3 − xy − 1+ y2 ≡ 0 (mod x(xy + 1)).

Since

x3 − xy − 1+ y2 > x2 − xy + y2 − 1 > 0

when x, y ≥ 2, we must have

x3 − xy − 1+ y2 ≥ x(xy + 1),

because the left side is a multiple of the right side. This inequality can be rewritten as

(x2 − y)(x − y)− x − 1 ≥ 0.

Since x < y < x2, the left side is negative, which is a contradication. This forbids all
solutions with x, y > 1.

Also solved by the proposer.
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SOLUTIONS

Strengthening the Cauchy–Schwarz Inequality

12163 [2020, 179]. Proposed by Thomas Speckhofer, Attnang-Puchheim, Austria. Let Rn

have the usual dot product and norm. When v = (x1, . . . , xn)∈Rn, let �v= x1+ · · ·+xn.
Prove

‖v‖2‖w‖2 ≥ (v · w)2 + 1

n
(‖v‖ |�w| − ‖w‖ |�v|)2

for all v,w ∈ R
n.

Solution by the Davis Problem Solving Group, Davis, CA. If either v = 0 or w = 0 then
both sides of the requested inequality are zero, so we may assume v �= 0 and w �= 0.

First assume �v �= 0 and �w �= 0. By homogeneity, we may assume �v = �w = 1.
We have (v · w)2 = ‖v‖2‖w‖2 cos2 θ , where θ is the angle between the vectors v and w.
Thus we must prove ‖v‖2‖w‖2 ≥ ‖v‖2‖w‖2 cos2 θ + (1/n)(‖v‖ − ‖w‖)2, or

‖v‖2‖w‖2 sin2 θ ≥ 1

n
(‖v‖ − ‖w‖)2. (1)

Let S denote the area of the triangle whose vertices are the origin, v, and w. If h is
the altitude of the triangle from the origin, then h ≥ 1/

√
n, since 1/

√
n is the minimum

distance from the origin to a point in the hyperplane x1 + · · · + xn = 1. Thus

‖v‖‖w‖ sin θ = 2S = h‖v − w‖ ≥ 1√
n
‖v − w‖,

and squaring yields

‖v‖2‖w‖2 sin2 θ ≥ 1

n
‖v − w‖2 ≥ 1

n
(‖v‖ − ‖w‖)2,

where the final inequality is a consequence of the triangle inequality. This establishes (1).
Equality holds if and only v and w are linearly dependent.

If �v = 0 and �w = 0, then the inequality reduces to the Cauchy–Schwarz inequality,
and once again equality holds if and only if v andw are linearly dependent. Finally, assume
that one of �v or �w is zero and the other is nonzero. It suffices to consider the case
where �w = 0 and �v �= 0, and again we may assume v = 1. As before, if θ is the
angle between v and w then the inequality to be proved reduces to ‖v‖2‖w‖2 sin2 θ ≥
(1/n)‖w‖2, and since we have assumed w �= 0, this is equivalent to

‖v‖ sin θ ≥ 1√
n
. (2)
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The left side of (2) is the distance from v, which is in the hyperplane x1 + · · · + xn = 1, to a
point in the hyperplane x1 + · · · + xn = 0. This distance must be at least 1/

√
n, the distance

between the two parallel hyperplanes, showing that (2) is true. In this case, equality is
attained if and only if λv = μw + (1/n, . . . , 1/n) for some real λ and μ; that is, if and
only if (1, . . . , 1) is in the span of v and w.

Also solved by R. A. Agnew, K. F. Andersen (Canada), J. N. Caro Montoya (Brazil), R. Chapman (UK),
L. Giugiuc (Romania), L. Han, E. A. Herman, W. Janous (Austria), K. T. L. Koo (China), O. Kouba (Syria),
J. H. Lindsey II, O. P. Lossers (Netherlands), R. Mansuy (France), M. Omarjee (France), E. Schmeichel,
A. Stadler (Switzerland), G. Stoica (Canada), R. Stong, Florida Atlantic University Problem Solving Group,
and the proposer.

A Pell-Type Diophantine Equation

12164 [2020, 179]. Proposed by Nikolai Osipov, Siberian Federal University, Krasnoyarsk,
Russia. Characterize the positive integers d such that (d2 + d)x2 − y2 = d2 − 1 has a
solution in positive integers x and y.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. There
are solutions exactly when d + 1 is a square. Write d + 1 = gm2, where g is squarefree.
If g = 1, then d = m2 − 1, and (x, y) = (1,m) is a solution. We show that there is no
solution (x, y) when g ≥ 2.

Fix a squarefree g with g ≥ 2. Let d be minimal such that the specified equation has a
solution (x, y) when d has the form gm2 − 1. Note that d > 1, since when d = 1 the equa-
tion is 2x2 − y2 = 0, which famously has no positive integer solutions. With d minimized,
we reduce to checking finitely many cases by first showing x < 2

√
d for the solution with

smallest positive x and then showing d < 14.
It is convenient to work in the ring Z[

√
D], where D = d(d + 1), which is the set of

real numbers of the form a + b√D, where a, b ∈ Z and elements multiply as real numbers.
The norm of an element a + b√D is defined to be

(a + b√D)(a − b√D),
which equals a2 − b2D. With this definition, it is easy to confirm that the norm of a product
is the product of the norms of the factors.

A solution (u, v) to an equation of the form u2 − kv2 = c corresponds to an element
u + v√k in Z[

√
k] with norm c. In particular, the Pell equation u2 − Dv2 = 1 has the

solution (u, v) = (2d + 1, 2), which corresponds to the number 2d + 1+ 2
√
D of norm

1. Let α be this number.
Now choose β = y + x√D with x, y > 0 so that β is the smallest real number in

Z[
√
D] having norm 1− d2. Thus (x, y) is a solution to y2 −Dx2 = 1− d2 with minimal

positive x and y.
Because the norm of α is 1, we have α−1 = 2d + 1− 2

√
D, and hence α−1 is in Z[

√
D]

and has norm 1. For suitable integers x ′ and y ′, we have

α−1β = (2d + 1− 2
√
D)(y + x√D) = y ′ + x ′√D.

By the multiplicativity of the norm, α−1β has norm 1− d2. Also α−1β < β, since α−1 < 1.
By the minimality of the positive coefficients in β, at least one of x ′ and y ′ is nonpositive.
Furthermore, since α−1β is a positive real number, x ′ or y ′ is positive. We compute

α−1β(−y ′ + x ′√D) = (y ′ + x ′√D)(−y ′ + x ′√D) = d2 − 1,
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where the final equality holds because the middle expression is the negative of the norm of
α−1β. Thus

(d2 − 1)α

β
= d2 − 1

α−1β
= −y ′ + x ′√D.

Since d2 − 1 and α−1β are positive, so is −y ′ + x ′√D. With the restrictions above on x ′
and y ′, we conclude y ′ ≤ 0 < x ′. Since (y ′)2 − (x ′)2D = 1 − d2, setting y ′ = 0 would
give (x ′)2 = (d2 − 1)/(d(d + 1)) = (d − 1)/d < 1; hence y ′ < 0.

Since −y ′ + x ′√D has norm 1− d2 with −y ′ and x ′ both positive, the minimality of β
implies that (d2 − 1)α/β is at least β, so

x
√
d(d + 1) < β ≤

√
(d2 − 1)α =

√
d2 − 1(

√
d +√d + 1).

Therefore,

x <
√
d − 1+

√
(d2 − 1)/d < 2

√
d.

Next we bound d. Write the original equation as

y2 = (d + 1)((x2 − 1)d + 1) = gm2((x2 − 1)d + 1).

It follows that (x2 − 1)d + 1 = gn2 for some positive integer n. Since g ≥ 2, we have
x �= 1 and

n2 − (x2 − 1)m2 = (x2 − 1)d + 1− (x2 − 1)(d + 1)

g
= 2− x2

g
.

In the ring Z[
√
x2 − 1], consider γ and δ given by

γ = x +
√
x2 − 1 and δ = n+m

√
x2 − 1,

with norms 1 and (2 − x2)/g, respectively. Let n1 and m1 be positive integers such that
n1 + m1

√
x2 − 1 has norm (2 − x2)/g in this ring. Setting (x, y) = (x, gm1n1) yields a

solution to the original equation with d + 1 = gm2
1. The minimality of d for this g implies

that δ is minimal among all elements of Z[
√
x2 − 1] having positive coefficients and norm

(2− x2)/g.
The same argument given earlier for (d2 − 1)α/β shows that (x2 − 2)γ /(gδ) has norm

(2− x2)/g and can be written as n′ +m′√x2 − 1 with n′ and m′ being positive integers.
The minimality of δ now implies

gm2(x2 − 1) < gδ2 ≤ (x2 − 2)γ < 2x(x2 − 1),

and hence

d + 1 = gm2 < 2x < 4
√
d.

Treating this as an inequality in
√
d and applying the quadratic formula yields

d < (2+√3)2 < 14.

Since these minimal solutions require d < 14 and x < 2
√
d , there remain only finitely

many cases to consider. The casework is streamlined by reducing the equation modulo
d − 1, requiring 2x2 ≡ y2 (mod d − 1). If d − 1 has as a factor any prime congruent to
±3 modulo 8 (such as 3, 5, or 11), then x must also be a multiple of this factor, since
2 is not a square modulo any such number. Since x < 2

√
d, these possibilities are easily

eliminated. For example, when d − 1 = 9, we need only consider 3 and 6 for x in the
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original equation, and neither 110 · 9 − y2 = 99 nor 110 · 36 − y2 = 99 has an integer
solution. If d − 1 has 4 as a factor, then x must be even because 2 is not a square mod 4,
and these possibilities can similarly be checked quickly.

For d < 14, in each case d − 1 is a multiple of some element of {3, 4, 5, 11} except for
the remaining cases where d is 2, 3, or 8. The last two of these have g = 1, so only d = 2
needs to be analyzed. In this case, the equation reads 6x2 − y2 = 3, hence y = 3z for some
integer z, and 2x2 − 3z2 = 1. Taking the equation modulo 3 shows that this also fails.

Also solved by the proposer.

An Unexpected Bisection

12165 [2020, 180]. Proposed by Tran Quang Hung and Nguyen Minh Ha, Hanoi, Viet-
nam. Let MNPQ be a square with center K inscribed in triangle ABC with N and
P lying on sides AB and
AC, respectively, while M

and Q lie on side BC. Let
the incircle of�BMN touch
side BM at S and side BN
at F , and let the incircle of
�CQP touch side CQ at T
and side CP at E. Let L be
the point of intersection of
lines FS and ET . Prove that
KL bisects the segment ST .

Solution I by Haoran Chen, Suzhou, China. Let G and H be the feet of the altitudes to
BC from L and K , respectively. Let J be the intersection of KL and ST , and let I be the
midpoint of ST . Our goal is to show that I and J are the same point.

Let s be the side length of the square MNPQ. Let α = ∠CTE = ∠ST L and β =
∠BSF = ∠T SL. We establish formulas for cotα and cotβ. To derive these formulas, let
D be the foot of the perpendicular from E to CT , so that cotα = DT/DE. Let x = QT ,
y = CT = CE, and z = PE. This gives x + z = PQ = s. Since �CDE ∼ �CQP , we
have DE/CE = QP/CP , so

DE = CE ·QP/CP = y(x + z)/(y + z).
Similarly, CD = y(x + y)/(y + z), so

DT = y − CD = y(z− x)/(y + z).
We conclude

cotα = DT

DE
= y(z− x)/(y + z)
y(x + z)/(y + z) = 1− 2x

x + z = 1− 2x

s
.

Similarly, if we let u = MS, then cotβ = 1− 2u/s.
If x = u, then cotα = cotβ, so α = β, and the desired conclusion follows by symmetry.

Now assume without loss of generality that x > u, so cotα = 1 − 2x/s < 1 − 2u/s =
cotβ. Letting t = GL, we have GT = t cotα < t cotβ = GS, so GT < ST/2. Also,
HT = x + s/2 > u + s/2 = HS, so HT > ST/2. Thus G lies between H and T , and
I lies between G and H . Clearly J is also between G and H , so to show that I = J it
suffices to prove IG/IH = JG/JH .

By similar triangles, we have

JG

JH
= LG

KH
= t

s/2
= 2t

s
.
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Also,

IG = ST

2
−GT = GS +GT

2
−GT = GS −GT

2
= t (cotβ − cotα)

2

and

IH = IS −HS = x + s + u
2

−
( s

2
+ u

)
= x − u

2
.

Therefore

IG

IH
= t (cotβ − cotα)/2

(x − u)/2 = t[(1− 2u/s)− (1− 2x/s)]

x − u = 2t

s
,

which completes the proof.

Solution II by L. Richie King, Davidson, NC. Let the bisector of MNPQ parallel to MQ
and NP intersect line ET at U and line FS at V . We show that K is the midpoint of UV .
The result follows from this, since LK is the median of �LUV from L, and so it bisects
every section parallel to UV , including ST .

Let O be the center of the incircle of �PQC. Note that QO bisects ∠PQC. Let P ′,
E′, and T ′ be the reflections of P , E, and T in QO. The line PQ is tangent to the incircle
at T ′, and the lines P ′E′ and P ′T are also tangent to the incircle.

We use some known results about polars. The polar of a point Z with respect to the
incircle of �PQC is the line perpendicular to ZO that passes through the image of Z
under inversion in the incircle. A fundamental fact about polars is that if the polar of Z
passes through a point Y then the polar of Y passes through Z.

Since E is fixed under inversion in the incircle, the polar of E is PC, the line tangent
to the incircle at E. Similarly, the polar of T ′ is PQ. Since the polars of both E and T ′
pass through P , the polar of P must pass through both E and T ′, so it must be the line
ET ′. Similarly, the polar of P ′ is E′T . Let X be the point of intersection of ET ′ and E′T .
Then X lies on the polars of both P and P ′, so the polar of X is the line PP ′, which is
perpendicular to QO.

The point X is one of the vertices of the diagonal triangle of the concyclic quadrilateral
ET T ′E′. The other two vertices are the point Y where the lines ET and E′T ′ intersect,
which lies on QO, and the point Z at infinity on the lines EE′ and T T ′. We now use
one more known fact about polars: the polar of each vertex of the diagonal triangle of a
concyclic quadrilateral is the line through the other two vertices (see H. S. M. Coxeter,
(1998), Non-Euclidean Geometry, 6th ed., Washington, DC: Mathematical Association of
America, p. 57). In particular, PP ′, which is the polar ofX, passes through Y , and therefore
Y is the intersection point of PP ′ and QO. We conclude that PQY is an isosceles right
triangle, with right angle at Y . Therefore Y lies on the bisector of MNPQ parallel to MQ
and NP , so U = Y and UK has length equal to the side length of the square. Similar
reasoning shows that VK has the same length, which establishes our claim that K is the
midpoint of UV .

Editorial comment. Marty Getz and Dixon Jones generalized the problem to a rectangle
inscribed in a triangle, as did the Davis Problem Solving Group. Giuseppe Fera and Giorgio
Tescaro generalized to an inscribed parallelogram.

Also solved by W. Burleson & C. Helms & L. Ide & A. Liendo & M. Thomas, W. Chang, P. De (India),
G. Fera & G. Tescaro (Italy), M. Getz & D. Jones, O. Geupel (Germany), M. Goldenberg & M. Kaplan,
J.-P. Grivaux (France), N. Hodges (UK), W. Hu (China), E.-Y. Jang (Korea), W. Janous (Austria), K. T. L. Koo
(China), O. Kouba (Syria), K.-W. Lau (China), J. H. Lindsey II, C. R. Pranesachar (India), V. Schindler (Ger-
many), A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), M. Vowe (Switzerland), T. Wiandt, T. Zvonaru
(Romania), Davis Problem Solving Group, and the proposers.
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Asymptotics of a Recursive Sequence

12166 [2020, 180]. Proposed by Erik Vigren, Swedish Institute of Space Physics, Uppsala,
Sweden. Let a0 = 0, and define ak recursively by ak = eak−1−1 for k ≥ 1.
(a) Prove k/(k + 2) < ak < k/(k + 1) for all k ≥ 1.
(b) Is there a number c such that ak < (k + c)/(k + c + 2) for all k?

Solution by Jean-Pierre Grivaux, Paris, France. We prove part (a) by induction on k. The
base case k = 1 follows from 2 < e < 3. For the induction step, the inductive hypothesis
implies that

e−2/(k+2) < ak+1 < e−1/(k+1).

Thus it suffices to show that

e−2/(k+2) >
k + 1

k + 3
and e−1/(k+1) <

k + 1

k + 2
.

The first of these is a rearrangement of the inequality

e2x = 1+ 2x + 2x2 + · · · + 2nxn

n!
+ · · · < 1+ 2x + 2x2 + 2x3 + · · · = 1+ x

1− x
for 0 < x < 1 applied at x = 1/(k + 2), and the second is a rearrangement of the inequality
ex > 1+ x for x �= 0 applied at x = 1/(k + 1).

The answer to part (b) is no. To establish this, we first study the asymptotics of ak more
carefully. Let vk = ak − 1 = evk−1 − 1. From part (a) we conclude that vk tends to 0 as
k→∞. Thus we compute

1/vk+1 − 1/vk
(k + 1)− k =

1

vk+1
− 1

vk
= 1+ vk − evk

vk(evk − 1)
∼ −v

2
k/2

v2
k

= −1

2
.

Hence by the Stolz–Cesàro theorem we have limk→∞(1/vk)/k = −1/2, or equivalently
vk ∼ −2/k.

Now we compute

1

vk+1
− 1

vk
+ 1

2
= evk (vk − 2)+ vk + 2

2vk(evk − 1)
∼ v3

k/6

2v2
k

= vk

12
∼ − 1

6k
.

Therefore (
1

vk+1
+ k+1

2

)
−
(

1
vk
+ k

2

)
Hk −Hk−1

= k
(

1

vk+1
− 1

vk
+ 1

2

)
∼ −1

6
,

whereHk is the kth harmonic number. Applying the Stolz–Cesàro theorem again, we obtain

1

vk
+ k

2
∼ −Hk−1

6
∼ − ln k

6
.

Thus

ak − 1+ 2

k
= vk + 2

k
= vk · 2

k
·
(

1

vk
+ k

2

)
∼
(
−2

k

)(
2

k

)(
− ln k

6

)
= 2 ln k

3k2
,

and therefore

lim
k→∞ k

2

(
ak − 1+ 2

k

)
= ∞.
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However, if a bound of the type given in part (b) held, we would have

k2

(
ak − 1+ 2

k

)
<

2(c + 2)k

k + c + 2
,

which is bounded above. Thus no such bound can hold.

Also solved by K. F. Andersen (Canada), R. Chapman (UK), L. Han (USA) & X. Tang (China), N. Hodges
(UK), M. Kaplan, O. Kouba (Syria), G. Lavau (France), J. H. Lindsey II, O. P. Lossers (Netherlands), A. Stadler
(Switzerland), and A. Stenger. Part (a) only solved by P. Bracken, D. Fleischman, O. Geupel (Germany),
W. Janous (Austria), A. Natian, and the proposer.

Bounds on a Function of the Angles and Sides of a Triangle

12168 [2020, 274]. Proposed by Martin Lukarevski, University “Goce Delcev,” Stip, North
Macedonia. Let a, b, and c be the side lengths of a triangle ABC with circumradius R and
inradius r . Prove

2

R
≤ sec(A/2)

a
+ sec(B/2)

b
+ sec(C/2)

c
≤ 1

r
.

Solution by S. S. Kumar, Portola High School, Irvine, California. Let s and K denote the
semiperimeter and area of ABC, respectively. We first prove the second inequality. Note
that by the half-angle formula and the law of cosines,

sec(A/2) =
√

2

1+ cosA
=
√

4bc

(b + c)2 − a2
=
√

bc

s(s − a) .

By the AM-GM inequality, we have 2
√
bc ≤ b + c and 2

√
(s − b)(s − c) ≤ a. Applying

Heron’s formula and the relation K = rs, it follows that

sec(A/2)

a
= 1

a

√
bc(s − b)(s − c)

s(s − a)(s − b)(s − c) ≤
b + c
4K
= b + c

4rs
.

Combining this with similar formulas for the other angles, we have

sec(A/2)

a
+ sec(B/2)

b
+ sec(C/2)

c
≤ b + c

4rs
+ c + a

4rs
+ a + b

4rs
= 4s

4rs
= 1

r
.

To prove the first inequality, we note that by the law of sines, a = 2R sinA, and simi-
larly for the other sides, so the inequality is equivalent to

sec(A/2)

sinA
+ sec(B/2)

sinB
+ sec(C/2)

sinC
≥ 4.

Define f (x) = sec(x/2)/ sin x. It is tedious but straightforward to compute that on (0, π),

f ′′(x) = 1

4
sec(x/2) csc(x)

(
4 csc2(x)+ (2 cot(x)− tan(x/2))2 + sec2(x/2)

)
> 0.

Hence, by Jensen’s inequality, we obtain

sec(A/2)

sinA
+ sec(B/2)

sinB
+ sec(C/2)

sinC
≥ 3f

(
A+ B + C

3

)
= 4,

as desired.

Editorial comment. As noted by Omran Kouba, one can also deduce the first inequality by
applying Jensen’s inequality to the function g(x) = − log(cos2(x) sin(x)) on the interval
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(0, π/2), which is more easily computed to be convex than is f (x). In fact this yields the
stronger inequality

2

R
≤ 3 3

√
sec(A/2)

a
· sec(B/2)

b
· sec(C/2)

c
,

which along with the AM-GM inequality implies the first inequality.

Also solved by A. Alt, M. Bataille (France), H. Chen, C. Chiser (Romania), G. Fera (Italy), S. Gayen
(India), O. Geupel (Germany), N. Hodges (UK), M. Kaplan & M. Goldenberg, P. Khalili, K. T. L. Koo
(China), O. Kouba (Syria), K.-W. Lau (China), V. Schindler (Germany), A. Stadler (Switzerland), N. Stan-
ciu & M. Drăgan (Romania), R. Stong, R. Tauraso (Italy), M. Vowe (Switzerland), T. Wiandt, L. Wimmer,
M. R. Yegan (Iran), T. Zvonaru (Romania), and the proposer.

Estimating the Logarithmic Derivative of a Chebyshev Polynomial

12171 [2020, 275]. Proposed by Ulrich Abel and Vitaliy Kushnirevych, Technische
Hochschule Mittelhessen, Giessen, Germany. Let Tn be the nth Chebyshev polynomial,
defined by Tn(cos θ) = cos(nθ). Prove

T ′n(1/z)
Tn(1/z)

= nz√
1− z2

+O (z2n+1
)

as z→ 0.

Solution by Kenneth F. Andersen, Edmonton, Canada. We prove the equivalent statement,
with x = 1/z,

T ′n(x)
Tn(x)

= n√
x2 − 1

+O
(

1

x2n+1

)
as x →∞.

We begin with the fact that for x ≥ 1, Tn(x) = (A(x)n + A(x)−n)/2, where A(x) =
x +√x2 − 1. This can be proved by induction, using the well-known recurrence Tn+1(x) =
2xTn(x) − Tn−1(x). Alternatively, if we extend A(x) to x < 1 by an appropriate choice
of a branch of the square root function in the complex numbers, then with x = cos θ for
0 ≤ θ ≤ π we have A(x) = cos θ + i sin θ = eiθ , and therefore

Tn(x) = Tn(cos θ) = cos(nθ) = einθ + e−inθ
2

= A(x)n + A(x)−n
2

.

This equation can then be extended to x ≥ 1 by analytic continuation.
Since A′(x) = 1+ x/√x2 − 1 = A(x)/√x2 − 1 for x > 1, we have

T ′n(x) =
nA(x)n−1 − nA(x)−n−1

2
· A′(x) = n(A(x)n − A(x)−n)

2
√
x2 − 1

.

Therefore∣∣∣∣T ′n(x)Tn(x)
− n√

x2 − 1

∣∣∣∣ = n√
x2 − 1

∣∣∣∣A(x)n − A(x)−nA(x)n + A(x)−n − 1

∣∣∣∣ = 2n

(A(x)2n + 1)
√
x2 − 1

.

The desired conclusion now follows because A(x) ∼ 2x and
√
x2 − 1 ∼ x as x →∞.

Editorial comment. The problem statement above corrects a typographical error from the
original printing.

Also solved by A. Berkane (Algeria), R. Chapman (UK), H. Chen, O. Geupel (Germany), J.-P. Grivaux
(France), L. Han (USA) & X. Tang (China), N. Hodges (UK), K. T. L. Koo (China), O. Kouba (Syria),
M. Omarjee (France), A. Stadler (Switzerland), R. Tauraso (Italy), D. Terr, E. I. Verriest, T. Wiandt, and the
proposer.
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SOLUTIONS

An (Almost) Impossible Integral

12158 [2020, 86]. Proposed by Hervé Grandmontagne, Paris, France. Prove∫ 1

0

(ln x)2 arctan x

1+ x dx = 21

64
πζ(3)− 1

24
π2G− 1

32
π3 ln 2,

where ζ(3) is Apéry’s constant
∞∑
k=1

1/k3 and G is Catalan’s constant
∞∑
k=0
(−1)k/(2k + 1)2.

Solution by the proposer. Let R be the function defined by

R(x) =
∫ x

0

ln2 t

1+ t dt =
∫ 1

0

x ln2(tx)

1+ tx dt.

Integrating the given integral J by parts yields

J = [R(x) arctan x
]1

0 −
∫ 1

0

R(x)

1+ x2
dx

= π

4

∫ 1

0

ln2 x

1+ x dx −
∫ 1

0

∫ 1

0

x ln2(tx)

(1+ x2)(1+ tx)dt dx.

Observe that

x

(1+ tx)(1+ x2)
+ t

(1+ tx)(1+ t2) =
x

(1+ t2)(1+ x2)
+ t

(1+ t2)(1+ x2)
.

Multiplying by ln2(tx), integrating both sides, and exploiting symmetry under interchange
of x and t gives∫ 1

0

∫ 1

0

x ln2(tx)

(1+ x2)(1+ tx)dt dx =
∫ 1

0

∫ 1

0

x ln2(tx)

(1+ t2)(1+ x2)
dt dx.
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Thus after rewriting ln2(tx) as (ln t + ln x)2 we find

J = π

4

∫ 1

0

ln2 x

1+ x dx −
∫ 1

0

∫ 1

0

x ln2(tx)

(1+ t2)(1+ x2)
dt dx

= π

4

∫ 1

0

ln2 x

1+ x dx −
∫ 1

0

ln2 t

1+ t2 dt
∫ 1

0

x

1+ x2
dx − 2

∫ 1

0

ln t

1+ t2 dt
∫ 1

0

x ln x

1+ x2
dx

−
∫ 1

0

1

1+ t2 dt
∫ 1

0

x ln2 x

1+ x2
dx.

The component integrals of this last expression are all fairly standard. The nonelementary
ones are ∫ 1

0

ln t

1+ t2 dt = −G,
∫ 1

0

ln2 t

1+ t2 dt =
π3

16
,

∫ 1

0

x ln x

1+ x2
dx = 1

4

∫ 1

0

ln y

1+ y dy =
1

4
Li2(−1) = −π

2

48
,

and ∫ 1

0

x ln2 x

1+ x2
dx = 1

8

∫ 1

0

ln2 y

1+ y dy = −
1

4
Li3(−1) = 3

16
ζ(3),

where we have substituted y = x2 in the last two integrals. Plugging these all in, we get

J = π

4
· 3

2
ζ(3)− π

3

16
· ln 2

2
− 2(−G) · −π

2

48
− π

4
· 3

16
ζ(3)

= 21

64
πζ(3)− 1

24
π2G− 1

32
π3 ln 2.

Editorial comment. Several solvers noted that this integral appears in Section 1.24, pp.
14–15 of C. I. Vălean (2019), (Almost) Impossible Integrals, Sums, and Series, Cham:
Springer, both explicitly and as the special case n = 1 of the more general integral∫ 1

0

(ln x)2n arctan x

1+ x dx = π

4
(1− 2−2n)ζ(2n+ 1)(2n)!+ 1

2
β(2n+ 2)(2n)!

− π

16
lim
s→0

(
d2n

ds2n

(
csc

πs

2

(
ψ

(
3

4
− s

4

)
− ψ

(
1

4
− s

4

))

+ sec
πs

2

(
ψ
(

1− s
4

)
− ψ

(
1

2
− s

4

))
− 2π csc(πs)

))
,

where ζ is the Riemann zeta function, ψ is the digamma function, and β is the Dirichlet
beta function.

Also solved by A. Berkane (Algeria), P. Bracken, H. Chen, G. Fera (Italy), B. Huang, K. T. L. Koo (China),
O. Kouba (Syria), K.-W. Lau (China), M. A. Prasad (India), S. Sharma (India), F. Sinani (Kosovo), A. Stadler
(Switzerland), S. M. Stewart (Australia), R. Stong, R. Tauraso (Italy), C. I. Vălean (Romania), J. Van Casteren
& L. Kempeneers (Belgium), T. Wiandt, T. Wilde (UK), and Y. Zhou & M. L. Glasser.

The Neyman–Pearson Lemma in Disguise

12159 [2020, 86]. Proposed by Rudolf Avenhaus, Universität der Bundeswehr München,
Neubiberg, Germany, and Thomas Krieger, Forschungszentrum Jülich, Jülich, Germany.
Let � denote the distribution function of a standard normal random variable, and let U
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denote its inverse function. Let n be a positive integer, and suppose 0 < α < 1 and μ ≥ 0.
Prove

�
(
U(α)−√nμ) ≤ (� (U( n√α)− μ))n.

Solution by the proposers. The inequality in the problem is an equality if μ = 0. Thus we
may assume μ > 0.

Consider the following hypothesis testing problem: LetX1, . . . , Xn be independent and
identically normally distributed random variables with variance 1, where under the null
hypothesis H0 their expected values are all zero, and under the alternative hypothesis H1

they are μ. In other words,

Xi ∼
{
N (0, 1) under H0,

N (μ, 1) under H1.

We consider two decision procedures for testing these hypotheses: a simple intuitive
test and the Neyman–Pearson test. In the simple test, we reject the null hypothesis if
maxi=1,...,n Xi is larger than a constant k, in other words, if the sample (x1, . . . , xn) belongs
to the critical region Cs defined by

Cs =
{
(x1, . . . , xn) : max

i=1,...,n
xi > k

}
.

We choose the threshold k so that the probability of a type I error is 1 − α; that is,
PH0(Cs) = 1− α. This means

α = PH0(Cs) = PH0

(
max
i=1,...,n

Xi ≤ k
)
=

n∏
i=1

PH0(Xi ≤ k) = (�(k))n,

and solving for k yields k = U( n√α). If we let βs denote the probability of a type II error
for the simple test, then

βs = PH1

(
max
i=1,...,n

Xi ≤ k
)
= (�(k − μ))n = (�(U( n√α)− μ))n. (1)

The Neyman–Pearson test uses the critical region CNP defined by

CNP =
{
(x1, . . . , xn) :

φH1(x1, . . . , xn)

φH0(x1, . . . , xn)
> k′

}
,

for some positive constant k′, where the joint density functions φH0 under H0 and φH1

under H1 are given by

φH0(x1, . . . , xn) =
n∏
i=1

1√
2π
e−x

2
i
/2 and φH1(x1, . . . , xn) =

n∏
i=1

1√
2π
e−(xi−μ)

2/2.

Using these joint density functions, the critical region can be rewritten as

CNP =
{
(x1, . . . , xn) :

n∑
i=1

xi > k′′
}

for some constant k′′. Once again we choose k′, and therefore k′′, so that the probability of
a type I error is 1− α. Because

∑n
i=1Xi is normally distributed, with distribution given by

n∑
i=1

Xi ∼
{
N (0, n) under H0,

N (nμ, n) under H1,
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we obtain

α = PH0(CNP ) = PH0

(
n∑
i=1

Xi ≤ k′′
)
= �

(
k′′√
n

)
,

and therefore k′′ = √nU(α). The probability βNP of a type II error is then given by the
formula

βNP = PH1(CNP ) = PH1

(
n∑
i=1

Xi ≤ k′′
)
= �

(
k′′ − nμ√

n

)
= �(U(α)−√nμ). (2)

According to the Neyman–Pearson lemma, βNP ≤ βs , and by (1) and (2), this is equiv-
alent to the required inequality.

Editorial comment. The proposers’ solution shows that the inequality can be proved with-
out performing any calculations on the formulas on the two sides of the inequality. Richard
Stong showed that the inequality can also be proved by direct calculations with these for-
mulas. Letting y = √nμ, the requested inequality reads

�(U(α)− y) ≤ (�(U(α1/n)− y/√n))n.
Since this inequality is an equality when n = 1, it suffices to show that the right side is a
nondecreasing function of n for all real n ≥ 1. Taking a logarithmic derivative and letting
x = U(α1/n)− y/√n, we find that this is equivalent to

�(x) log�(x)

φ(x)
− x

2
≥ α1/n log(α1/n)U ′(α1/n)− U(α

1/n)

2
, (3)

where φ is the density function for the standard normal distribution, that is,

φ(x) = 1√
2π
e−x

2/2.

Next we note that x ≤ U(α1/n), with equality if μ = 0 and y = 0, and in this case (3) is
an equality. Thus it suffices to show that the left side is a nonincreasing function of x, or
equivalently, taking a derivative, that

1

2
+ log�(x)+ x�(x) log�(x)

φ(x)
≤ 0.

At this point, all of the parameters n, α, and μ have been eliminated, and the problem
has been reduced to an inequality involving the standard normal distribution and density
functions. Some further elaborate calculations verify this inequality.

No solutions were received other than the proposers’ solution and the solution of R. Stong.

Fibonacci and Lucas: A Golden Braid

12160 [2020, 179]. Proposed by Hideyuki Ohtsuka, Saitama, Japan, and Roberto Tauraso,
Univerità di Roma “Tor Vergata,” Rome, Italy. Let Fn be the nth Fibonacci number, and
let Ln be the nth Lucas number. (These numbers are defined recursively by F1 = F2 = 1
and Fn+2 = Fn+1 + Fn when n ≥ 1, and by L1 = 1, L2 = 3, and Ln+2 = Ln+1 + Ln when
n ≥ 1.) Prove

n∑
k=0

(
2n+ 1

n− k
)
F2k+1 = 5n and

n∑
k=0

(
2n+ 1

n− k
)
L2k+1 =

n∑
k=0

(
2k

k

)
5n−k

for all n ∈ N.
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Solution by Robin Chapman, University of Exeter, Exeter, UK. Let φ be the golden ratio
(
√

5 + 1)/2. The familiar formulas for the Fibonacci numbers (Binet’s formula) and the
Lucas numbers are

Fn = φn − (−φ)−n√
5

and Ln = φn + (−φ)−n.

Combining the two formulas, we get φn = (Ln +
√

5Fn)/2.
Let

Sn =
n∑
k=0

(
2n+ 1

n− k
)
L2k+1 +

√
5F2k+1

2
=

n∑
k=0

(
2n+ 1

n− k
)
φ2k+1 =

n∑
k=0

(
2n+ 1

k

)
φ2n−2k+1.

Pascal’s formula yields
(2n+1

k

) = (2n−1
k

)+ 2
(2n−1
k−1

)+ (2n−1
k−2

)
, a formula that holds even for

k ∈ {0, 1} if we take
(
m

j

) = 0 when j is negative. We use this to compute

Sn =
n∑
k=0

(
2n− 1

k

)
φ2n−2k+1 + 2

n∑
k=1

(
2n− 1

k − 1

)
φ2n−2k+1 +

n∑
k=2

(
2n− 1

k − 2

)
φ2n−2k+1

=
n∑
k=0

(
2n− 1

k

)
φ2n−2k+1 + 2

n−1∑
k=0

(
2n− 1

k

)
φ2n−2k−1 +

n−2∑
k=0

(
2n− 1

k

)
φ2n−2k−3

=
n−1∑
k=0

(
2n− 1

k

)
φ2n−2k−1(φ2 + 2+ φ−2)+

(
2n− 1

n

)
φ −

(
2n− 1

n− 1

)
φ−1

= 5Sn−1 + 1

2

(
2n

n

)
.

In the last step, we used
(2n−1

n

) = (2n−1
n−1

) = 1
2

(2n
n

)
, along with φ + φ−1 = √5 and

φ − φ−1 = 1. With the initial condition S0 = φ, the recurrence gives

Sn =
n∑
k=0

(
2n+ 1

n− k
)
L2k+1 +

√
5F2k+1

2
= 1

2

(
5n
√

5+
n∑
k=0

(
2k

k

)
5n−k

)
.

As
√

5 is irrational, this separates into the two required identities.

Also solved by U. Abel & G. Arends (Germany), A. Berkane (Algeria), B. Bradie, B. Burdick, W. Chang,
H. Chen (China), G. Fera (Italy), P. Fulop (Hungary), J. Grivaux (France), N. Hodges (UK), Y. Ionin,
K. T. L. Koo (China), O. Kouba (Syria), P. Lalonde (Canada), G. Lavau (France), O. P. Lossers (Netherlands),
C. Pranesachar (India), L. Shapiro, A. Stadler (Switzerland), R. Stong, B. Sury (India), D. Terr, J. Van hamme
(Belgium), M. Vowe (Switzerland) M. Wildon (UK), and the proposer.

Integer Pairs on an Ellipse

12161 [2020, 179]. Proposed by José Hernández Santiago, Guerrero, Mexico. Let N(C)
be the number of pairs (u, v) ∈ Z× Z satisfying u2 + uv + v2 = C. Prove that 6 divides
N(C) for every positive integer C.

Solution by Allen Stenger, Boulder, CO. The number of pairs (u, v) satisfying the given
equation is the same as the number of pairs satisfying u2 − uv + v2 = C due to the map-
ping of (u, v) to (u,−v). We work with the second equation.

We work in the ring Z[ω], where ω = e2πi/3. The elements of this ring have the form
u+ vω, where u and v are integers, and the norm of this element is u2 − uv + v2. Thus our
number N(C) is equal to the number of elements of Z[ω] whose norm is C. The ring has
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six units, namely ±1, ±ω, and ±ω2, and so each nonzero ring element has six associates
(including itself). All associates have the same norm, so the total number of elements with
a given norm is a multiple of 6.

The number N(C) is finite, since 4C = (2u − v)2 + 3v2, which implies that v is
bounded and then also u is bounded. Since u and v are integers, the number of solutions
(u, v) is finite.

Editorial comment. A related result is mentioned in H. L. Keng (1982), Introduction to
Number Theory, Berlin: Springer. Exercise 2 on p. 308 states, “The number of solutions to
x2 + xy + y2 = k is 6E(k), where E(k) is the number of divisors of k of the form 3h+ 1
minus the number of divisors of the form 3h + 2.” An anonymous solver noted that the
result is given with three solutions as Problem 195 in M. I. Krusemeyer, G. T. Gilbert, and
L. C. Larson (2012), A Mathematical Orchard: Problems and Solutions, Washington, DC:
MAA, 338–340.

Solvers used various techniques, such as (a) showing that if (u, v) is a solution to
u2 + uv + v2 = C, then so is (v,−(u+ v)), and that iterating this observation yields six
distinct solutions, (b) bringing in group actions, linear algebra, and/or the ring of integers
Z(ω), where ω = exp(2πi/3), and (c) using automorphisms of binary quadratic forms.
Most solvers tacitly assumed that N(C) is finite.

Also solved by K. F. Andersen (Canada), A. Berkane (Algeria), A. J. Bevelacqua, J. N. Caro Montoya (Brazil),
N. Caro (Brazil), W. Chang, R. Chapman (UK), C. Curtis & J. Boswell, R. Dempsey, A. Dixit (Canada)
& S. Pathak (USA), G. Fera (Italy), N. Garson (Canada), K. Gatesman, O. Geupel (Germany), J.-P. Grivaux
(France), J. W. Hagood, Y. J. Ionin, W. Janous (Austria), K. T. L. Koo (China), O. Kouba (Syria), C. P. A. Kumar
(India), P. Lalonde (Canada), G. Lavau (France), O. P. Lossers (Netherlands), C. Moe, A. Natian, A. Pathak,
L. J. Peterson, C. R. Pranesachar (India), J. Schlosberg, E. Schmeichel, J. H. Smith, A. Stadler (Switzerland),
D. Stone & J. Hawkins, R. Stong, R. Tauraso (Italy), D. Terr, M. Vowe (Switzerland), the Missouri State
University Problem Solving Group, and the proposer.

A Triangle Inequality from the Triangle Inequality

12162 [2020, 179]. Proposed by Dao Thanh Oai, Thai Binh, Vietnam, and Leonard
Giugiuc, Drobeta Turnu Severin, Romania. Consider a triangle with sides of lengths a,
b, and c and with area S. Prove√

a2 + b2 − 4S +
√
a2 + c2 − 4S ≥

√
b2 + c2 − 4S,

and determine when equality holds.

Solution by Yagub Aliyev, Baku, Azerbaijan. In the figure, ABDE is a square and
BDF ∼= ABC. Applying the law of cosines
in ACE, we get

CE =
√
b2 + c2 − 2bc cos∠CAE

=
√
b2 + c2 − 2bc sinA =

√
b2 + c2 − 4S.

Similar calculations show that FE =√
a2 + c2 − 4S and CF = √a2 + b2 − 4S.

By the triangle inequality, CF + FE ≥ EC,
and equality holds if and only if F lies on the
segment CE.

a
b

c

Editorial comment. Most solvers used analytical approaches and provided one of various
equivalent conditions for equality:
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• With notation as in the diagram above, C lies on the upper-left quarter of the circle with
diameter DE;

• a is the shortest side and 5(a4 + b4 + c4) = 6(a2b2 + b2c2 + c2a2);
• a is the shortest side and a4 + b4 + c4 = 24S2;
• a is the shortest side and a2 + b2 + c2 = 8S;
• A is the smallest angle and cotA+ cotB + cotC = 2;
• A is the smallest angle and cotω = 2, where ω is the Brocard angle;
• √cotA = √cotB +√cotC; or
• for some real k > 0,

cotA = (k + 1)2

k2 + k + 1
, cotB = 1

k2 + k + 1
, cotC = k2

k2 + k + 1
.

Also solved by M. Bataille (France), R. Chapman (UK), C. Curtis, G. Fera & G. Tescaro (Italy), K. Gatesman,
N. Hodges (UK), W. Janous (Austria), B. Karaivanov (USA) & T. S. Vassilev (Canada), P. Khalili, K. T. L. Koo
(China), O. Kouba (Syria), K.-W. Lau (China), D. J. Moore, K. S. Palacios (Peru), C. R. Pranesachar (India),
J. Schlosberg, A. Stadler (Switzerland), R. Stong, R. Tauraso (Italy), F. Visescu (Romania), T. Wiandt, L. Zhou,
T. Zvonaru (Romania), Davis Problem Solving Group, and the proposer.

Arithmetic Progressions and Fibonacci Numbers

12167 [2020, 274]. Proposed by Nick MacKinnon, Winchester College, Winchester, UK.
Let S be the set of positive integers expressible as the sum of two nonzero Fibonacci
numbers. Show that there are infinitely many six-term arithmetic progressions of numbers
in S but only finitely many such seven-term arithmetic progressions.

Solution by Richard Stong, Center for Communications Research, San Diego, CA. Since
2Fn = Fn+1 + Fn−2, we may view each element of S as a sum of two distinct Fibonacci
numbers. Also note that any sum Fn + Fk with k < n lies in the interval (Fn, Fn+1]. Hence
the elements of S in this interval are precisely the sums of Fn with smaller Fibonacci
numbers. In particular, the expression of any given s ∈ S as a sum of two distinct Fibonacci
numbers is unique, and the larger is the largest Fn with Fn < s (except for s = 2).

To find 6-term arithmetic progressions, start with Fn (for some n ≥ 3, so that Fn =
Fn−1 + Fn−2 ∈ S) and let the common difference in the progression be Fn+3. The resulting
6-term arithmetic progression with its terms shown to be in S is

Fn = Fn−1 + Fn−2,

Fn + Fn+3 = Fn + Fn+3,

Fn + 2Fn+3 = Fn+4 + Fn+2,

Fn + 3Fn+3 = Fn+5 + Fn+2,

Fn + 4Fn+3 = Fn+5 + Fn+4,

Fn + 5Fn+3 = Fn+6 + Fn+3.

Such a progression cannot be extended to seven terms, since (a) the preceding term
Fn − Fn+3 is negative, and (b) the next term Fn+6 + 2Fn+3, being smaller than Fn+7, can
only be in S if 2Fn+3 is a Fibonacci number. Since Fn+4 < 2Fn+3 < Fn+5, it is not a
Fibonacci number.

To complete the solution, we prove a stronger statement, namely that except for
small values, these progressions are the only 6-term progressions in S. (The exceptions
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are subsets of the 10-term progression 2, 3, . . . , 11 and the two 7-term progressions
2, 6, 10, . . . , 26 and 3, 5, 7, . . . , 15; this requires checking small cases.)

For any 6-term progression {a0 + kd}5k=0, we have

a0 + 5d

a0 + 3d
<

5

3
≤ Fn+1

Fn

when n ≥ 4. Thus at least two of the last three terms in this progression lie in the same
interval of the form (Fn, Fn+1]. Since we may ignore cases with n ≤ 8, we may assume
we have a 5-term arithmetic progression {aj }5j=1 whose last two terms lie in the interval
(Fn+5, Fn+6] for some n ≥ 4. (We have chosen the indices here to match the example
above.) We now consider two cases.

Case 1: The top three terms lie in the interval (Fn+5, Fn+6]. These terms (a3, a4, a5)

must be (Fn+5 + Fj , Fn+5 + Fk, Fn+5 + Fl), where j < k < l ≤ n + 4. Since the terms
are in progression, Fj + Fl = 2Fk = Fk−2 + Fk+1. Because representations as the sum
of two Fibonacci numbers are unique, l = k + 1 and j = k − 2. Hence k ≤ n + 3, the
common difference is Fk−1, and the preceding term a2 must satisfy

a2 = Fn+5 + Fk−2 − Fk−1 = Fn+5 − Fk−3 = Fn+4 + Fm
for some m. This forces Fk−3 + Fm = Fn+3 = Fn+2 + Fn+1, which cannot hold since
k − 3 ≤ n and expressions as sums of distinct Fibonacci numbers are unique.

Case 2: Only the top two terms of the 5-term progression lie in (Fn+5, Fn+6]. Those
terms a4 and a5 must be Fn+5 + Fk and Fn+5 + Fl , where k < l ≤ n + 4. The previous
term a3 is Fn+5 + 2Fk − Fl ; it must satisfy

a3 = a1 + a5

2
>
Fn+5 + Fl

2
.

Eliminating Fl (by summing 1/3 of the equality and 2/3 of the inequality for a3)
yields a3 >

2
3Fn+5 + 2

3Fk . By several applications of the Fibonacci recurrence, 2
3Fn+5 =

Fn+4 + 1
3Fn+1, so

a3 > Fn+4 + 1

3
Fn+1 + 2

3
Fk.

Since a3 exceeds Fn+4, we conclude a3 = Fn+4 + Fj for some j ≤ n + 3. Fur-
thermore, since 1

3Fn+1 + 2
3Fk > max(Fk−1, 2), we have j ≥ max(k, 4). From a3 =

Fn+5 + 2Fk − Fl = Fn+4 + Fj , we conclude

Fn+3 + 2Fk = Fl + Fj ,
and hence at least one of j and l is at least as large as n+ 3.

Since Fn+1/Fn < 2 < Fn+2/Fn whenever n ≥ 3, one Fibonacci number is twice
another only for the initial values 1, 1, 2. If j = n+ 3, then Fl = 2Fk , so Fk = 1, and the
last three terms of the progression are Fn+5, Fn+5 + 1, and Fn+5 + 2, but Fn+5 − 1 /∈ S. If
l = n+ 3, then Fj = 2Fk, but we already have Fj > 2.

Thus l = n+ 4, which yields Fj + Fn+2 = 2Fk = Fk+1 + Fk−2. If j = n+ 2 = k, then
we obtain the family described earlier, extending to 6-term progressions. Otherwise, Fj and
Fn+2 are distinct, and hence one of j and n+ 2 must equal k − 2. It is not j because j ≥ k,
and it is not n+ 2 because k < n+ 4. Hence we cannot produce such a 6-term arithmetic
progression outside the family described earlier.

Also solved by J. Christopher, N. Hodges (UK), Y. J. Ionin, J. H. Nieto (Venezuela), A. Pathak (India),
A. Stadler (Switzerland), R. Tauraso (Italy), T. Wilde (UK), and the proposer.
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